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Abstract—Model-based engineering has emerged as a key
set of technologies to engineer software systems. While system
source code is expected to match with the designed model,
legacy systems and workarounds during deployment would un-
doubtedly change the source code, making the actual running
implementation mismatch with its model. Such mismatch poses
a challenge of maintaining the conformance between the model
and the corresponding implementation. Prior techniques, such
as model checking and model-based testing, simply assumed
the sole correctness of the model or the implementation, which
is naive since they both could contain correct information (e.g.
representing either the software requirements or the actual
running environment).

In this paper, we aim to address this problem through model-
based continuous verification (ConV), an iterative verification
process that links the traditional model checking phase with
the software testing phase to a feedback loop, ensuring the
conformance between the system model and its implemen-
tation. It allows to execute the abstract test cases over the
implementation through a semi-automatic binding mechanism
to guide the update of the code, and augments system properties
from the actually running system to guide the update of the
model through model checking. Based on these techniques, we
implemented Eunomia, a conformance verification system, to
support the continuous verification process. Experiments show
that Eunomia can effectively detect and locate inconsistencies
both in the model and the source code.

Keywords-consistency checking; model-based testing; linear
temporal logic; model checking;

I. INTRODUCTION

Model-based engineering [1, 2] has emerged as a key set
of technologies to engineer software systems. Designing and
verifying a software system early in its lifecycle, even before
the implementation starts, helps to identify problems early
and thus prevent software faults from propagating to other
development phases [3].

From this traditional verification perspective, the designed
model is considered to be the “oracle” during the im-
plementation and maintenance phase. However, there al-
ways exist situations where the source code gets updated
without strictly following the model, when, for instance,
parts of the legacy system are reused or quick fixes must
be integrated during deployment. These situations reflect
the actual system environment or even additional software

requirements that may be ignored during the design phase.
Instead of assuming the sole correctness of the designed
model, software development is really an iterative process,
during which both the model and its source code should
be evaluated and updated. More often in industry, we see
situations where the designed model and its implementation
evolve frequently and concurrently, hence maintaining the
conformance becomes more and more challenging over time.

In this work, we propose model-based Continuous Ver-
ification (ConV), an iterative verification process that in-
tertwines traditional model checking with software testing
into a feedback loop. The key to successful and automated
support for this iterative process is to first execute the
abstract model-based test cases over its implementation, and
second retrieve appropriate information from the running
system for updating the system model when necessary. To
address these challenges, ConV first introduces a semi-
automatic binding mechanism to capture the relations be-
tween the abstracted model elements and its corresponding
implementation, so that the abstracted test cases, which are
generated from the system model, can be automatically exe-
cuted over its implementation with some manual preparation.
Secondly, ConV provides a property mining mechanism for
transferring the inconsistent properties into Linear Temporal
Logic (LTL [4, 5]), and augments it with newly generated
properties to guide the update of the system model. And LTL
is used as the input to identify the part of the model that
showcases the inconsistency. To the best of our knowledge,
although model checking has been widely adopted to verify
the system model, little effort exists to generate the system
properties from implementation.

ConV, as a continuous verification method, can be imple-
mented in different modeling and programming languages.
In this paper, built upon the previous work [6], we use Event-
B [7, 8] as the modeling language and Java as the pro-
gramming language, implementing Eunomia to fully support
the ConV process, and evaluate with several open source
systems. The experimental results show that our system can
effectively detect and locate the inconsistencies without false
alarms, achieving over 88% inconsistency coverage.

In summary, this paper presents the following original



contributions:
• An iterative verification process, linking the model

checking phase with software testing phase into a
feedback loop to check the conformance between the
model and its implementation;

• A semi-automatic binding mechanism to automatically
execute abstract test cases over implementation;

• A system property augmentation method based on
actual running system, contributing to guide and verify
model modification;

• An implemented system named Eunomia and its eval-
uation.

The remainder is organized as follows. In Section II, we
provide an overview of our approach. Section III describes
Eunomia, followed by the evaluation in Section IV. Section
V discusses the experimental results and limitations. In
Section VI, related studies are presented. Finally, Section
VII concludes.

II. CONV – THE ITERATIVE PROCESS

In this section, we provide a high-level overview of our
model-based continuous verification approach, and the key
parts of the iterative process.
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Figure 1. Overview of model-based continuous verification

As shown in Fig. 1, the continuous verification process
includes five phases that can be performed iteratively: (i)
generating model-based test cases; (ii) binding the abstract
model with executable information from the implementation;
(iii) testing conformance between the designed model and
its implementation; (iv) augmenting the system properties
with newly discovered information from the actual running
system; (v) model checking with not only the user defined
system properties but important information reflecting actual
running system.

