
Automated Cross-Platform GUI Code Generation
for Mobile Apps

Sen Chen∗, Lingling Fan∗, Ting Su∗, Lei Ma†, Yang Liu∗, Lihua Xu‡
∗Nanyang Technological University, Singapore †Harbin Institute of Technology, China

‡New York University Shanghai, China
ecnuchensen@gmail.com

Abstract—Android and iOS are the two dominant platforms
for building mobile apps. To provide uniform and smooth
user experience, app companies typically employ two teams of
programmers to develop UIs (and underlying functionalities)
for these two platforms, respectively. However, this development
practice is costly for both development and maintenance. To
reduce the cost, we take the first step in this direction by
proposing an automated cross-platform GUI code generation
framework. It can transfer the GUI code implementation between
the two mobile platforms.

Specifically, our framework takes as input the UI pages and
outputs the GUI code for the target platform (e.g., Android
or iOS). It contains three phases, i.e., component identification,
component type mapping, and GUI code generation. It leverages
image processing and deep learning classification techniques.
Apart from the UI pages of an app, this framework does not
require any other inputs, which makes it possible for large-scale,
platform-independent code generation.

Index Terms—Cross-platform, Code Generation, Mobile App

I. INTRODUCTION

Nowadays, over 3.8 million Android apps and 2 million
iOS apps are striving to gain users on Google Play and Apple
App Store [3]. As we know, the most famous mobile apps
are event-driven programs with rich Graphical User Interfaces
(GUIs), and a pleasant user experience is crucial for an app’s
success in the highly competitive markets [6], [13].

Currently, a great amount of research focuses on improving
the efficiency of GUI code development and generation [4],
[5]. However, they only focuses on one type of mobile plat-
forms (e.g., Android system or iOS). Actually, most of mobile
apps have two similar versions on the two different platforms
by using different developing languages (i.e., Java and Object-
C). Many leading industrial companies (e.g., Google) attempt
to leverage the native development scheme for cross-platform
code development (e.g., FLUTTER1 and REACTNATIVE2).
Their solutions is to develop the code only once and make
it run on the two different mobile systems. Nevertheless, two
main problems are as follows: (1) the technology is immature
and still at the preliminary stage; (2) It is definitely difficult
to put such scheme into practice due to the competitive
relationship between different industrial companies, such as
Google and Apple, as well as their corresponding products
(e.g., Android system and iOS).

1https://flutter.io/
2https://facebook.github.io/react-native/

Fig. 1: Facebook in Android Fig. 2: Facebook in iOS

Typically, the industrial companies maintain two developing
teams in practice for Android and iOS app development. The
functionalities of the two versions are usually very similar in
the real world. As shown in Fig. 1 and Fig. 2, the two versions
of Facebook have similar login pages, especially the GUI
component types, such as Button, TextView, etc. From the
point of GUI design, the commonality of the two versions is
still very high. However, the two teams rarely have interaction
or discussion on GUI page design and implementation. In
industry, the companies have to cost more to employ differ-
ent areas of experts and developers for the two developing
teams. As for the GUI designers and developers working for
different platforms, there’s nearly nothing they can share when
designing app GUI or implementing GUI code.

Thus, it is much-need to propose an automated cross-
platform GUI code generation framework for transferring the
GUI code implementation between the two mobile platforms.
As for the framework, given the GUI pages of an Android/iOS
app, and no other inputs are required, the implementation
code of the corresponding iOS/Android GUI pages should
be generated automatically. However, it faces the following
challenges: (1) It is difficult to extract the components in
the GUI pages accurately. (2) The types of the extracted
components cannot be identified only relying on the image
processing techniques. (3) There’s no such a technique that
maps and transfers the GUI implementation code of the two
different platforms (i.e., Android and iOS).

Classified
ICs

Unlabeled
Components

Icon

Login-related pages

GUI Code
Generation

Mobile Phishing App

Phase 1

Phase 2

Logic Code
Generation

Phase 3
Component
Extraction

CNN
Classification

UI Screenshots of
iOS/Android Apps

Classified
Components

Unlabeled
ComponentsComponent

Extraction
CNN

Classification

Phase 1

Component
Type Mapping

Phase 2

GUI Code
Generation

Phase 3
UI Pages of
Android/iOS Apps

ImageView

TextView

EditView2

Button

TextView

Button

1
2
3
4
5
6
7
8

// Android GUI Code
<TextView

android:id=“@+id/forgot_pwd”
android:text=
“FORGOT PASSWORD?”
android:textColor=“blue”>

…
</TextView>

// iOS GUI Code
<textView

text=“FORGOT PASSWORD?”
id=“forgot_pwd” >

<color
key=“textColor” blue = “1” …/>

…
</textView>

Fig. 3: Overview of our framework

To address the above problem and challenges, in this paper,
we propose a framework to automatically generate the cross-
platform GUI code. Our framework contains three phases: (1)
Component Identification, which extracts the components with
their corresponding attributes from the GUI pages by leverag-
ing image process techniques, and identifies the corresponding
types by utilizing deep learning classification algorithms; (2)
Component Type Mapping, which maps the component types
from one platform to another (e.g., TextView in Android
→ textView in iOS); (3) GUI Code Generation, based
on the above two phases, we further generate the GUI code
for the target platform. In summary, we make the following
contributions in this paper.

