
How Can We Craft Large-Scale Android Malware?
An Automated Poisoning Attack

Sen Chen∗, Minhui Xue†, Lingling Fan∗, Lei Ma‡, Yang Liu∗, Lihua Xu§
∗Nanyang Technological University, Singapore †Optus Macquarie University Cyber Security Hub, Australia

‡Harbin Institute of Technology, China §New York University Shanghai, China
ecnuchensen@gmail.com

Abstract—Android malware, is one of the most serious threats
to mobile security. Today, machine learning-based approach is
one of the most promising approaches in detecting Android
malware. However, our previous experiments show that so-
phisticated attackers can craft large-scale Android malware to
pollute training data and pose an automated poisoning attack on
machine learning-based malware detection systems (e.g., DREBIN,
DROIDAPIMINER, STORMDROID, and MAMADROID), and
eventually mislead the detection tools. We further examine how
machine learning classifiers can be mislead under four different
attack models and significantly reduce detection accuracy. Apart
from Android malware, to better protect mobile devices, we also
discuss a general threat model of Android devices to investigate
the capabilities of different attackers.

Index Terms—Android malware detection, Adversarial ma-
chine learning, Poisoning attack

I. INTRODUCTION

Currently, Android malware detection is one of the most
important security research topics. Many state-of-the-art tech-
niques are used for this task. For example, signature-based,
behavior-based, data flow-based, and learning-based approach.
Among them, machine learning-based approach is one of the
most promising techniques for Android malware detection [1],
[2], [6], [8]. However, sophisticated attackers are able to
generate crafted samples into training dataset by reverse-
engineering to conduct an automated large-scale poisoning
attack.1

Based on our investigation, most previous work using
machine learning mainly focused on detection accuracy and
assumed that feature extraction process is under an ideal
environment [9]. In this paper, we describe a threat model
within a specific class of attacks (i.e., poisoning attack), with
three types of attackers (i.e., weak attacker, strong attacker,
and sophisticated attacker). In poisoning attack, attackers are
assumed to take in charge of part of the samples or add seeds
to mislead the classifiers. Through reverse-engineering, the
attackers are able to gain an in-depth understanding of the An-
droid apps, and further adopt a customized crafting algorithm
to generate large-scale crafted samples. These crafted samples
are misclassified by the original machine learning classifiers,
therefore, they can actively tamper with the machine learning
classifiers by injecting large-scale well-crafted samples into
training data to reduce the detection accuracy significantly.

1More details can be found in [5].

In this paper, we show a significantly high misclassification
rate on malicious applications when using 564 extracted
features. we investigate the ability of poisoning attack on
the four most recent machine-learning detection systems in
academia: DREBIN [2], DROIDAPIMINER [1], MAMADROID [9],
and STORMDROID [6]. The results show that almost all the
existing machine learning-based Android malware detection
systems are suffering from the poisoning attack [5], [7].

Besides the poisoning attack in the adversary model, mobile
devices also suffer from various potential threats. In order to
better protect mobile devices, we also propose a general threat
model to characterize attackers in different scenarios. In this
paper, (1) we introduce an automated poisoning attack under
three different classes. Moreover, we show a customized craft-
ing algorithm, to generated well-crafted samples automatically
using syntax features. (2) we show that the poisoning attack is
able to mislead DREBIN, DROIDAPIMINER, STORMDROID, and
MAMADROID, reducing the classification accuracy. (3) we also
propose a general threat model of mobile devices to investigate
the capabilities of different attackers to help mobile protection.

II. POISONING ATTACK

The goal of adversarial sample crafting in malware detection
is to mislead the detection system, causing the classification
result to change according to the attackers’ expectations.
In this paper, we focus on poisoning attack that results in
malware being misclassified as benign (false negative).

We start the definition by denoting a sample set by
{(xi, yi) ∈ (X ,Y)}ni=1, where n is the total number of
samples, and xi = {xi1, xi2, · · ·xim} is the feature vector
of the ith sample. Each component xij ∈ xi indicates the
existence of the jth component, if it exists, then xij = 1,
otherwise, xij = 0. yi ∈ {0, 1} indicates the attribute of the ith

sample (i.e., 0 for benign, 1 for malicious). X ⊆ {0, 1}m is a
m-dimensional feature space. In this paper, we consider binary
classifiers with two output classes (benign ot malicious).