To help describe ConV, we introduce an illustrative ex-
ample mode system shown in Fig. 2. It is a module of
the Vehicle on Board Control (VOBC) system modeled in
Event-B. As shown in Fig. 2, the model of this system is
considered as a finite state automaton, where each event

has a precondition, and transits to another state when en-
countering a certain event. The transition model explicitly
reveals the possible behaviors of the system. The system
events include TRAIN start (i.e. entering the environment),
VOBC start (i.e. starting the VOBC cycle), VOBC special
(i.e. anticipating inconsistencies between the current mode
and change mode), etc. E.g, q0 is the initial state, when
encountering TRAIN start event, it transits to a new state
q1 where the train is inside the environment of the mod-
e system.
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Figure 2. Transition model of Mode system

Given an inconsistent model and the source code, ConV
is able to provide the bi-directional modification instructions
model designers and developers. Fig. 3 illustrates the idea
of ConV through the example and the detailed information
of test case and binding examples are shown in Fig. 4 and
Fig. 5 respectively.

The inconsistent model and code fragment is shown in
Fig. 3(a) with a red box. train start = TRUE means the
train starts and is in the environment of the mode system,
and vobc start = TRUE means the VOBC mode starts, and
the train is in the inside of the VOBC mode system1.

We show how one could utilize ConV to support the bi-
directional verification. In traditional model-based testing
phase, abstract test cases are generated with respect to
the system model. We follow the trend and generate the
basic set of test cases to cover the possible behaviors of
designed model [9]. Such an abstract test case generated
from mode system is shown in Fig. 4. After each event,
including initialization, the state is recorded to assist fur-
ther verification in both directions. For example, the state
following INITIALISATION records the initial state of this
test case.
Binding. When dealing with the abstract test cases, people

1Note that the variables in the original model is outside and inside
respectively, we change them to train start and vobc start only to make it
easier to understand for readers.



<test_case ID="1">
<INITIALISATION>
<value type="variable">FALSE</value>
<value type="variable">off</value>
<value type="variable">1</value>
...
</INITIALISATION>
<state vobc_start="FALSE" train_start="FALSE".../>
<event name="TRAIN_start"/>
<state vobc_start="FALSE" train_start="TRUE".../>
<event name="VOBC_start"/>
<state vobc_start="TRUE" train_start="TRUE".../>
…

</test_case>

public class ModeMapping implements ModelMapper{
  private Mode m = Mode.getInstance();
  // Bind Event (model) to Function (code)
  public boolean eventMapper(Event event){
    if(event.getName().equals("TRAIN_start")){
    return m.TRAIN_start();
    }else if(event.getName().equals("TRAIN_mss_change")){
       return TRAIN_mss_change();
          }else if{ … }
    else{
      //exception?
      System.out.println("Unknown event: " + event.getName());
    return false;}
  // Bind State (model) to Variable (code)
  public State stateMapper(){
    State state = new State();
    if(m.getoutside()==machine.Mode.BooleanType.TRUE){
       state.getVariableValues().put("vobc_start", "TRUE");
    }else{state.getVariableValues().put("vobc_start", "FALSE")}

 ...

  return state; }}

G({train_start=FALSE & vobc_start=FALSE & current_mode=off
& mss_button=off & normal=TRUE}&[TRAIN_start]
=> X{train_start=FALSE & vobc_start=TRUE & current_mode=off

& mss_button=off & normal=TRUE})

Mismatch occurs at
mode.TRAIN_start (mode.java:151)

(a) Inconsistent model & implementation (b) Binding & test case (c) Conformance checking & Property augmentation (d) Updated model & implementation

public boolean TRAIN_start(){
if(train_start==false && vobc_start==false){
vobc_start = true;
 train_start = true;
...
return true;
}else
return false;}

public boolean TRAIN_start(){
if(train_start==false && vobc_start==false){
vobc_start = true;
// train_start = true;
...
return true;
}else
return false;}
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<test_case ID="1">
<INITIALISATION>
<value type="variable">FALSE</value>
<value type="variable">off</value>
<value type="variable">1</value>
...
</INITIALISATION>
<state vobc_start="FALSE" train_start="FALSE".../>
<event name="TRAIN_start"/>
<state vobc_start="FALSE" train_start="TRUE".../>
<event name="VOBC_start"/>
<state vobc_start="TRUE" train_start="TRUE".../>
…

