
Automated Third-Party Library Detection for Android
Applications: Are We There Yet?

Xian Zhan
∗

The Hong Kong Polytechnic

University, Hong Kong, China

chichoxian@gmail.com

Lingling Fan
∗

College of Cyber Science, Nankai

Univerisity, China

Nanyang Technological University,

Singapore

ecnujanefan@gmail.com

Tianming Liu

Monash University

Australia

tianming.liu@monash.edu

Sen Chen

College of Intelligence and

Computing, Tianjin University, China

Nanyang Technological University,

Singapore

ecnuchensen@gmail.com

Li Li

Monash University

Australia

li.li@monash.edu

Haoyu Wang

Beijing University of Posts and

Telecommunications

China

haoyuwang@bupt.edu.cn

Yifei Xu

Southern University of Science and

Technology, China

11611209@mail.sustech.edu.cn

Xiapu Luo

The Hong Kong Polytechnic

University, Hong Kong, China

luoxiapu@gmail.com

Yang Liu

Nanyang Technological University,

Singapore

yangliu@ntu.edu.sg

ABSTRACT
Third-party libraries (TPLs) have become a significant part of the

Android ecosystem. Developers can employ various TPLs with

different functionalities to facilitate their app development. Unfor-

tunately, the popularity of TPLs also brings new challenges and

even threats. TPLs may carry malicious or vulnerable code, which

can infect popular apps to pose threats to mobile users. Besides, the

code of third-party libraries could constitute noises in some down-

stream tasks (e.g., malware and repackaged app detection). Thus,

researchers have developed various tools to identify TPLs. However,

no existing work has studied these TPL detection tools in detail;

different tools focus on different applications with performance

differences, but little is known about them.

To better understand existing TPL detection tools and dissect

TPL detection techniques, we conduct a comprehensive empiri-

cal study to fill the gap by evaluating and comparing all publicly

available TPL detection tools based on four criteria: effectiveness,

efficiency, code obfuscation-resilience capability, and ease of use.

We reveal their advantages and disadvantages based on a system-

atic and thorough empirical study. Furthermore, we also conduct a

user study to evaluate the usability of each tool. The results show

∗
The corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00

https://doi.org/10.1145/3324884.3416582

that LibScout outperforms others regarding effectiveness, LibRadar

takes less time than others and is also regarded as the most easy-to-

use one, and LibPecker performs the best in defending against code

obfuscation techniques. We further summarize the lessons learned

from different perspectives, including users, tool implementation,

and researchers. Besides, we enhance these open-sourced tools by

fixing their limitations to improve their detection ability. We also

build an extensible framework that integrates all existing avail-

able TPL detection tools, providing online service for the research

community. We make publicly available the evaluation dataset and

enhanced tools. We believe our work provides a clear picture of

existing TPL detection techniques and also give a road-map for

future directions.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; • Libraries and tools→ Program analysis.

KEYWORDS
Third-party library, Android, Library detection, Empirical study

ACM Reference Format:
Xian Zhan, Lingling Fan, Tianming Liu, Sen Chen, Li Li, Haoyu Wang,

YifeiXu, Xiapu Luo, and Yang Liu. 2020. Automated Third-Party Library

Detection for Android Applications: Are We There Yet?. In 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’20), Sep-
tember 21–25, 2020, Virtual Event, Australia. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3324884.3416582

1 INTRODUCTION
Nowadays, Android applications (apps) occupy an irreplaceable

dominance in the app markets [23] and will continuously hit the

new height [10]. Along with the thriving of Android apps is the

https://doi.org/10.1145/3324884.3416582
https://doi.org/10.1145/3324884.3416582

ASE ’20, September 21–25, 2020, Virtual Event, Australia X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo, Y. Liu

emerging of countless third-party libraries (TPLs). When app de-

velopers implement their own apps, they usually realize some func-

tionalities by integrating various TPLs, such as advertisements,

social networking, analytics, etc. Prior research [52] has shown

that about 57% of apps contain third-party ad libraries. Wang et

al. [58] also revealed that more than 60% of the code in an An-

droid app belongs to TPLs. TPLs can facilitate the development

process and provide powerful functionalities for apps. However,

every coin has two sides. This situation also brings new security

threats. Some TPLs may contain malicious code. When they are

integrated into popular apps, they can quickly infect a large number

of mobile devices. Besides, TPLs as noises could affect the results

of repackaging detection [62], malware detection [47], counterfeit

apps detection [58], etc. Thus, research on TPL detection targeting

the Android platform continues to emerge.