The attackers attempt to evade binary classifiers by adding
a non-zero displacement feature vector θi to xi|yi=1 , with the
ultimate aim of yi = 0. For example, attackers may add good
features into malware to fool binary classifiers. Since attackers
aim to evade the classifiers to classify malware as benign ones,
we define our problem as crafting an adversarial sample x∗,
misclassified by the function f (where f : x→ y = f(x)), as
a benign sample x, and formalized as follows [11]:



x∗ = x+ θx s.t. f(x+ θx) 6= f(x) (1)

where θx = x is the minimal perturbation yielding misclas-
sification. We assume the attacker has full access to the used
classifier, and can inject as many variants’ features as possible.
Therefore, followed by Equation (1), we further denote xmax

ij

and xmin
ij as the maximum and the minimum values that the

jth feature of the ith sample can take. A poisoning attack can
be formalized as follows:

Af (x
min
ij − xij) ≤ θij ≤ Af (x

max
ij − xij), ∀j ∈ [1,m] (2)

where xmax
ij = 1, xmin

ij = 0, and Af ∈ [0, 1] indicates the
aggressiveness of attacks. Af = 0 indicates no attacks, while
Af = 1 indicates the most aggressive attacks. To check the
consequences of causal attacks and elaborate the challenges,
we develop an adversarial model with three types of attackers
with the corresponding Af values as follows:
• Weak attacker (Af = 0.33). Our weak attacker is to-

tally unaware of the statistical properties of the training
features or labels. This attacker simply fakes additional
labels with random binary features to poison the training
dataset.

• Strong attacker (Af = 0.67). Our strong attacker is aware
of the features we use for training and can has access
to our ground-truth dataset (which comes from public
sources). This attacker can manipulate partial features
in the training data. However, this attacker is resource
constrained and cannot manipulate any mobile application
statistics which would require more time. The strong
attacker crafts features by randomly selecting public
available Android malware and then faking additional
labels, so that the partial training labels can become
nearly identical.

• Sophisticated attacker (Af = 1). Our strongest attacker,
named sophisticated attacker, has full knowledge of our
training feature set. Additionally, this attacker has suf-
ficient time and economic resources to create arbitrary
mobile application statistics. Therefore, the sophisticated
attacker can fully manipulate almost all training features,
which creates scenarios where relatively benign mobile
applications and real-world malicious mobile applications
appear to have nearly identical attributes at the training
phase.

To achieve this, we leverage the adversarial crafting algo-
rithm [10] based on the Jacobian matrix

Jf =
∂f (X )
∂X

=

[
∂fi (x)

∂xj

]
i∈{0,1},j∈[1,m]

where fi(x) indicates the output of sample x (either malicious
or benign), i = 0 indicates x is benign and i = 1 indicates x
is malicious.

To craft adversarial samples, we construct a feature database
with 73 benign features and 102 malicious features. We then
take two steps: (1) we compute the gradient of f with respect
to x to estimate the direction where a perturbation in x
would change the output of f ; (2) we choose a perturbation

Device

Server

Network

Malware

App

OS

Browser

Fig. 1. General Threat Model of Mobile Devices

θ of x with maximal positive gradient into our target class
Yyi=0|yi=1, denoted as y∗, and we then customize the ad-
versarial crafting algorithm [10] according to our adversarial
model with three types of attackers (Af ), to indicate the
probability (Equation (2)) of adding a specific feature. After
computing the gradient, we iteratively choose a target feature
whose gradient is the largest for our target class and then
update its value in x to obtain our new input vector. We
then re-update the gradient and repeat this process until either
we reach the bounded allowed changes (loop bound) or we
successfully achieve a misclassification.

III. GENERAL THREAT MODEL AND
ADVERSARIAL ATTACKS

Our adversarial model mentioned above (based on Android
malware) is only one of the potential attack surfaces of mobile
devices. We consider as many attack surfaces as possible and
propose a general threat model of mobile devices. Based on the
understanding of the threat model, we can investigate whether
the existing protection mechanisms (e.g., sandbox, signature,
permission-based mechanism, access control, Binder mecha-
nism, memory management mechanism) are safe or not, and
evaluate the attack efforts.

As shown in Fig. 1, the potential threats (or attack surfaces)
are mainly from three aspects where attackers may exploit:
Device, Network and Server. There are a variety of entry
points when attackers are targeting the mobile device, such
as mobile malware (e.g., fake apps [12]), operate system, web
browser and application itself [3], [4] (i.e., security issues in
applications of mobile device). The detailed descriptions of
the threat model are as follows.