</test_case>

public class ModeMapping implements ModelMapper{
  private Mode m = Mode.getInstance();
  // Bind Event (model) to Function (code)
  public boolean eventMapper(Event event){
    if(event.getName().equals("TRAIN_start")){
    return m.TRAIN_start();
    }else if(event.getName().equals("TRAIN_mss_change")){
       return TRAIN_mss_change();
          }else if{ … }
    else{
      //exception?
      System.out.println("Unknown event: " + event.getName());
    return false;}
  // Bind State (model) to Variable (code)
  public State stateMapper(){
    State state = new State();
    if(m.getoutside()==machine.Mode.BooleanType.TRUE){
       state.getVariableValues().put("vobc_start", "TRUE");
    }else{state.getVariableValues().put("vobc_start", "FALSE")}

 ...

  return state; }}

(a) Inconsistent model & Implementation (b) Binding & Test case (c) Conformance checking & Property augmentation (d) Updated model & Implementation

public boolean TRAIN_start(){
if(train_start==false && 
vobc_start==false){
vobc_start = true;
// train_start = true;
...
return true;
}else
return false;}
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Mismatch occurs at
Mode.TRAIN_start (mode.java:151)

G({train_start=FALSE & vobc_start=FALSE & 
current_mode=off & mss_button=off & normal=TRUE} 
& [TRAIN_start]
=> X{train_start=FALSE & vobc_start=TRUE & 
current_mode=off & mss_button=off & normal=TRUE})
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public boolean TRAIN_start(){
if(train_start==false && 
vobc_start==false){
vobc_start = true;
train_start = true;
...
return true;
}else
return false;}

Binding

Test case

G({train_start=FALSE & vobc_start=FALSE & normal=TRUE} => e (TRAIN_start) & 
G({train_start=FALSE & vobc_start=FALSE & normal=FALSE} => e (TRAIN_start)

G({train_start=FALSE & vobc_start=FALSE } => e (TRAIN_start)

Figure 3. An illustrative example of ConV through mode system

<test_case ID="1">
<INITIALISATION>

<value type="variable">FALSE</value>
<value type="variable">off</value>
<value type="variable">1</value>
...

</INITIALISATION>
<state vobc_start="FALSE" train_start="FALSE".../>
<event name="TRAIN_start"/>
<state vobc_start="FALSE" train_start="TRUE".../>
<event name="VOBC_start"/>
<state vobc_start="TRUE" train_start="TRUE".../>
...

</test_case>

Figure 4. An abstract test case example

can hardly find a universal solution for all targeted real
systems. To alleviate this problem, we propose a semi-
automatic binding mechanism to bridge the gap between the
behaviors of the model and the functions of the implemen-
tation through templates, as shown in Fig. 5. It provides
a template implementing the ModelMapper interface to
map Events and States in terms of the specific source code.
The ModelMapper consists of two method declarations:
eventMapper and stateMapper.

• eventMapper. As for the eventMapper, users are
required to change the Event names (i.e. arguments
in the eventMapper class) of the model and the
corresponding function names of the source code in
the template. When executing, the template returns the
corresponding functions for the source code execution.
If they are not correctly mapped, it throws a exception:
Unknown event detected, so as to guide the users to
modify the binding process.

• stateMapper. The stateMapper requires users to
change the variables and the corresponding values of

1 public class ModeMapping implements ModelMapper {
2 private Mode m = Mode.getInstance();
3 // Bind Event (model) to Function (code)

4 public boolean executeEvent(Event event){
5 if(event.getName().equals("TRAIN_start")){
6 return m.TRAIN_start();
7 }else if(event.getName().equals("TRAIN_mss_change")){
8 return TRAIN_mss_change();
9 }else if

10 ...
11 else{
12 System.out.println("Unknown event:"+event.getName());
13 return false;
14 }
15 };
16 // Bind State (model) to Variable (code)

17 public State getCurrentState(){
18 State state = new State();
19 if(m.getoutside()==machine.Mode.BooleanType.TRUE){
20 state.getVariableValues().put("vobc_start", "TRUE");
21 }else{
22 state.getVariableValues().put("vobc_start", "FALSE");
23 }
24 ...
25 return state;
26 };
27 }

Figure 5. A binding example

the model to the variables declared in the source code.
When executing, the template not only returns the
variable values that benefits the execution over abstract
test cases, but it also outputs the execution results of
the system states used to augment properties later. The
template is able to deal with different data types, such
as Boolean, Integer and String. In terms of different
data types, it provides different forms of templates.