• We are the first to generate cross-platform GUI code
for different mobile platforms (e.g., Android and iOS
platforms), instead of using native app development for
independent platforms.

• Our approach only requires the UI pages of an app,
which makes large-scale GUI code generation possible
and without platform limitations. Moreover, we propose
and maintain an extensible mapping relations between
different platforms for GUI component type transferring.

We introduce a new research direction that automated and
data-driven mobile app code generation could be achieved by
leveraging Computer Vision (CV) and Artificial Intelligence
(AI). CV corresponds to the rich Graphical User Interface of
mobile apps, and AI corresponds to the millions of mobile
apps, as well as a huge of metadata. That means, CV and AI
can shed a light on software engineering communities on the
direction of mobile code generation, both GUI code and logic
code generation, instead of using traditional program analy-
sis [7], [8] (e.g., data-flow analysis and symbolic execution).

II. PRELIMINARIES

In this section, we briefly introduce the mobile GUI, image
processing, and deep neural networks that are used in our
framework.
Mobile GUI. Android graphical user interface (GUI) frame-
work is famous for the multi-interactive activities. GUI is
implemented as a layout hierarchy, which supports a variety
of pre-built components such as structured layout objects
(e.g., LinearLayout and RelativeLayout) and compo-
nents (e.g., Button, EditText, and TextView), and allows
developers to build the GUI for the app. Each layout object
may contain several components together with their attribu-
tions (e.g., android:id, android:text).

IOS GUI also contains multiply rich components. Although
the implementation code is completely different, most of com-

ponent types can be matched to the Android component types,
making automatic conversion between codes possible. Such
as, the correspondences between TextView and textVew,
ImageView and imageView, and Button and button.
Image Processing. We briefly introduce two image processing
techniques: Canny edge detection [1] and Edge dilation [2].
Canny edge detection is an edge detection technique that uses
multi-stage algorithm to detect a wide ranges of edges in
images. It aims to accurately catch as many edges shown in
the image as possible and localize the center of the edge. It can
also be used to detect the edges of components (e.g., Button,
EditText, and TextView) in a given GUI page. Edge dilation
is usually used after canny edge detection to further merge
the adjacent elements. It gradually enlarges the boundaries of
regions so that the holes within the regions become smaller or
disappeared.
Deep Neural Networks. Convolutional Neural Networks [9]
(CNN) is a type of deep neural networks which is commonly
applied to analyzing visual images. It leverages multi-layers
with convolution filters to automatically locate features for
different tasks such as image classification.

III. FRAMEWORK DESIGN

As shown in Fig. 3, our framework takes as input the UI
pages from Android or iOS apps and outputs the UI code
for the target platform. Specifically, our framework contains
three phases: (1) GUI component identification, which first
extracts the components in the UI pages by utilizing image
processing techniques, and then identifies the types of compo-
nents (e.g., Button, TextView) by leveraging the deep learn-
ing algorithm (i.e., CNN classification); (2) Component type
mapping, which maps the identified types of components to
the corresponding components of target platform; (3) UI code
generation, which generates the GUI implementation code
based on the component types together with their attributes
from the above two phases.

A. Component Identification

The process of component identification involves two steps:
component detection and component classification.
Component Detection. To extract the components of the given
UI pages, we first detect the edges of all components in each
page through canny edge detection algorithm [1]. Since the
detected edges are too coarse to use directly, edge dilation [2]
is always used to cooperate with canny edge detection to
optimize the component detection. We thus merge the adjacent
elements by leveraging edge dilation which gradually enlarges

Classified
ICs

Unlabeled
Components

Icon

Login-related pages

GUI Code
Generation

Mobile Phishing App

Phase 1

Phase 2

Logic Code
Generation

Phase 3
Component
Extraction

CNN
Classification

UI Screenshots of
iOS/Android Apps

Classified
Components

Unlabeled
ComponentsComponent

Extraction
CNN

Classification

Phase 1

Component
Type Mapping

Phase 2

GUI Code
Generation

Phase 3
UI Pages of
Android/iOS Apps

ImageView

TextView

EditView2

Button

TextView

Button

1
2
3
4
5
6
7
8

// Android GUI Code
<TextView

android:id=“@+id/forgot_pwd”
android:text=
“FORGOT PASSWORD?”
android:textColor=“blue”>

