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Abstract—As a result of the technical evolution in network
technologies and the upper applications, the reliance of mobile
apps on the Internet increased heavily on the purpose of excellent
service in years. However, the speedy increase brought not only
conveniences but also security risks. For instance, it is unveiled
that there exists a series of malicious apps, which are aiming
to collect users’ private data and imperceptibly send them to
remote servers under the camouflage of normal users’ behaviors.
To defend against the threat, although lots of research has been
proposed, it is still a challenge to capture the abnormal behaviors
more precisely.

In this paper, we propose IconChecker, a GUI-based anomaly
detection framework, to detect icons that can cause malicious
network payloads under the premise of users’ normal intentions.
IconChecker can detect the abnormal icon-behaviors with the
icon’s semantics and triggered network traffic in relatively high
precision, and further generate a security report for analysis
and development. To demonstrate the effectiveness, we evaluate
IconChecker from: (1) the accuracy of network traffic sniffing;
(2) the accuracy of icon semantics classification; (3) the overall
precision of IconChecker towards real apps; (4) comparing
IconChecker with the existing tool, i.e., DeepIntent. The detection
results show that IconChecker can outperform at the precision
of 84% in terms of our summarized 8 categories of icon-
behaviors. We remark that IconChecker is the first work, which
dynamically detects abnormal icon-behaviors, to identify the
malicious network payloads in Android apps.

Index Terms—Android malware, Malicious payload, Network
traffic, Anomaly detection, Dynamic analysis

I. INTRODUCTION

Mobile phones have become indispensable devices in daily
lives [1]. On the one hand, the latest statistics [2] unveils that
there are more than three million apps on Google Play Store.
On the other hand, around 50% of Internet traffic is generated
by mobile devices. With the development of new technologies
(e.g., 5G), the network traffic generated by mobile devices
will increase further [3]. Hence, promising personal privacy
security will become more desired and challenging.

Private data leakage is one of the most powerful and typical
security threats in Android malware. Android malware has
been categorized into various families [4], [5] based on dif-
ferent malicious payloads such as malicious network payloads
to steal private data. Consequently, in recent years, it is not
surprising that lots of Android malware detection methods
have been proposed, such as signature-based methods [6],
behavior-based methods [7], data flow analysis-based meth-

ods [8], [9], and machine learning-based methods [5], [10]–
[17]. However, these methods did not consider whether the
payloads especially for the network payloads belong to users’
intentions, neither do the existing network traffic classification
methods for Android apps [18], [19], which would cause a lot
of false positives during detection [20].

AppIntent [21] is the first work to put forward the concept
of user-intended data transmission. They leveraged program
analysis to obtain the path that triggers the sending behaviors
of private data by constructing call graphs. According to the
results, the security analysts can simulate the execution of
the app and check if it has caused privacy leakage through
the user interface (UI) pages. However, the semi-automated
method is constrained by the human experience in practice. In
recent work, DeepIntent [20] used static program analysis to
establish the mapping relations among UI icons, the contextual
text of icons, and permissions. They then trained a deep
learning model to predict the potentially used permissions of
the examined icon (e.g., INTERNET) and find the abnormal
behaviors. However, according to our experimental results in
Section III-F, it would also cause a lot of false positives.

It is well-known that mobile users use mobile devices based
on the understanding of the semantics of UI components,
however, the actual behaviors behind icons are transparent
to users. In the worst case, there may exist behavioral gaps
between the icon semantics and real icon-behaviors on the
certain icon. Therefore, it would be dangerous to click such
icons with inconsistent behaviors, involving hidden malicious
operations to trigger the malicious payloads. Furthermore, for
almost all malicious behaviors, they finally need to send the
users’ private data to the server via network traffic as the
endpoint of a successful attack. All in all, it is essential to
examine the consistency between the real behaviors of icons
via network traffic and the semantics of icons.

To this end, we propose IconChecker to dynamically detect
malicious network payloads for Android apps. The significant
difference between IconChecker and the previous studies is
that IconChecker dynamically performs actual operations on
the apps to capture the network traffic of icons being clicked
and detects the unexpected network traffic. We remark that
interactive UI icons leverage images or texts to show their
expected behaviors. We first predefined 8 categories of icons
that should not generate network traffic when being operated



based on a large-scale analysis of 2,820 icons. Specifically,
IconChecker consists of three key modules: icon-traffic map-
ping, icon-category mapping, and anomaly icon-behavior de-
tection. (1) Icon-traffic mapping module establishes a one-to-
one mapping between icons and behaviors through network
traffic. We propose a novel framework to accurately capture
the network traffic when the icon is clicked dynamically. (2)
Icon-category mapping module obtains the icon semantics
and checks whether it belongs to the predefined 8 categories.
In addition, we adopt a progressive strategy to establish the
relationship between icon and its semantics through heuristic
layout analysis and optical character recognition (OCR) [22]
techniques. The detection accuracy of our proposed strategy
achieves 87.2%. (3) Anomaly icon-behavior detection module
combines the detected traffic and the icon category result to
check whether the icon has abnormal behaviors and outputs a
security report for each app.

To demonstrate the effectiveness of IconChecker, we first
evaluate the effectiveness of the key modules and further
compare IconChecker with the existing tool (i.e., DeepIntent)
on 1,800 Android apps in terms of our predefined 8 categories
of icons. As a result, IconChecker detects 25 icons with
abnormal behaviors in 23 Android apps. Among them, 21
icons are true positives (84% precision).

In summary, we make the following main contributions:
• We design IconChecker,1 an automated tool to detect ab-

normal icon-behaviors with malicious network payloads in
Android apps. IconChecker dynamically operates on apps by
triggering icons’ behaviors instead of static parsing, which
is relatively more accurate and precise.