The template defines the relations between the two arti-
facts. When executing abstract test case, the state and event
information will be automatically extracted and executed
over the corresponding source code, with respect to user-



defined relations. As in the example mode system, the code
fragment shown in Fig. 3(b) is part of the core of binding.
It maps event TRAIN start and variable vobc start of the
model to function TRAIN start() and variable vobc start of
the source code, respectively.
Conformance Testing. As one of the key parts of ConV
process, it is important to analyze and maintain the confor-
mance between the system model and its implementation.
The conformance testing phase aims to analyze the system
behaviors under the premise of the given input (i.e. test
case), checking the executing results against the test cases
generated from the model to detect the mismatches between
both artifacts.

Specifically, after binding the transitions and states, the
abstract test cases can be automatically executed over the
implementation. For each test case, if all the transitions are
run successfully and the states are shown as expected, the
test case is then passed; otherwise, there are two possible
reasons the test case failed: the state change is different from
the state of original test case or one transition cannot be
executed at all as its precondition cannot be satisfied. No
matter whether the test case is passed, execution results are
recorded, as well as the mismatch location where implemen-
tation violates the designed model shown in Fig. 3(c).
System Property Augmentation. In ConV, inconsistent
system information is extracted from the actual running
implementation, and transformed into LTL, improving the
completeness of system properties in model checking. The
LTL generation process is as follows.

Algorithm 1 LTL Generation Algorithm
Input: Abstract test cases, execution result

// denoted as absTc and exeRe respectively
Output: LTL

1: LTL {}; // initialize LTL with empty
2: for each tc1 2 absTc and each tc2 2 exeRe do
3: if tc1.id == tc2.id then
4: compare the values of each variable;
5: if ! compare(tc1, tc2) then
6: LTL LTL [ tc2.get(propeties);
7: end if
8: end if
9: end for

10: return LTL

As shown in Algorithm 1, the input consists of the abstract
test cases and its execution results, and the output is the
inconsistencies represented in LTL. Firstly, LTL is initialized
with empty (line 1). For each test case, we compare the states
of each test case with execution results. If mismatch occurs,
the inconsistent property will be transformed to LTL (line 6).
The inconsistent semantics in the example can be extracted
and represented in LTL shown in Fig. 3(c). It means that the

model should be in the state where train start = false after
the event TRAIN start.

The resulting properties are often redundant, since each
State consists of several variables, and each Event might
also consist of several arguments. To alleviate this problem,
we propose an LTL optimization algorithm as depicted in
Algorithm 2.

Algorithm 2 LTL Optimization Algorithm
Input: Original LTL, IS // IS:InconsistencySet
Output: Optimized LTL

1: V R {}; // initialize VR with empty
// VR:VariableRange containing all variables and cor-
responding value spaces.

2: currentRange {};
3: for each variable 2 TestCases do
4: V R V R [ (variable, variable.values);
5: end for
6: for each var 2 V R do
7: originalRange V R.get(var);
8: for each incon 2 IS do
9: currentRange  currentRange [

incon.get(var);
10: end for
11: if originalRange equals currentRange then
12: InconLeft IS \ var;
13: Classify InconLeft by each value in

originalRange

14: if classified InconLeft equals each other then
15: IS  IS \ var;
16: end if
17: end if
18: end for
19: return IS

Algorithm 2 takes the original LTL as input, and outputs
the optimized LTL. Let IS be the Inconsistency Set repre-
sented in LTL, and VR be the Variable Ranges to record all
variables and corresponding value spaces. VR is initialized
empty (line 1) and filled after traversing all the test cases to
obtain the value space of each variable (line 4). currentRange
refers to the value space obtained from IS.

For each variable in VR, we first extract the value space
from the VR (line 7) denoted originalRange, then extract
the value space of the each variable from LTL denoted
as currentRange (line 9). The two sets are then compared
(line 11). If currentRange does not equal originalRange,
which means not all the values of the variable are taken
into consideration in the analysis, the uncovered value may
lead to other effects. Thus this variable under discussion
should not be deleted from the LTL. Otherwise, we define
the rest of inconsistency set that excludes var as InconLeft
(line 12), and group it in terms of var (line 13). If the
classified InconLeft equals to each other (line 14), which



means the excluded variable (i.e. var) has no effect on the
LTL. Thus var can be deleted from IS (line 15). Finally IS
is reduced after combining the same inconsistencies.