Generally, there are two ways to identify TPLs. The first one

is the whitelist-based approach, and the second one directly ex-

tracts features from TPLs to identify them. In the beginning, most

repackaging detection [44, 55, 63, 66] and malware detection [45]

adopt whitelist to filter out TPLs because whitelist-based approach

is simple and easy to implement. However, the whitelist-based

method uses the package name to identify TPLs, which is not re-

silient to package renaming. A recent study showed that more than

50% of the inspected Android TPLs are protected by obfuscation

techniques [51], which dramatically decreases the effectiveness of

the whitelist-based method. Besides, the whitelists cannot cover all

TPLs, especially newly-emerged ones.

In order to improve the detection performance, various research [33,

50, 53, 54, 56, 59, 65] tried to extract different features of TPLs and

use different techniques to identify TPLs. However, the advantages

and disadvantages, usage scenarios, performance, and capability of

obfuscation-resilience of these tools are still not clear. Besides, no

unified dataset is available to quantitatively evaluate them without

bias. Undoubtedly, identifying these problems can also help us find

the limitations and explore new methods in this direction.

Therefore, in this paper, we attempt to fill the gap by conducting

a comprehensive and fair comparison of these state-of-the-art TPL

detection tools on a unified dataset. We evaluate them by using

four metrics: effectiveness, efficiency/scalability, code obfuscation-

resilience capability, and ease of use. By investigating the four

aspects of these tools, we attempt to achieve three goals in this

study: (1) understand the capabilities and usage scenarios of existing

TPL detection tools; (2) get a better understanding of the trade-offs

in TPL detection and then conclude a better-optimized scheme to

guide future work or help developers implement better tools; (3)

integrate these publicly available tools as an online service, which

provides the detection results of different TPL detection tools to

users. In summary, our main contributions are as follows:

• We are the first to conduct a systematic and thorough com-

parison of existing TPL detection tools by using four metrics:

effectiveness, efficiency, code obfuscation-resilience capabil-

ity, and ease of use.

• We are the first one to construct a comprehensive benchmark

including 59 unique TPLs (used by 221 Android apps) with

2,115 versions that can be used to verify the effectiveness

of TPL detection tools (Section 5.2). We make this dataset

available for community, and future researchers can also use

this dataset to evaluate new tools.

• Based on our analysis, we point out the disadvantages of

current research and present the potential challenges in this

direction. We give suggestions on tool selection under dif-

ferent application scenarios and provide useful insights for

future research on TPL detection.

• We build an extensible framework that integrates all existing

TPL detection tools to provide an online service to users.

We also improve some publicly available tools for better

performance. All the related code and dataset and detailed

evaluation results can be found on our website.
1

The rest of this paper is organized as follows. Section 2 introduces

the basic concept of the third-party library and detection process.

Section 3 shows the related work. Section 4 presents a comprehen-

sive comparison about these state-of-the-art TPL detection tools.

Section 5 describes how we design our empirical study. Section 6

reports the evaluation and findings. Section 7 is the discussion.

Section 8 concludes our work.

2 PRELIMINARY
2.1 Android Third-party Library
Third-party library (TPL) provides developers with various stan-

dalone functional modules, which can be integrated into host apps

in order to speed up the development process. Since current TPL

detection tools that we compared in this paper only consider Java

libraries, we do not discuss the native libraries here. The Java li-

braries are usually published as “.jar” or “.aar” files. The “.aar” format

file can only be used by Android apps, which usually provides UI-

related libraries or game engine libraries. “.jar” files consist of class

bytecode files, while “.aar” files include both class bytecode files and

other Android-specific files such as manifest files and resource files.

Most TPL files can be found/downloaded/imported from maven

repository [20], Github [16], and Bitbucket [12]. In Android app

development, if an app uses TPLs, the app code can be divided into

two parts, the logic module from the host app (i.e., primary) and

the supplementary module (i.e., non-primary) from TPLs [54, 56].