• To clarify the key issues in icon semantics classification, we
perform a study on more than 2,820 icons’ behaviors and
further summarize 8 icon categories that should not generate
traffic in any scenario.

• We propose a novel framework to accurately capture the
network traffic when triggering icons’ behaviors by clicking
the icons. Meanwhile, we propose a progressive strategy to
extract icons’ semantics under various scenarios.

• Compared with the existing method (i.e., DeepIntent) in
anomaly detection of icon-behaviors, IconChecker can de-
tect more icons with abnormal behaviors and achieves a bet-
ter detection precision on the predefined 8 icon categories.

II. APPROACH

A. Overview

Fig. 1 shows the entire workflow of our approach, namely
IconChecker. IconChecker takes an apk as input, and outputs a
security report, which shows whether the app under testing has
malicious network payloads, as well as the corresponding icon
ID and malicious code. Specifically, IconChecker leverages
the following three modules to detect the abnormal icon-
behaviors: (a) icon-traffic mapping extracts the icons presented
in UI pages, sniffs the network traffic, and further maps icons

1The code is released on https://github.com/IconCheck/IconChecker.

to the corresponding network traffic at runtime; (b) icon-
category mapping obtains the semantics from the extracted
icons, and classifies them into 8 predefined categories or “Oth-
ers”; and (c) anomaly icon-behavior detection compares the
collected traffic with the categories of the icons and determines
whether the icons have abnormal behaviors according to their
categories. Finally, IconChecker generates a security report for
further analyzing and fixing.

B. Icon-Traffic Mapping

In the icon-traffic mapping module, the system takes the
target apk as input. Firstly, we explore the information of
defined activities in the target app, which can be used to start
them. Secondly, the app is installed on the Android device
since the icon traffic sniffing needs to be performed while
the app is running dynamically. After the installation, we then
dynamically capture the network traffic associated with the
icons and finally construct the icon-traffic mapping relations.
The output of this module is the explored icons and their
corresponding captured network traffic.

1) Activity exploration: To easily launch more activities
implemented in the input app, we determine to start activities
directly from the console instead of triggering them with
testing tools. Thus, we first disassemble the apk to conduct
the corresponding information collection and manipulation. In
this step, we set the android:exported attribute of each
activity to true in the AndroidManifest.xml file to ensure the
activity launching process can be started with commands in
the console. In Activity, android:exported attribute is
used to indicate whether the current activity can be invoked
by third-party components. Besides, we also summarize the
name of each activity and the package it belongs to in this
phase. Secondly, we reassemble the modified contents and
repackage the apk with a signature. With these efforts, most of
the activities are able to be directly launched from the console
with our collected information by IconChecker. We then start
each activity with command lines directly to dump the layout
and intercept the current page (i.e., UI) for further use.

2) Traffic sniffing: The second step of the icon-traffic map-
ping module is sniffing the potential network traffic triggered
by the icon’s operations on each page. Some existing malware
detection or app identification work, which applied network
traffic as their evaluation criteria, usually filtered the packets
to capture the harmful network traffic, according to the port
numbers occupied by the app at runtime. However, unlike
them, capturing the traffic triggered by an icon is a far more
fine-grained issue.
1 p r i v a t e s t a t i c S t r i n g downloadFeed ( O k H t t p C l i e n t

h t t p C l i e n t , . . . ) {
2 H t t p U r l u r l = H t t p U r l . p a r s e ( theURI ) ;
3 Reques t . B u i l d e r r e q u e s t B u i l d e r = new Reques t .

B u i l d e r ( ) . u r l ( u r l ) ;
4 . . .
5 Reques t r e q u e s t = r e q u e s t B u i l d e r . b u i l d ( ) ;
6 o k h t t p 3 . Response r e s p o n s e = h t t p C l i e n t . newCal l (

r e q u e s t ) . e x e c u t e ( ) ;
7 . . .
8 }

Listing 1. An example of starting an activity to generate network traffic
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Fig. 1. Overview of IconChecker

In the early stage of our work, we found that some activities
might cause network traffic while launching, because some
pages may contain advertisements or require Internet access to
load resources. Thus, the traffic caused by the activity launch-
ing or page loading can be mixed up with the traffic caused
by clicking, which further affects the statistical accuracy in
experiments. Listing 1 shows a sample code snippet, which
can cause network traffic while launching an activity in an
open-source app called RadioDroid [23]. Obviously, in line 6,
it sends a request to access the Internet. To solve this kind
of problem, before monitoring the clicked icon as well as its
network traffic, IconChecker sets a timer to skip the potential
supernumerary traffic after launching the activity.

After launching the explored activities successfully, we then
extract the text attributes and resource-ids from the layout of
the current page which is displayed on the screen. These text
attributes and resource-ids are assigned as the file name of the
corresponding network traffic profiling result to establish the
icon-traffic mapping relationship. In usual cases, each page
may have zero or more clickable icons and the current page
may be changed after clicking. Therefore, before the next
clicking, we need to restart the activity and check whether
the next target icon is on the current page. If the target icon is
still on the current page, IconChecker first waits for a while to
ensure there is no network traffic noise, and then clicks on the
icon and records the network traffic in the next 3 seconds at the
same time. Moreover, during the process of capturing network
traffic, there exists some hidden traffic, which may also be
considered as the app’s belonging. For instance, the traffic of
Network Time Protocol (NTP) [24], which is a protocol for
network time synchronization, will inevitably be captured by
the traffic sniffing module at runtime. Therefore, to enhance the
experimental accuracy of the captured traffic, we repeat this
process for additional 3 times on each icon. Furthermore, the
port numbers occupied by the app will also be obtained and
saved together with other information (i.e., icon and network
traffic) to the result set and pass to the detection module.