We illustrate it with a simple example shown in Fig. 6.
The final LTL sequence contains two LTLs. We first extract
the value space of each variable, for example, the value space
of normal is {TRUE, FALSE}, which equals to the original
value space of normal (i.e., normal has no other values in the
whole program). The rest of the LTL that excludes normal
is exactly the same, indicating that normal has no effect on
this LTL and can be deleted.

<test_case ID="1">
<INITIALISATION>
<value type="variable">FALSE</value>
<value type="variable">off</value>
<value type="variable">1</value>
...
</INITIALISATION>
<state vobc_start="FALSE" train_start="FALSE".../>
<event name="TRAIN_start"/>
<state vobc_start="FALSE" train_start="TRUE".../>
<event name="VOBC_start"/>
<state vobc_start="TRUE" train_start="TRUE".../>
…

</test_case>

public class ModeMapping implements ModelMapper{
  private Mode m = Mode.getInstance();
  // Bind Event (model) to Function (code)
  public boolean eventMapper(Event event){
    if(event.getName().equals("TRAIN_start")){
    return m.TRAIN_start();
    }else if(event.getName().equals("TRAIN_mss_change")){
       return TRAIN_mss_change();
          }else if{ … }
    else{
      //exception?
      System.out.println("Unknown event: " + event.getName());
    return false;}
  // Bind State (model) to Variable (code)
  public State stateMapper(){
    State state = new State();
    if(m.getoutside()==machine.Mode.BooleanType.TRUE){
       state.getVariableValues().put("vobc_start", "TRUE");
    }else{state.getVariableValues().put("vobc_start", "FALSE")}

 ...

  return state; }}

G({train_start=FALSE & vobc_start=FALSE & current_mode=off
& mss_button=off & normal=TRUE}&[TRAIN_start]
=> X{train_start=FALSE & vobc_start=TRUE & current_mode=off

& mss_button=off & normal=TRUE})

Mismatch occurs at
mode.TRAIN_start (mode.java:151)

(a) Inconsistent model & implementation (b) Binding & test case (c) Conformance checking & Property augmentation (d) Updated model & implementation

public boolean TRAIN_start(){
if(train_start==false && vobc_start==false){
vobc_start = true;
 train_start = true;
...
return true;
}else
return false;}

public boolean TRAIN_start(){
if(train_start==false && vobc_start==false){
vobc_start = true;
// train_start = true;
...
return true;
}else
return false;}
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<test_case ID="1">
<INITIALISATION>
<value type="variable">FALSE</value>
<value type="variable">off</value>
<value type="variable">1</value>
...
</INITIALISATION>
<state vobc_start="FALSE" train_start="FALSE".../>
<event name="TRAIN_start"/>
<state vobc_start="FALSE" train_start="TRUE".../>
<event name="VOBC_start"/>
<state vobc_start="TRUE" train_start="TRUE".../>
…

</test_case>

public class ModeMapping implements ModelMapper{
  private Mode m = Mode.getInstance();
  // Bind Event (model) to Function (code)
  public boolean eventMapper(Event event){
    if(event.getName().equals("TRAIN_start")){
    return m.TRAIN_start();
    }else if(event.getName().equals("TRAIN_mss_change")){
       return TRAIN_mss_change();
          }else if{ … }
    else{
      //exception?
      System.out.println("Unknown event: " + event.getName());
    return false;}
  // Bind State (model) to Variable (code)
  public State stateMapper(){
    State state = new State();
    if(m.getoutside()==machine.Mode.BooleanType.TRUE){
       state.getVariableValues().put("vobc_start", "TRUE");
    }else{state.getVariableValues().put("vobc_start", "FALSE")}

 ...

  return state; }}

(a) Inconsistent model & Implementation (b) Binding & Test case (c) Conformance checking & Property augmentation (d) Updated model & Implementation

public boolean TRAIN_start(){
if(train_start==false && 
vobc_start==false){
vobc_start = true;
// train_start = true;
...
return true;
}else
return false;}
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Mismatch occurs at
Mode.TRAIN_start (mode.java:151)

G({train_start=FALSE & vobc_start=FALSE & 
current_mode=off & mss_button=off & normal=TRUE} 
& [TRAIN_start]
=> X{train_start=FALSE & vobc_start=TRUE & 
current_mode=off & mss_button=off & normal=TRUE})
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public boolean TRAIN_start(){
if(train_start==false && 
vobc_start==false){
vobc_start = true;
train_start = true;
...
return true;
}else
return false;}

Binding

Test case

G({train_start=FALSE & vobc_start=FALSE & normal=TRUE} => e (TRAIN_start) & 
G({train_start=FALSE & vobc_start=FALSE & normal=FALSE} => e (TRAIN_start)

G({train_start=FALSE & vobc_start=FALSE } => e (TRAIN_start)

Figure 6. A LTL optimization example

Furthermore, these newly discovered properties are aug-
mented iteratively. Throughout the continuous verification
process,the model consistent with the source code is shown
in Fig. 3(d).