A. Device-Based Attackers

The threats of malware. As for this adversarial attacker, we
assume a crafted malicious application is pre-installed on the
same device with benign applications. Still, it is restricted
by the sandbox isolation. In such a case, this malicious
application is only able to access the public available data,
take screenshots of users’ input, receive implicit Intents, etc.
Therefore, all sensitive data that leaks to these sinks can be



obtained by the malware. Attackers can either monitor the
application status (running or not) via malware or even take
in charge of the mobile device via remote control. Malware
mainly do harm to the data confidentiality.
The threats of application. Mobile applications occupy an
extremely large proportion. Despite the great convenience
provided to customers, potential security issues are hiding
behind the prosperity. Sensitive data leakage and insecure
communication are the main security issue categories. For
example, an attacker is able to obtain data stored in internal
storage (e.g., SharedPreference, SQLite) or external storage
(e.g., SD Card), and also from debugging output. It can be
imagined that these security issues in mobile applications
could be the time bomb counting down for large-scale de-
struction.
The threats of OS. Rooted mobile devices allow users to alter
or replace system applications and settings, run specialized
applications that require administrator-level permissions. It
can result in the exposure of sensitive data. Besides, SMS
point of attackers can use mobile device text messages in
place of e-mail messages in order to prompt users to visit
illegitimate websites and enter sensitive information such as
usernames, passwords and verification code. A zero-day attack
happens once that flaw, or software/hardware vulnerability, is
exploited and attackers release malware before a developer has
an opportunity to create a patch to fix the vulnerability. It is
an advanced attack of mobile devices.
The threats of browser. Research has shown that mobile
users are three times more likely than desktop users to submit
personal information to phishing websites. The sender can
either be a malicious app that links users to a spoofed screen
or a benign app whose link is intercepted by another party
and is sent to a spoofed target. Browser-based attackers can
execute remote code through exploit of browser vulnerabilities
to take in charge of the mobile device.

B. Network-Based Attackers

Network-based attackers are in the middle of applications
and their corresponding servers. Under this circumstance,
attackers are able to obtain all communication data between
applications and the corresponding servers. If the communi-
cation data is plain without encryption, attackers can imme-
diately read it and subsequently subvert applications. If the
communication data is encrypted with a weak or vulnerable
cryptographic algorithm, it is still possible in practice for
attackers to crack the communication. Hence, network-based
attackers can harm data confidentiality, integrity and availabil-
ity.

For network-based attackers, we can set up a proxy server
with FIDDLER as a relay of applications (Man-in-the-middle),
and 1) intercept all plain data in communication; 2) disguise
as a genuine server to copy information; 3) tamper exchanged
data. Besides the above attacks, other common network-
based attacks contain packet sniffing, session hacking, DNS
poisoning, SSL strip, etc.

C. Server-Based Attackers

Server handles substantial core data of applications, if
misconfigured, the data may be leaked to other parties by
accident. Apart from problems of its own, they also suffer
from the following attacks.

Cross-site scripting (XSS) is a kind of injecting attack that
injects malicious JavaScript code into a secure website. If the
page is vulnerable to this attack, it’ll return user input to the
browser without proper sanitization. This attack is often used
to run code automatically when a user visits a page, taking
control of a user’s PC browser. After taking control of the
browser, the attacker can leverage that control into a variety
of attacks, such as content injection or malware propagation.

Cross-site request forgery (CSRF) is an attack that involves
creating HTTP (Web) requests based on knowledge, and
tricking a user or browser into submitting these requests. If
a Web app is vulnerable, the attack can execute transactions
or submissions that appear to come from the user. CSRF is
normally used after an attacker has already taken control of a
user’s session, either through XSS or other methods.

IV. EVALUATION ON ATTACKS AGAINST THE DETECTION

Our collected dataset contains 16,000 samples as the train-
ing data and 4,000 samples as the test data. The benign
samples are downloaded from Google Play Store, and the
other malicious samples are collected from four parties (e.g.,
Genome Project,2 DREBIN Project,3 Contagio Mobile Web-
site,4 and Pwnzen Infotech Inc.5). We select four state-of-
the-art machine learning-based systems for Android mal-
ware detection (i.e., DREBIN [2], DROIDAPIMINER [1], MA-
MADROID [9], and STORMDROID [6]), to investigate the ability
of poisoning attack under Support Vector Machine (SVM)
since SVM is the only jointly-used algorithm by the four
systems.

We demonstrate that by poisoning their training set, it is
possible to mislead their corresponding classifiers. We then
further discuss the results as follows.
Misclassification of Machine Learning Classifiers. We
mimic the sophisticated attack of poisoning attacks to observe
how ineffective these four malware detection systems perform.
Specifically, we first assume we control a subset of samples,
and then automatically generate a large-scale crafted samples
by the following tow principles: (1) we can only add or
remove features. We must preserve the utility of the modified
application, which we achieve by only adding features from
benign set, and only those that do not interfere with the func-
tionality of the application. (2) We can add a restricted number
of features. More specifically, we customize the adversarial
crafting algorithm [10] according to our adversarial model,
to indicate the probability of adding or removing a specific
feature.