C. Icon-Category Mapping

The icon-category mapping module consists of two steps:
(1) icon semantics extraction, (2) semantics classification.
Firstly, with the retrieved icon information, e.g., icon ID,

position coordinates, name of the belonging activity and pack-
age from the activity exploration in module Fig. 1(a), icons’
semantics can be obtained with our proposed progressive
strategy. Secondly, according to our predefined semantics of
icon categories, we then classify the icons by measuring the
similarity between the extracted and predefined semantics.
At last, the output of icon-category mapping module, i.e.,
categorized icons, is accepted as the input of the final anomaly
detection step in Fig. 1(c).

1) Icon semantics extraction: To distinguish the normal
and abnormal network-access behaviors triggered by clicking
the icon, in the first step, we extract semantics information
from the icons’ definition and implementation. Generally, there
are several challenges while working on this task. Firstly,
icons defined in various forms and styles may have the
same or similar semantics information. Secondly, according
to the icons’ design, specifically, they can be divided into
three types, i.e., graphical icons, text-based icons, and icons
combining graphics and text. Besides, the icons are usually
small, scattered, and partially or completely transparent [25].
Therefore, computer vision techniques such as scale-invariant
feature transform (SIFT) [26], are not completely suitable for
our task, which classifies icons defined in Android apps. In the
second step, we analyze the extracted semantics information
to determine the icons that should not cause network traffic,
and further maintain a network-independent icon dataset.

During semantics information extraction, we observe that:
(1) the text shown on some icons can accurately represent
their semantics; (2) some icons do not have text attribute;
(3) developers usually name the icon’s resource-id attribute
according to its functionality based on our investigation on
1,601 icons from 100 apps. In other words, the resource-id
of the icon represents the corresponding semantics to some
extent. Therefore, we propose a progressive strategy to extract
the semantics from icons according to the above three points.
Specifically, we first extract all the icon information (i.e.,
text, resource-id, and position coordinates) from the layout
file of the current page, and analyze the icon’s text attribute,
which can represent most of its semantics, if it exists. If the
icon does not have a text attribute, we then leverage OCR
techniques to identify the text displayed on the icon from the
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Fig. 2. Progressive strategy for icon semantics extraction

current page. To avoid the interference from contents other
than icon pictures, we crop icons from their belonging pages,
which are saved in the activity exploration step according to
the position coordinates (e.g., [(566, 1301), (894, 1419)]) of
icons. Otherwise, as the worst case, there exists no text-based
information, we then directly extract the semantics from the
resource-id attribute. Three detailed examples are provided in
Fig. 2 to illustrate the proposed progressive strategy.
• Use text-layout as icon’s semantics. In Fig. 2(a), we

can directly use the icon’s text attribute value “Cancel” to
represent the semantics of this icon.

• Use text-OCR as icon’s semantics. In Fig. 2(b), we can
not obtain any related information from the text attribute
in layout. Thus, we apply the OCR technique to recognize
whether there is embedded text on the icon. In this case, we
obtain and use “Camera” as this icon’s semantics.

• Use resource-id as icon’s semantics. In Fig. 2(c), we can
not obtain any related information from both text attribute
and icon itself. Hence, we analyze the resource-id attribute
of the icon to retrieve its semantics alternatively from
resource-id.
2) Semantics classification: Existing work [25] summa-

rizes the icon categories according to the icons’ popularity and
the access to sensitive resources, but these categories will gen-
erate traffic under some circumstances which are not suitable
for our work. Therefore, before semantics classification step,
we first empirically perform an investigation on 2,820 icons
randomly extracted from real apps. With our in-depth analysis
of the icons’ usage scenarios and implemented functionali-
ties (Section III-C), we summarize 8 network-independent icon
categories, which do not generate any network traffic under
any circumstances, as well as their contained semantics. The
details are provided in Table I.

To determine whether the extracted icon semantics belongs
to the defined 8 categories, IconChecker leverages Levenshtein
distance algorithm [27] to compute the distance between
the extracted semantics of the target icon and predefined
semantics of icon categories in Table I, and further calculates
the similarity between them with the following equation:

Similarity = max(1− Ldi
len(semantics)

),

TABLE I
ICON CATEGORIES AND SEMANTICS

Icon categories Corresponding semantics

Audio audio, sound, volume, ring

Camera camera, photo, album

Cancel cancel

Close close

Menu menu, list

Phone phone, call

SMS sms, message

ToolsSettings tool, setting, tools, settings, set up

where Ldi is the Levenshtein distance, len(semantics) refers
to the number of alphabets in predefined semantics term.

For each predefined semantics term in Table I, we first
compute its similarity to the extracted semantics of the target
icon. Then, we consider the category, which contains a term
with maximal similarity value, as the potential classification
result. With the similarity value, we further set a threshold
value based on the ground truth. Specifically, we collect the
similarity values between the semantics of all the icons in
the ground truth dataset and the predefined semantics terms,
and then find the best threshold value, which can achieve the
highest overall classification accuracy.