III. IMPLEMENTATION

The idea of ConV can be applied to most formal lan-
guages, we use Event-B and Java, implementing Eunomia to
fully support ConV, since Event-B can ensure the correctness
of design without ambiguity.

As shown in Fig. 7, Eunomia is built upon extended
Event-B MBT [8] and ProB [10]. Event-B MBT is a model-
based test case generator, we extend it with execution to not
only record the previous states of the events, but also the
post states. ProB is a model checker for B method. Eunomia
consists of three other main components: TCExecutor, LTL-
Generator and LTLOptimizer. Components communicate
through XML files or LTL files, reducing the coupling effect
and increasing the flexibility of the system.

Event-B MBT TCExecutor

LTLGenerator

LTLOptimizerProB

 Mapper

Counter
example

Model

Code

Update

Update

Figure 7. System architecture of Eunomia

TCExecutor takes as input the abstract test cases, outputs
the passed test cases in the same xml format, as well as the
mismatch location in the source code. And LTLGenerator

takes as input from TCExecutor, extracts system properties
and outputs the inconsistent behaviors represented in LTL.
It represents each inconsistency as a dedicated LTL, using
“&” to join all the LTLs, which can be directly fed to
the model-checker. LTLOptimizer takes as input the original
LTLs, and automatically combines the LTLs and deletes
invalid variables, outputs the optimized LTLs. The LTLs
(the original or the optimized, depending on user’s choice)
are fed to ProB as input to check the model, and output
counterexamples to show the location of the mismatch. Thus
designers can update the model to comply with the code.

IV. EMPIRICAL EVALUATION

Our experimental study is designed to answer the follow-
ing research questions:

• RQ1: How does ConV perform in identifying inconsis-
tencies? This research question is to investigate whether
ConV is able to identify the inconsistencies existing in
the system.

• RQ2: How do different levels of abstraction of the
system model influence the effectiveness of ConV? This
research question is to investigate the abstraction level
that ConV fits for.

• RQ3: How does ConV prove that the identified in-
consistencies are accurate and valid? This research
question is to investigate whether ConV identifies in-
consistencies accurately.

• RQ4: How does ConV perform in locating the i-
dentified inconsistencies? This research question is to
investigate whether ConV is able to locate the identified
inconsistencies, and provide modification instructions.

A. Experimental Setup

Although the proposed approach can apply to different
formal languages, Eunomia is language-dependent. Thus we
conduct experiments on three Event-B models, available
publicly at Lab3012. We choose a water tank model, a wa-
ter boiler model and a mode system model. These models
are well validated in academia [11].

To evaluate the inconsistency-checking ability of ConV,
we conduct experiments on different models of different
scales. For setting up the inconsistency situation, we first
insert some inconsistencies into the source code, then check
the conformance with Eunomia. To avoid bias, we enumerate
through all the methods of the source code, and randomly
select the methods that should be inserted inconsistencies.

Additionally, We believe that ConV should work with
system models in different levels of abstraction. To evaluate
this, we further carry out experiments on the 9 refined
models of the mode system, which are treated as 9 separated
systems, named Mode0 to Mode8. The inconsistencies are
inserted randomly again into their respective versions of

2http://www.lab205.org/home/#!/hybrid-eventb



implementation. Furthermore, we also evaluate Eunomia’s
inconsistency locating capability. The interesting results
from this experiment setup cross-confirm the validity of the
inconsistency-checking ability from another aspect since the
inconsistencies are accurately revised according to Eunomia.

B. RQ1: Inconsistency-checking ability
The goal of this study is to evaluate the inconsistency-

checking ability of Eunomia. Table I shows the results
of extracting the inconsistencies of each system. The TCs
column lists the number of test cases generated from each
model using Event-B MBT. The Incons S column describes
the inconsistencies inserted into the source code and the
Incons I column gives the number of identified inconsis-
tencies, and the last column shows the ratio of the identified
inconsistencies. For example, with regard to mode system
in Table I, 192 test cases are generated from the model, and
60 inconsistencies are inserted into the source code, 55 of
which have been identified, achieving 91.67% inconsistency
coverage.