…
</TextView>

// iOS GUI Code
<textView

text=“FORGOT PASSWORD?”
id=“forgot_pwd” >

<color
key=“textColor” blue = “1” …/>

…
</textView>

Fig. 4: Component type mapping between Android and iOS GUI code

Fig. 5: Examples of component detection

the boundaries of regions so that the holes within the regions
become smaller or disappeared. As shown in Fig. 5, the com-
ponents can be detected by the image processing algorithms.
Component Classification. Although we identified the com-
ponents of the given UI pages in the first phase, the types of
these components still remain unknown, which is an essential
characteristic for further GUI code generation. To achieve
this, we utilize Convolutional Neural Network [9] (CNN) for
this classification task. Specifically, we use CNN to train two
classification models based on two types (i.e., Android and
iOS) of large-scale labeled component images, respectively.

Each model takes as input volume and outputs an N
dimensional vector where N is the number of classes that the
program has to choose from. We take EditText, Button,
and TextView, etc., for consideration. Thus, N would be
different here for different platforms and our model is to
classify a cropped component as one of the N types. Note
that the output of the fully connected layer (also the whole
CNN) will be the probability of these N classes (the sum of
them is 1).

B. Component Type Mapping

Android and iOS apps are developed through different
development languages (i.e., Java and Object-C). Therefore,
the two types of implementation code cannot be trans-
ferred directly. We propose and maintain an extensible map-
ping relations between the two types (corresponding to
the two platforms) of components. For example, as shown
in Fig. 4, the corresponding GUI code of the component
TextView extracted from the login page of Facebook,
which is implemented in both Android version and iOS
version. The login page from Facebook contains a link
for resetting the password “FORGOT PASSWORD?”. An-

Background Img

Interactive Widgets (IWs) Extraction

Classified
IWs

Attributes

Unlabeled IWs

Icon

LUI
CNN

Classifier

Testing Tools

GUI Imgs
Mobile
Apps

Guided GUI Code
Generation

Adaptive Logic
Code Generation

GUI Screenshot Labeled
Components

Mobile Phishing App

Layout
Files

Fig. 6: Labeled component data collection

droid app uses the component of TextView, along with
their corresponding attributes, such as “android:text” and
“android:textColor.” While the UI code implementation
of the corresponding iOS app also uses key-value pairs to im-
plement the component textView with component attributes
(e.g., <color>).

C. GUI Code Generation

Code generation is the last phase, we generate GUI code
for each kind of components according to its attributes, and
add the code into the overall layout of the GUI code file. We
maintain two types of GUI code templates for Android and
iOS platform apps to generate GUI code. For example, as for
EditText, we obtain its GUI code by also considering its
text hint and background color. We then use “android:hint”
and “android:background” to implement the GUI code.

IV. TRAINING DATASET COLLECTION

Fig. 6 shows the data collection process. We crawled 37,251
and 8,951 unique Android and iOS apps from Google Play
Store and iTunes App Store, respectively. These apps belong
to multiply categories including social (e.g., Facebook and
Twitter), finance (e.g., HSBC), business (e.g., Gmail), news
(e.g., CNN News), etc. With the help of dynamic testing
tools, such as, UIAUTOMATOR3 and STOAT [11], [12] for
Android apps, IDEVICEINSTALLER4 for iOS apps, we run
each app on emulators (e.g., Android 4.3) configured with
the default settings for 30 minutes and take screenshots of the
explored screens during runtime. Finally we obtain billions of
original UI screenshots. Meanwhile, we use these testing tools
to extract component information (i.e., component types and
coordinate positions) for the explored app screens. Actually,
not all the apps can be successfully launched on the emulator
due to version update warnings, Google service update warn-
ings, and third-party library support. Our goal of screenshot

3https://developer.android.com/training/testing/ui-automator/
4https://github.com/libimobiledevice/ideviceinstaller/

Fig. 7: Original Fig. 8: PIX2CODE Fig. 9: UI2CODE

collection which enables large-scale component analysis is to
ensure multiple sets of screenshots and components, rather
than completely explore each app or get all components in
each screenshot. Although the Layout Files information
from the testing tools do not contain all components and may
contain minor errors, it would not affect the collection of our
training dataset. Finally, the result data set contains 1,842,580
unique Android screenshots, which is the biggest raw data set
of UI screenshots as far as we know, and the database of iOS
screenshots is being constructing.