D. Anomaly Icon-Behavior Detection

In this module, we focus on detecting abnormal traffic based
on the results from the previous two modules, i.e., icon-traffic
mapping and icon-category mapping, and finally generating a
security report, which contains the detected malicious traffic,
icon ID, and malicious code, to help developers and security
analysts with further analyzing and fixing. Firstly, to obtain
the traffic generated by the current app among overall network
traffic, there is a first step, namely traffic filtering, that intends
to filter out the unrelated traffic based on the port number
assigned to the app according to its PID (i.e., process ID).
Secondly, we apply cross-checking to find the real traffic
among a large number of results. The rule used to determine
the existence of traffic, is that if there is no traffic captured in
any of 4 repeating tests, we consider there is no traffic; while
only if there is traffic in all 4 tests, we regard the network
traffic exists. Thirdly, to determine the icons, which can trigger
abnormal traffic, we match the captured semantics of the icons,
which belong to the 8 predefined categories, from the icon-
category mapping module with the real traffic and output the
detection results. Finally, based on the results, IconChecker
generates a security report for each tested app, including
detected malicious traffic, icon ID, and the corresponding
malicious code, which is parsed based on the abnormal icon
ID and name of its belonging activity and package.



III. EVALUATION

In this section, to evaluate the effectiveness of IconChecker,
we conduct in-depth experiments from different perspectives
to answer the following 5 research questions (RQs):
• RQ1: How effective is IconChecker in sniffing icon’s traf-

fic?
• RQ2: How are the 8 categories decided in our study?
• RQ3: How effective is IconChecker in icon-category map-

ping?
• RQ4: How effective is IconChecker in detecting abnormal

icon-behaviors?
• RQ5: How does IconChecker perform compared to the

existing tool (i.e., DeepIntent)?

A. Dataset and Environment

To support the evaluations towards IconChecker, we col-
lected 1,800 apps from StormDroid [11], [28] as the app
dataset. For each raised RQ, we constructed a specific ground
truth dataset, which is obtained by analyzing our app dataset,
to support the IconChecker and our conclusions.
• RQ1: To demonstrate the effectiveness of icon’s traffic

sniffing, we select 15 apps, which consist of 10 apps from
Google Play Store and 5 apps developed by ourselves, as a
result of the limited occurrence of malicious network traffic
in real-world apps.

• RQ2: To ensure the validity of our study, we analyze 2,820
icons in 100 apps for various use, such as video, education,
and tools.

• RQ3: To investigate the effectiveness of the icon-category
mapping, we randomly select 2,000 icons from the screen-
shots dumped by IconChecker, and manually labelled these
icons as groud truth according to the icon’s appearance.

• RQ4 & RQ5: We randomly select 1,800 apps from Stor-
mDroid [11], [28] to evaluate IconChecker as an entire
system, and further compare IconChecker with the existing
tool. Note that, since the applicable domain and strategy
used to obtain icons in DeepIntent is a little different from
IconChecker, after experimental testing (details in III-F),
we obtain 147 apps, which can be successfully used by
DeepIntent, in our predefined 8 categories.
All experiments are conducted on a high-performance work-

station, equipped with 64-bit Ubuntu 18.04 LTS OS, 16GB
RAM, and two Intel 4-core i5-5200U CPUs.

B. RQ1: How effective is IconChecker in sniffing icon’s traf-
fic?

1) Dataset: In this experiment, we adopt 5 apps2 developed
by ourselves. In each app, we define 10 icons for each behavior
with and without network access, respectively. Besides, we
also randomly select 10 real apps from Google Play Store.
For each app, we randomly choose 5 UI pages and extract all
icons. Since we do not know the real behavior of each icon
(i.e., whether it requires access to the Internet), we manually
analyze the implementation of each icon to build the ground

2https://github.com/IconCheck/IconChecker/apkfile.
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truth with the help of reverse engineering and static code
analysis. Totally, 50 out of 100 and 214 out of 458 icons
are identified as containing network access behaviors, and the
rest as network-independent.

2) Setup: Based on the above dataset, we conduct ex-
periments to demonstrate the effectiveness of IconChecker
in precisely capturing the icon traffic. Specifically, we run
IconChecker on the 100 icons from 5 self-developed apps and
the 458 icons from 10 real apps, for the purpose of seeing
whether network traffic can be captured once the icons are
clicked. To avoid potential noise, we repeat the experiment
4 times for each app and obtain an overall result by cross-
checking on the results from 4 repetitions.

3) Results: As shown in Fig. 3, the accuracy can reach
100% after the 4 experimental results are cross-checked.
Although the accuracy can reach 90% after the cross-check
of the 2 experimental results, the random potential network
traffic noise will interfere with the results. Thus, we set the
number of cross-checks to 4. The interference in sniffing come
from two aspects:
NTP (Network Time Protocol) packets. As addressed in
II-B2, NTP is a build-in functionality for time synchronization
in computer operation systems. Unlike network traffic caused
by other reasons, e.g., background process, the packets gen-
erated by NTP are unable to be distinguished with process-
level system information, i.e., PID. Hence, the corresponding
network traffic may inevitably be captured by the traffic
sniffing module and further considered as the network traffic
produced by the icon being clicked at runtime.
“generate 204” packets. Another type of noise comes from
the packet, namely “generate 204”, which is a network status
evaluation mechanism in Android 8.0+ [29]. Specifically, it
allows Android devices to send network access requests and
listen to the response with the specific status code, i.e., 204,
for confirming potential network connection. Similarly, such
network packets, which are generated by an OS mechanism,
can not be distinguished with process-level system informa-
tion, i.e., PID, either.

Answer to RQ1: IconChecker can effectively sniff icon’s
network traffic at runtime. With cross-checking method,
IconChecker can accurately determine whether the net-
work traffic is generated by real icon operations with
accuracy at 100%.



C. RQ2: How are the 8 categories decided in our study?

1) Dataset: To summarize the icon categories that should
not generate payloads, we collect 2,820 icons and grab the
payloads generated by each icon through the first module
of IconChecker. It is found that 705 icons generate traffic
payloads and 2,115 icons do not.