Table I
INCONSISTENCY-CHECKING ABILITY ON DIFFERENT SYSTEMS

Models TCs Incons S Incons I % of Incons identified
mode system 192 60 55 91.67
water boiler 18 23 21 91.30
water tank 17 20 18 90.00

C. RQ2: Cross-abstraction inconsistency-checking ability
Table II shows the results of evaluation on models in dif-

ferent abstract levels. The notations share the same meaning
as those in Table I. The data indicates that the percentage
of identified inconsistencies for all the models ranges from
88.89% to 96.67%. Since design models do not include all
necessary information to generate fully functional imple-
mentations, code can be defined beyond model definition
where Eunomia may miss some inconsistencies. Overall,
the data in Table I and Table II show that Eunomia can
efficiently detect the inconsistencies between model and
code. Even in the worst case, Eunomia can achieve over
88% of the inconsistency coverage.

Table II
CROSS-ABSTRACTION INCONSISTENCY-CHECKING ABILITY

Abstract levels TCs Incons S Incons I % of Incons identified
Mode0 8 9 8 88.89
Mode1 9 10 9 90.00
Mode2 18 20 18 90.00
Mode3 37 34 31 91.18
Mode4 31 30 29 96.67
Mode5 47 40 36 90.00
Mode6 97 46 43 93.48
Mode7 302 55 51 92.73
Mode8 192 60 55 91.67

During the experiment, we analyzed and compared the
results of Mode0 to Mode8 and found an interesting phe-
nomenon that two of the inconsistencies led to the same

location of the original model. Through further investigation,
we confirmed that the two inconsistencies were introduced
in the first layer of the model and were propagated to its
refinements. This phenomena further confirms Eunomia’s
effectiveness of identifying inconsistencies at different levels
of abstraction.

D. RQ3: Validity of the identified inconsistencies
The goal of this study is to evaluate the validity of the in-

consistencies identified by Eunomia. We carefully designed
two inconsistencies that we introduce to the system. These
two inconsistencies meet the following two requirements:
(i) They can be introduced in the most abstract level; and
(ii) they are able to propagate to the following levels. Our
hypothesis is that an inconsistency identification mechanism
should be able to catch these two consistencies at every
level of abstraction, and the two inconsistencies should
point to the same location. Therefore, we inserted the two
special inconsistencies and six random inconsistencies into
the first layer of the model, focusing on the number of
inconsistencies that continues existing from the original
model to the final one. We treat them as the same ones since
they lead to the same modification locations in the model
and the code.
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Figure 8. Validity of the identified inconsistencies

As we can see in Fig. 8, the Models lists each refined
model of Mode system named Mode0 to Mode8. Note that
the inserted inconsistencies consist of the two special ones
and six randomly inserted ones, and we only insert them
to the most abstract model. The data in Fig. 8 indicate that
not all the inserted inconsistencies have been identified, and
the number of identified inconsistencies in each system is
not equal. Seven of them are identified by Mode0, while
only three of them are propagated and identified by Mode8.
Moreover, it decreases with the refining of the model.

Note that each system has identified the two special
inconsistencies and a newly discovered one. And we have
manually verified that the inconsistencies are represented in



LTL of the same semantics, indicating the three (2+1) identi-
fied inconsistencies are indeed the same ones, which proves
the validity of identified inconsistencies. We further analyze
other inconsistencies that are missing, and the reasons will
be discussed in Section V.

E. RQ4: Inconsistency-locating capability
The goal of this study is to evaluate the inconsistency

locating capability of Eunomia. To carry out the experi-
ment, We focus on the three identified inconsistencies of
Mode System in RQ3, which are represented as LTLs of
the same semantics. We ran the model checker to locate the
inconsistencies and reran Eunomia to verify the modifica-
tion.

Fig. 8 has shown that it is able to detect the inconsis-
tencies, thus, we either modify the models according to the
counterexamples displayed in model checker, or modify the
source code according to the location Eunomia provides.
To verify whether our modification correctly keeps the
conformance between the model and source code, either the
model checker or Eunomia re-check the updated ones. As
we expected, the inconsistencies detected by Eunomia were
eliminated.