V. PRELIMINARY OBSERVATION

We observe preliminary results from the following two
aspects: The accuracy of CNN classification and the UI
similarity of generated pages.
Accuracy of Classification. To demonstrate the effectiveness
of the CNN classifier, we choose several state-of-the-art ma-
chine learning classifiers (e.g., Logistic Regression, SVM,
and K-nearest Neighbors) as the baselines. We then use
the typical metrics (e.g., Accuracy, Precision, and Recall) to
compare the classification results. Based on our preliminary
experiments and observation, we unveil that the CNN classi-
fication outperforms all baselines, achieving more than 85%
accuracy, while the baselines achieve 20%-70% accuracy.
UI Similarity of the Generated Pages. We have implemented
several basic pages, such as login pages of social and financial
apps. We compare the generated UI pages with the existing
UI code generation techniques, such as PIX2CODE [4] and
UI2CODE [5]. We use UI2CODE and PIX2CODE to generate
the targeted UI pages. Based on the successfully generated
UI pages, we measure the similarity using two widely used
image similarity metrics [10]: mean absolute error (MAE)
and mean squared error (MSE). Fig. 8 and Fig. 9 show the
generated UI pages by PIX2CODE and UI2CODE respectively.
The two techniques aim to reduce the burden on the GUI code
development, but they are not competent to generate an almost
the same UI page due to lack of realistic GUI-hierarchies of
components and containers of UI pages. Moreover, they cannot
extract component attributes, such as coordinate position, color
and type. The similarity between the generated UI pages by
UI2CODE and PIX2CODE and the original pages is mainly
between 60%-70%. The similarity may be higher than what it
looks like due to the white background.

VI. CONCLUSION AND DISCUSSION

In this paper, we propose a new idea, as well as a new
research direction for automated cross-platform GUI code
generation. It can improve the efficiency of mobile develop-
ment, and further shorten the developing lifecycle. CV and
AI techniques can be used to enable the automated UI code
generation for mobile apps. With the growing usage of mobile
apps, millions of apps can be collected for data-driven analysis.
The large-scale dataset can be regarded as the training set
for the AI techniques (e.g., machine learning, deep learning
algorithms, and natural language processing (NLP)). The CV
techniques can help extract the components of UI pages,
as well as their attributes. Additionally, CV techniques may
significantly improve the efficiency in many software research
areas such as app testing. It can help extract the UI texts to
generate meaningful text inputs for app pages.

ACKNOWLEDGMENTS

We appreciate the reviewers’ constructive feedback. This
work is partially supported by NSFC Grant 61502170,
NTU Research Grant NGF-2017-03-033 and NRF Grant
CRDCG2017-S04.

REFERENCES

[1] (2018) Canny Edge Detection. [Online]. Available: https://docs.opencv.
org/3.4/da/d22/tutorial py canny.html

[2] (2018) Dilatation Edge. [Online]. Available: https://docs.opencv.org/2.
4/doc/tutorials/imgproc/erosion dilatation/erosion dilatation.html

[3] (2018) Number of apps available in leading app stores as of 1st
quarter. [Online]. Available: https://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/

[4] T. Beltramelli, “pix2code: Generating code from a graphical user inter-
face screenshot,” arXiv preprint arXiv:1705.07962, 2017.

[5] C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu, “From UI design image
to GUI skeleton: a neural machine translator to bootstrap mobile GUI
implementation,” in Proceedings of the 40th International Conference
on Software Engineering. ACM, 2018, pp. 665–676.

[6] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu, “StoryDroid:
Automated generation of storyboard for Android apps,” in Proceedings
of the 41th ACM/IEEE International Conference on Software Engineer-
ing, ICSE 2019, 2019.

[7] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and G. Pu, “Efficiently
manifesting asynchronous programming errors in android apps,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering (ASE). ACM, 2018, pp. 486–497.

[8] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su, “Large-
scale analysis of framework-specific exceptions in Android apps,” in
Proceedings of the 40th International Conference on Software Engi-
neering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
2018, pp. 408–419.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, 1998.

[10] T. A. Nguyen and C. Csallner, “Reverse engineering mobile applica-
tion user interfaces with REMAUI,” in 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2015.

[11] T. Su, “Fsmdroid: Guided gui testing of android apps,” in Proceedings of
the 38th International Conference on Software Engineering Companion,
ser. ICSE ’16. New York, NY, USA: ACM, 2016, pp. 689–691.

[12] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based GUI testing of Android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, 2017.

[13] S. E. S. Taba, I. Keivanloo, Y. Zou, J. Ng, and T. Ng, “An ex-
ploratory study on the relation between user interface complexity and
the perceived quality,” in International Conference on Web Engineering.
Springer, 2014, pp. 370–379.