2) Setup: After using the first module of IconChecker to
sniff traffic payloads generated by clicking each icon, we
manually classify the 2,820 icons into 23 categories based on
their behaviors.

3) Results: As shown in Table II, icons are divided into
2 categories according to whether they access the Internet or
not: 28 categories of icons access the Internet, 10 categories
of icons do not. According to the usage scenarios, icon’s
semantics, and functionalities, these 28 categories that access
the Internet can be divided into three situations: (1) Definitely
generate traffic: “Search”, “Pay”, “Link”, “Download”, etc.
The percentage of these icons accessing the Internet is not
100% because when we automatically capture the traffic,
some dependent contents, such as keywords in the search
box, the information of credit card, valid links, are missing
during triggering; (2) Possibly generate traffic: “Send”, “Edit”,
“About”, etc. For example, in a scenario where a message is
sent using SMS, clicking the “Send” button will not generate
traffic, but if the “Send” is in WeChat/WhatsApp, it will
generate traffic properly; (3) Must not generate traffic. 4
categories of icons are unreasonable to access the Internet
(displayed in bold).

Furthermore, we analyze the 10 categories of icons that do
not access the Internet. Among them, 6 categories of icons
may need to access the Internet in specific scenarios. However,
these situations do not appear in our analyzed cases due to
dataset limitation. Take the “Help” category as an example,
by extending to more other apps out of our dataset, we find
that the help information of some apps can be stored either
locally or on the server, so such icons may interact with
Internet. Moreover, an icon belongs to the “Save” category
will generate traffic when the saved information needs to be
transmitted to the server-end database. In total, we summarize
8 icon categories that should not generate traffic by our study
(displayed in bold).

Answer to RQ2: Based on the manual study towards
2,820 icons, 8 categories of icons that should not generate
traffic are defined.

D. RQ3: How effective is IconChecker in mapping icon to its
category?

1) Dataset: In this experiment, we randomly select 2,000
icons from the 1,800 apps in Section III-E (RQ4). The reason
why we do not directly use the icons extracted in Section III-B
(RQ1) as ground truth is that the diversity of their semantics
is quite limited, which can not ensure the credibility of the
classification results through a broader dataset. We manually
analyze the 2,000 icons to identify their semantics (i.e., text
or resource-id) and further build the ground truth, which
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consists of 4 labels: (1) 600 icons, using resource-id as its
semantics and belonging to the 8 predefined categories; (2)
400 icons, using text as its semantics and belonging to the 8
categories; (3) 600 icons, using resource-id as its semantics
and not belonging to the 8 categories, which is also denoted
by “Others” category; (4) 400 icons, using text as its semantics
and belonging to “Others”.

2) Setup: As mentioned in Section II-C, the accuracy of
semantics classification highly depends on the determined
similarity threshold. Thus, we first conduct an experiment
to reveal the detailed procedures in determining the best
threshold, i.e., the value between 0.1∼1.0, 0.05 as the step
size. Fig. 4 shows the changing trend of the accuracy, when
using resource-id, text, and resource-id+text (i.e., the pro-
posed progressive strategy) as icon’s semantics under different
thresholds, respectively. Note that, the accuracy of using
individual resource-id is evaluated on the above dataset (1)
and (3); the accuracy of using text is evaluated on the dataset
(2) and (4); and the accuracy of using both resource-id and
text is evaluated on all the 2,000 icons, which can best indicate
the effectiveness of IconChecker on semantics classification.

3) Results: As shown in Fig. 4, classification on the icons,
whose semantics can be extracted from text, achieves the
highest accuracy at 98.8%. For the icons without available
text, the accuracy of classification based on their resource-
id is 75.5%. Additionally, we also evaluate the overall effec-
tiveness of the icon-category mapping module by performing
classification using our randomly selected 2,000 icons, whose
semantics are defined in either text (i.e., text-layout and text-
OCR) or resource-id. The overall accuracy of classification
using the entire dataset achieves 87.2%, by observing the blue
polyline titled “resource-id+text”. As a result of the stronger
superiority of text-based semantics, it is obvious that this result
is a compromise between the accuracy of classification using
half dataset selected based on the two semantics extraction
methods. Furthermore, we can observe that the accuracy trend
of using the icon’s resource-id as its semantics continues to rise
before the threshold value reaches 0.8, and does not change
with the increase of the threshold afterward. For the accuracy
trend of using text as semantics, the best threshold value is 0.9.
Finally, to ensure a relatively high classification accuracy for
all potential cases, the threshold is set to 0.9 in Section III-E.

Based on the comprehensive analysis of the experimental
results, it is obvious that both text and resource-id are neces-



TABLE II
THE STUDY OF ICON CATEGORIES WITH/WITHOUT ACCESSING TO THE INTERNET

Categories Pos1(%) Neg2(%) Categories Pos1(%) Neg2(%) Categories Pos1(%) Neg2(%) Categories Pos1(%) Neg2(%)

Back 5.67 94.33 Home 7.14 92.86 Send 7.14 92.86 About 9.09 90.91

Finish 11.11 88.89 Submit 11.76 88.24 Add 15.79 84.21 User 19.57 80.43

Share 20.00 80.00 Eidt 22.22 77.88 Register/Login 24.00 76.00 Refresh 25.00 75.00

Logo 33.71 66.29 Location 37.5 62.5 Ok 41.94 58.06 Agree/Confirm 42.11 57.89

Exit 50.00 50.00 Search 60.66 39.34 Music 66.67 33.33 Update 66.67 33.33

Pay 73.17 26.83 Download/Reload/Install 74.48 25.52 Link 93.42 6.58 Retry 100.00 0.00

Menu 3.57 96.43 Close 8.11 91.89 ToolsSettings 8.33 91.67 SMS 25.00 75.00

Clean/Clear 0.00 100.00 Save 0.00 100.00 Help 0.00 100.00 Continue 0.00 100.00

Delete 0.00 100.00 Record 0.00 100.00

Audio 0.00 100.00 Phone 0.00 100.00 Cancel 0.00 100.00 Camera 0.00 100.00

1. Percentage of accessing to the Internet. 2. Percentage of not accessing to the Internet.

sary for understanding the semantics of icons and further clas-
sifying the icons into our predefined 8 categories. Moreover,
the results of the three different semantics extraction methods
can also support the effectiveness of our progressive strategy,
which prioritizes the extraction of semantics from text. In other
words, comparing to randomly select semantics from text or
resource-id, it definitely pushes the compromised result to a
better one on any dataset which consists of icons with and
without available text.