In short, our continuous verification process supported by
Eunomia can efficiently locate the inconsistencies both in
the model and its implementation.

V. DISCUSSION

Reasons for missing behaviors. As shown in Table I
and Fig. 8, Eunomia missed some inconsistencies. Eunomia
partly depends on the efficiency of Event-B MBT since the
test cases are generated from Event-B MBT. Unfortunately,
as many other testing tools, test generation suffers from
infeasible paths and state space explosion. There are pos-
sibilities that the inserted inconsistencies exist in the infea-
sible paths of implementation that are not covered by the
generated test cases. As a result, test cases are passed over
the implementation without covering such inconsistencies,
Eunomia then reports that no inconsistencies are found. For
example, in the mode system, if there is an inconsistency
in the event VOBC do nothing that sets train start = true,
and we use Event-B MBT to generate test cases from model
as usual. However, the generated test cases cannot cover the
event VOBC do nothing due to the limitation of Event-B
MBT, and the test case are all passed without executing the
function of VOBC do nothing() in the code. As a result,
Eunomia misses such inconsistencies.

Another possible reason for missing behaviors is due to
the different abstraction of system model vs. its implementa-
tion. Specifically, test cases are generated from the abstract
model, hence inconsistencies maybe beyond pre-description
in the model. Under such circumstance, the generated test
cases will never violate the source code. As a result, the
generated test cases will all pass when executed over the

code, leading to the fact that there is no difference between
the test cases and the execution results.
Interesting phenomenon. As shown in Fig. 8, the number
of identified inconsistencies decreases. It is because the
inconsistencies that are inserted into the previous versions
may be restored during the refinement process. For example,
we set the variable train start = false, which was true
originally in the event VOBC Start in Mode0. While Mode 4
redefined that train start = true, which is conformable with
the source code. As a result, Eunomia reports that there is
no inconsistency between Mode4 and its implementation.
The limitations. The system that Eunomia can handle
depends on the number of events and variables in the model,
rather than the lines of source code. Because the number of
execution paths is determined by events and variables, which
directly affects the time cost of test case generation.

There are 47 events and 36 variables in the Mode system,
and Eunomia successfully handled it. Thus, although more
experimentations will help further find out the capability of
Eunomia, we believe that Eunomia is likely to handle more
complex systems.

VI. RELATED WORK

Conformance Checking. Heidenreich et al. [12] proposed
the JaMoPP approach to bridge the gap between modeling
languages and programming language Java. It treats source
code as models, and can transfer it to other programming
languages. However, this approach does not take the con-
struction or the transfer process into consideration.

DiaSpec [13] introduced interaction contrasts to guaran-
tee conformance between the architecture and its implemen-
tation by generating dedicated programming framework. It
can re-generate framework without overwriting the code,
but only support one-way changes of the architecture or the
code.

Czepa et al. [14] proposed plausibility checking of LTL-
based specifications. It can help users create the new con-
straint patterns and provide confidence through the LTL
representation. However, it cannot check the conformance
between the model and the source code.
Property Mining. Riedl-Ehrenleitner et al. [15] proposed
an approach that can mine the invariants from the code
and check them on the model to validate the efficiency.
This approach may cause difficulty in some complex code
analysis, requiring the high-conformance of Objects and
Functions in both model and code.

Su and Gabel et al. proposed DejaVu [16], a highly
scalable system for detecting these general syntactic incon-
sistency bugs between different source code versions. They
can automatically check whether there exist the defined in-
consistencies. However, they focus on mining the properties
between different code versions.
Mapping. Zheng et al. [17] proposed the 1.x-way
architecture-implementation mapping approach, which help-



s to manage changes and map the behavior architecture
specification to the implementation. However, this approach
maintains the conformance of the model and the code by
generating code.

Ubayashi et al. proposed Archface [18], based on
component and connector architecture [19], performs a
programming-level interface mechanism to bridge the gap
between the architecture and its implementation. However,
Archface is only designed for AOP [20] language and relies
on a dedicated compiler to detect mismatches.

VII. CONCLUSIONS

In this paper, we have proposed model-based continuous
verification, linking the traditional model checking and soft-
ware testing into a conformance checking feedback loop.
Our approach generates and executes test cases from the
system model when it is considered to be appropriate; and
augments system properties, when updating system model
is required, to represent the actual running implementation.
Furthermore, we implemented the approach in Eunomia,
and verified it on several open source systems. Experiment
results show that Eunomia can efficiently detect and locate
the inconsistencies both in the model and the source code.
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