2http://www.malgenomeproject.org/
3https://www.sec.cs.tu-bs.de/∼danarp/drebin/
4http://contagiodump.blogspot.com/
5http://www.pwnzen.com/



TABLE I
MISCLASSIFICATION RATE COMPARISON OF ADVERSARIAL DETECTION

Detection Tool DroidAPIMiner Drebin MaMaDroid StormDroid
Misclassification rate (FN) 80.05% 75.20% 68.95% 65.35%

Based on the above crafting algorithm, we can apply it
for machine learning mechanisms that are relied on syntax
features, such as DROIDAPIMINER, DREBIN, and STORMDROID.
MAMADROID relies on application behaviors using Markov
chain modeling, while we use call sequences to craft the
features. Specifically, we extract a set of call sequences that
are frequently used by benign samples in our dataset, and then
add them to the malicious samples to poison the training data,
and further mislead the classifiers.

Table I shows that we obtain 80.05%, 75.20%, 68.95%, and
65.35% misclassification rates on DROIDAPIMINER, DREBIN,
MAMADROID, and STORMDROID, respectively. We further dis-
cuss the results as follows.
• The poisoning attack is able to mislead the machine

learning-based detection systems.
• STORMDROID achieves lower misclassification rates than

other systems. However, it can still be attacked through
poisoning attack, which indicates that it still suffers from
crafted samples, although it uses the newly-defined and
dynamic behavior features.

• MAMADROID uses transitional call sequences, rather than
single API calls, to train its classifier, therefore, we craft
its feature space through pre-generated call sequences
from benign samples, to achieve a significant misclas-
sification (i.e., 68.95%).

• DROIDAPIMINER, DREBIN, STORMDROID, and MA-
MADROID can be thwarted if we embed native code (as a
strong attacker) and dynamic code loading with reflection
(as a sophisticated attack), because malicious code is
loaded or determined at runtime. The attackers can pollute
training data using a large-scale crafted samples through
these techniques.

In summary, we conjecture that almost all the state-of-
the-art machine-learning-based malware detection systems are
suffering from the poisoning attack we exhibited [5], [7].

V. CONCLUSION

We showed how the machine learning-based classifiers
can fail against poisoning attack by our automated cus-
tomized crafted algorithm, although machine learning-based
approaches are able to help solve many security problems,
such as Android malware detection. We argued that it is
essential to inform researchers considering how attackers will
adapt to the conventional detection, as well as to inform
developers working on the next-generation malware detection
systems. We also proposed a general threat model of mobile
devices and showed mainly attack surfaces corresponding

different potential adversarial attackers. It would be helpful to
understand the existing security mechanisms of mobile devices
and the attackers’ efforts.

ACKNOWLEDGMENTS

We appreciate the reviewers’ constructive feedback. This
work is partially supported by NSFC Grant 61502170,
NTU Research Grant NGF-2017-03-033 and NRF Grant
CRDCG2017-S04.

REFERENCES

[1] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-level
features for robust malware detection in Android,” in Security and
Privacy in Communication Networks. Springer, 2013, pp. 86–103.

[2] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“Drebin: Effective and explainable detection of android malware in your
pocket.” in NDSS, 2014.

[3] S. Chen, G. Meng, T. Su, L. Fan, Y. Xue, Y. Liu, L. Xu, M. Xue, B. Li,
and S. Hao, “Ausera: Large-scale automated security risk assessment of
global mobile banking apps,” arXiv preprint arXiv:1805.05236, 2018.

[4] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu, “Are
mobile banking apps secure? what can be improved?” in Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.
ACM, 2018, pp. 797–802.

[5] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li, “Automated
poisoning attacks and defenses in malware detection systems: An
adversarial machine learning approach,” computers & security, vol. 73,
pp. 326–344, 2018.

[6] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “Stormdroid: A
streaminglized machine learning-based system for detecting Android
malware,” in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security. ACM, 2016, pp. 377–388.

[7] S. Chen, M. Xue, and L. Xu, “Towards adversarial detection of mobile
malware: poster,” in Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking. ACM, 2016, pp.
415–416.

[8] L. Fan, M. Xue, S. Chen, L. Xu, and H. Zhu, “Poster: Accuracy vs. time
cost: Detecting Android malware through pareto ensemble pruning,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 1748–1750.

[9] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, “MAMADROID: Detecting Android malware by
building Markov chains of behavioral models,” in Proceedings of the
Annual Symposium on Network and Distributed System Security (NDSS),
2017.

[10] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Security and Privacy (EuroS&P), 2016 IEEE European Symposium
on. IEEE, 2016, pp. 372–387.

[11] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in Proceedings
of the 2014 International Conference on Learning Representations.
Computational and Biological Learning Society, 2014.

[12] C. Tang, S. Chen, L. Fan, L. Xu, Y. Liu, Z. Tang, and L. Dou, “A
large-scale empirical study on industrial fake apps,” in Proceedings of
the 41th ACM/IEEE International Conference on Software Engineering,
ICSE 2019, 2019.