Answer to RQ3: By testing 2,000 icons in Android apps,
compared with randomly using icon’s text or resource-id
to represent icon’s semantics, the proposed progressive
strategy performs well in practice, achieving an accuracy
of 87.2%.

E. RQ4: How effective is IconChecker in detecting abnormal
icon-behaviors?

1) Dataset: In this experiment, we randomly select 1,800
apps from StormDroid [11], [28]. By analyzing the activities
(5417/8820) successfully started in these 1,800 apps, we obtain
18,370 icons as well as their information (e.g., icon ID, name
of the belonging activity, and package) in total. In terms of
our summarized 8 network-independent icon categories, we
manually collect 1,012 icons according to their semantics.
However, there is a big challenge that all icons are unlabelled
for our research purpose. In other words, before using them
as the ground truth, we need to confirm their real program
behaviors to figure out whether there are illegal network
requests inside the implementation. To build a ground truth
dataset, we manually review the corresponding source code
to each icons. Finally, we construct a labelled dataset, which
has 1,012 icons belonging to the aforementioned 8 network-
independent icon categories, and use it as our ground truth.

2) Setup: To demonstrate the overall effectiveness of
IconChecker, we conduct an experiment on 1,800 apps, which
contain 1,012 icons belonging to 8 categories, and then review

TABLE III
DETECTION RESULTS OF ICONCHECKER

Category Dataset1 ICONCHECKER2 Confirm Precision (%)

Audio 80 0 0 N/A

Camera 61 2 2 100.0

Cancel 256 2 1 50.0

Close 240 10 10 100.0

Menu 193 2 1 50.0

Phone 56 1 0 0.0

SMS 28 3 2 66.7

ToolsSettings 98 5 5 100.0

Total 1,012 25 21 84.0

1. The icons belong to 8 categories.
2. The icons with abnormal icon-behaviors detected by IconChecker.

the corresponding source code of each detected icon to con-
firm it with the ground truth. Furthermore, according to the
generated security reports, we manually analyze the detected
icons, which can trigger abnormal network traffic, to provide
an in-depth case study for other potential relevant research.

3) Results: The detection results of IconChecker are pro-
vided in Table III. Totally, IconChecker detects 25 icons from
1,012 icons in the dataset. By comparing this result with our
ground truth, which is obtained by manual analysis, 21 out
of 25 icons are confirmed as abnormal icons with an overall
precision at 84.0%. Among 8 categories, none of the detected
icons are located in the “Audio” category. Hence, the detection
precision of “Audio” is not applicable. The “Close” category,
which contains 240 icons in the dataset, has the largest number
of confirmed abnormal icons, which is 10 out of 21. For the
“Cancel” category, it has the largest number of icons in the
dataset. However, the result in the “Confirm” column shows
that only 1 out of 256 icons will cause abnormal network
traffic. Hence, we can see that the distribution of abnormal
icon-behaviors has strong randomness.



Besides, by comparing the detection result of IconChecker
with ground truth, there exist 4 false positives in 4 categories,
i.e., “Cancel”, “Menu”, “Phone”, and “SMS”. With an in-depth
analysis on them, we find that the reasons can be summarized
as the following two points:
Continuously network communication. We note that some
malicious apps can continuously generate network traf-
fic without any operations at runtime. For instance, the
app, which contains a false positive icon in the package
com.automatic.call.recorder, can generate continuous network
traffic as long as it is started. To validate this problem, we
monitor the network traffic generated by this app in continuous
10 seconds after starting it. According to the statistics, it
generates 484 packets every 10 seconds on average.
Semantics misclassification. A false positive error de-
tected as an abnormal icon by IconChecker is an icon
with text “www.radicallabs.com”. Obviously, the function-
ality of this icon is redirecting to the URL link, namely
“www.radicallabs.com”. Thus, it is reasonable to generate net-
work traffic after clicking this icon. However, in icon-category
mapping module, the substring, “call”, in this URL matches
the semantics term “call” in the “Phone” category with a
similarity value at 100%. Hence, IconChecker determines that
this icon belongs to the “Phone” category which should not
trigger any network traffic at runtime.

In summary, according to the results shown in Table III,
the overall precision of IconChecker is 84.00% in anomaly
detection of icon-behaviors for Android apps. For each icon,
the average time consumed for each test is 15 seconds, which
is relatively long, since we applied multiple mechanisms to
maintain the fairness and accuracy of results at runtime.

4) Case Study: After detection, IconChecker creates a
security report including icons with abnormal behaviors, ma-
licious traffic, and malicious code for each detected app. In
this case study, we provide a detailed analysis of some rep-
resentative detection results. In Table IV, we select and show
4 samples with different attributes on various aspects, which
contain semantics, category, and used method. Specifically,
for the first icon, the semantics is extracted by the OCR
technique and translated into English. For the second icon,
the semantics is extracted by the OCR technique, too. For the
third icon, since we cannot obtain text-layout from its text
attribute and text-OCR through the OCR technique, the value
of its resource-id attribute is used to represent its semantics.
For the fourth icon, text-layout can be obtained from the icon’s
text attribute, so we indicate its semantics with the value of
its text attribute.

Listing 2 shows the corresponding malicious code of the
“Close” icon in Table IV. The click event of this icon gets
the device’s IMEI (Line 4), APP ID (Line 5) and sends the
information to the remote server (Line 6). However, according
to the semantics of this icon, which is closing the current
dialog, it should not generate any network traffic. Therefore,
we confirm that this icon has malicious behaviors, which can
leak the user’s private information through network payloads.

1 AsyncTaskComple t eL i s t ene r<S t r i n g>
a s y n c T a s k C o m p l e t e L i s t e n e r = new
AsyncTaskComple t eL i s t ene r<S t r i n g >() {

2 p u b l i c vo id lauchNewHttpTask ( ) {
3 L i s t<NameValuePair> l i s t = new A r r a y L i s t <>() ;
4 l i s t . add ( new Bas icNameValuePa i r ( I C o n s t a n t s . IMEI

, ” ” + U t i l . g e t I m e i ( ) ) ) ;
5 l i s t . add ( new Bas icNameValuePa i r ( I C o n s t a n t s .

APP ID , U t i l . getAppID ( ) ) ) ;
6 new H t t p P o s t D a t a T a s k ( O p t i n A c t i v i t y . t h i s , l i s t ,

I C o n s t a n t s . URL OPT IN , t h i s ) . e x e c u t e ( new Void [ 0 ] ) ;
7 }
8 }

Listing 2. An example containing malicious payloads detected by
IconChecker

Answer to RQ4: IconChecker can discover the incon-
sistency between actual behaviors of the icon and user-
intended behaviors by capturing the network traffic gen-
erated by the icon operation, achieving 84.00% precision
on the experimental dataset.

F. RQ5: How does IconChecker perform compared to the
existing tool (i.e., DeepIntent)?

1) Dataset: The original dataset used in this experiment
is the same as the one in III-E. DeepIntent has a released
pre-trained model as well as an open-source project on the
GitHub3, so we directly set up their project to perform the
experiment with the same dataset, which has 1,800 apps. How-
ever, we met lots of uncertain problems (e.g., timeout, decode
error), which failed the detection. Hence, we obtain usable
1,855 icons, which contains 153 icons in the 8 categories, in
total, and only few of them are the same as the usable icons in
Section III-E. To further gain the ground truth of these icons,
we manually analyze the implementation of each icon as well.

2) Setup: To further demonstrate the performance of our
approach, we compare IconChecker with DeepIntent [20],
which combines static analysis with deep learning for
intention-behavior discrepancies in apps. DeepIntent leverages
8 types of permissions used by the icon to characterize the
actual behaviors. Since our task is not exactly the same as
DeepIntent’s, we only focus on the NETWORK permission
when evaluating DeepIntent.

3) Results: Table V shows the comparison of results be-
tween IconChecker and DeepIntent. We can see the detection
result of DeepIntent indicates 150 out of 153 icons in 8
categories are detected as abnormal cases. The ground truth
reveals that only 10 out of 150 icons, which belong to 4
apps, actually have malicious payloads. Therefore, in terms
of our domain, the false positive rate of DeepIntent is very
high. As shown in Table V, the precision of IconChecker and
DeepIntent is 84.00% and 6.67% on 1,800 apps, respectively.

We further perform a step-by-step investigation on the
distribution of used icon data in this experiment, especially
for the DeepIntent. For the icons belonging to the predefined
8 categories, the number of icons tested by IconChecker is
six times more than DeepIntent’s (1,012 vs 153). The possible
reasons, which caused this problem, are explained as follows:

3https://github.com/deepintent-ccs/DeepIntent.



TABLE IV
CASE STUDY OF PARTIAL RESULTS

Icon ID Icon Identified semantics Real semantics Identified category Real category Semantics identification method

1 mobile tools mobile tools ToolsSettings ToolsSettings OCR, Translate

2 scan sms scan sms SMS SMS OCR

3 cancel, btn cancel Cancel Cancel Resource-id

4 close close Close Close Text

TABLE V
COMPARISON BETWEEN ICONCHECKER AND DEEPINTENT

Tool Tested
apps

Tested
icons

Detected
icons

Abnormal
icon-behaviors

Precision
(%)

IconChecker 1,800 1,012 25 21 84.00

DeepIntent 1,800 153 150 10 6.67

IconChecker 147 444 6 6 100.00

DeepIntent 147 153 150 10 6.67

TABLE VI
THE REASONS OF FAILURES IN DEEPINTENT

Step Reason for failure Apps

icon-widget association

Timeout 148

Gator Error 175

Decode Error 23

icon-permission None of the icons have
targeted permissions 1,307

remainder - 147

From DeepIntent’s perspective. As shown in Table VI,
the failures that occur in DeepIntent generally locate in 2
steps, i.e., icon-widget association and icon-permission. To-
tally, 148, 175, and 23 apps are discarded due to “Timeout”,
“Gator Error”, and “Decode Error”, respectively. There are
1,307 apps, whose icon-permission relationship is failed to be
established and discarded from the dataset. Finally, 147 out of
1,800 apps are tested to be successfully used by DeepIntent.
From IconChecker’s perspective. IconChecker dynamically
captures icons from the UI pages and layout files from real
mobile phones at runtime. Thus, there is a problem that some
activities fail to start due to their data dependency, but 61.42%
of the activities can be started successfully to ensure covering
most icons in apps. Moreover, we also observe that some icons
will only be loaded at specific conditions. In other words, these
icons are occasionally unable to be displayed on the UI page.

In addition, for the tested 1,800 apps, IconChecker can
successfully detect 21 abnormal icons, which generate network
traffic, in the 8 categories. By comparing the detection result
of DeepIntent, which is 10 icons, there are only 4 shared
ones out of 21 icons. Moreover, 6 malicious icons detected
by DeepIntent can’t be found by IconChecker. With a step-
by-step analysis, we find that 2 out of 6 icons can be mapped

with the sniffed illegal network traffic, and the other 4 icons
can not be obtained by IconChecker. For the 2 icons with
traffic, we observe that they are misclassified into the “Others”
category instead of the predefined 8 categories in the icon-
category mapping module. For example, the appearance of
an icon is “Close” with the resource-id called “btngo back”.
Normally, IconChecker can obtain the semantics with text-
OCR. However, it fails and uses the resource-id attribute as
its semantics. Thus, these 2 icons are all considered to belong
to “Others”.

Besides, to provide a fairer comparison between
IconChecker and DeepIntent, we further evaluate IconChecker
with the 147 apps, which can be successfully used
by DeepIntent. The results displayed in Table V show
that IconChecker explores more icons at three-fold than
DeepIntent in these apps and successfully detects 6 icons
with abnormal traffic. With an in-depth analysis towards the
implementation of these 6 icons, we confirm that all of them
are true positives. Compared with the result of DeepIntent,
IconChecker outperforms a much more excellent precision
(100% vs. 6.67%).

Overall, IconChecker shows a much better capability on
detecting the potential malicious icons, which can trigger
illegal network traffic, than DeepIntent, in terms of our
predefined 8 categories. Besides, please note that the task
focused by IconChecker is a little different from DeepIntent’s.
IconChecker focuses on a more specific (i.e., 8 categories of
icons, access the Internet) task. On the contrary, DeepIntent
focuses on a wider variety of icon behaviors (e.g., access SD
Card, send SMS).

Answer to RQ5: In terms of the 8 predefined categories,
compared with DeepIntent, IconChecker can find more
icons with abnormal behaviors (21 vs. 10) and produce
fewer false positives (4 vs. 140) on 1,800 Android apps,
achieving 84% precision.

IV. LIMITATIONS AND FUTURE WORK

This work aims to sniff the network traffic generated by the
icon operation at runtime. The limitations of our work and
future work include the following points: (1) We modify the
properties of each activity to successfully launch more activi-
ties, but for activities that rely on data to launch, we can not
obtain and test the icons in such activities. (2) Since the icons
that can possibly generate traffic have more complex usage



scenarios, it’s impossible to determine whether their triggered
program behaviors are normal or not with only the icon’s
semantics. Moreover, since the content of encrypted traffic can
not be parsed, it’s impossible to combine the icon semantics
with traffic content. Hence, to solve this problem, we plan to
involve more information, such as program semantics or UI
layout context, in the future. (3) Our proposed work shows
that the static and dynamic hybrid methods have an advantage
in their precision of Android anomaly detection. We believe
if the bottleneck on its usage scope can be extended to other
runtime information except for network transmission, such as
sending SMS, calling, it can become a usable and reliable
systematic system in near future.

V. RELATED WORK

A. Traffic Analysis of Android Apps

There has been a great deal of work to detect malware
based on the characteristics of network traffic [19], [30]–[32].
Most of the work [19], [31] focused on using machine learning
algorithms (e.g., BayesNet and C4.5) to detect malware. The
work in [33] regarded traffic data as images and abnormal
patterns, and then classified the abnormal patterns displayed
by malware traffic through representation learning.

Traffic features also can be used to identify apps. Rao et al.
[34] presented a system leveraging HTTP features to identify
apps. AntMonitor [35] and AppScanner [36] leveraged TCP/IP
headers for app identification. Recent work [37] built an APP-
ID dataset by capturing actual network traffic. Furthermore,
in other respects, Oulehla et al. [38] proposed to use a feed-
forward neural network for mobile botnet detection.

However, none of them model traffic and icons to detect
abnormal behaviors. Our work aims to detect icons’ abnormal
behaviors in Android apps. Specifically, we use the network
traffic to represent the actual behaviors of the icon.

B. GUI-Based Analysis of Android Apps

GUI testing checks whether the app’s behavior is correct
by executing events on the GUI. Existing works [39]–[41]
by analyzing the event handler to detect crashes in apps.
Moreover, Borges Jr and Nataniel P [42] implemented a tool
to test the functionality of Android apps using the association
of data flows and UI elements. Ki et al. [43] designed Mimic
to compare the UI behaviors across different versions or envi-
ronments. Recently, instead of testing apps, IconIntent [25] has
been proposed to identify sensitive UI widgets in mobile apps.
DeepIntent [20] adopts deep learning techniques to train a
model which uses triples like 〈image, text, permissions〉 as
input and then uses this pre-trained model to detect intention-
behavior discrepancies. Different from the previous work, our
purpose is to identify abnormal icon behaviors by establishing
icon-traffic mapping. We conduct a comprehensive comparison
between IconChecker and DeepIntent in (Section III-F).

VI. CONCLUSION

In this paper, we design, implement, and evaluate an abnor-
mal icon-behaviors detector (i.e., IconChecker) for Android

apps. Specifically, we first propose a framework to accurately
captures traffic generated by clicking the icon with 100% accu-
racy. Then we propose a progressive strategy to extract icon’s
semantics in Android apps for icon classification, achieving
87.2% accuracy. Overall, IconChecker achieves 84% precision.
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