TPL detection aims to identify TPLs in non-primary modules.

2.2 TPL Detection Process
As shown in Figure 1, existing TPL detection techniques for Android

apps usually unfold in four steps, which are elaborated below.

Step1: Preprocessing. Researchers usually first decompile apps

by applying reverse-engineering tools such as apktool [9] and An-

drogurad [5], and then get the appropriate intermediate represen-

tation (IR) in this stage to facilitate the following steps.

Step 2: Library Instance Construction. The purpose of this step
is to find the boundaries of TPL candidates and then separate them

from the host apps. This step is optional because some tools can

directly extract TPL features without splitting TPLs from host apps.

Basically, there are two different strategies identifying the bound-

aries of TPL candidates: (1) consider all the independent Java pack-

ages as library candidates, collect TPLs beforehand as the ground

truth and then compare library candidates with the ground truth; (2)

1
https://sites.google.com/view/libdetect/

Automated Third-Party Library Detection for Android Applications: Are We There Yet? ASE ’20, September 21–25, 2020, Virtual Event, Australia

Figure 1: Typical process of TPL detection
conduct module decoupling algorithms to get independent modules

as candidate library instances.

Step 3: Feature Extraction. This step is to extract the features of

TPLs which can uniquely represent different TPLs. Existing tools

usually extract features such as Android APIs, control flow graph,

and variant method signatures to represent TPLs.

Step 4: Library Instance Identification. Depending on different

library instance construction methods in the second step, existing

identification methods can be classified into two types: clustering-
based method and similarity comparison method. The clustering-

based method usually depends on sophisticated module decoupling

techniques. This method needs to filter out the primary module

(i.e., code of the host app) and then cluster non-primary modules

with similar features together. The modules in one cluster are con-

sidered as a TPL. The similarity comparison method considers all

the modules in an app as TPL candidates, thus, it requires collecting

TPL files first. By comparing the similarity of the features between

the collected TPLs and the in-app TPL candidates, in-app TPLs can

be identified.

2.3 Code Obfuscation Strategies
Code obfuscation is often used to protect software against reverse

engineering. There are many obfuscators (i.e., obfuscation tools)

such as Allatori [8], DashO [13], Proguard [21] helping developers

obfuscate their apps and TPLs. Some obfuscation techniques can

hide the actual logic of the apps as well as the used libraries. The

commonly-used obfuscation strategies are introduced as follows.

Identifier Renaming, which renames identifiers into meaningless

characters such as “a” and “b”, including the class name, the method

name and the file name, etc.

String Encryption, which usually adopts encryption algorithms

to protect sensitive information such as telephone or email. After

encryption, the sensitive strings defined in the source code are

encrypted to meaningless strings.

Package Flattening, which modifies the package hierarchy struc-

ture by moving the files from one folder to another. Different ob-

fuscators can flatten the structure to varying degrees. Sometimes

the whole package structure can be removed, and all the files are

put into the root directory of apps.

Dead Code Removal, which deletes unused code and preserves

the functionalities invoked by the host app.

Control Flow Randomization, which modifies the Control Flow

Graph (CFG) without changing the actual execution tasks, e.g.,

inserting redundant control flow or flattening control flows.

Dex Encryption, which allows developers to encrypt the whole

DEX file. It can encrypt user-defined functions as well as Android

components such as Activities and Services. The protected classes

would be removed from the original classes.dex files, thus, cannot

be obtained by reverse-engineering tools.

Visualization-based Protection, which translates the code into

a stream of pseudo-code bytes that is hard to be recognized by the

machine and human. Such apps should be executed in a specific

runtime, which will interpret the pseudo-code.

3 RELATEDWORK
TPL Detection. Third-party library detection plays an important

role in the Android ecosystem, such as malware/repackaging de-

tection, where TPLs are considered as noises, thus should be fil-

tered out. Most malicious/repackaged apps detection employed a

whitelist-based method to detect TPL based on the package name.

Chen et al. [36] collect 73 popular libraries as the whitelist to fil-

ter third-party libraries when detecting app clones. Repackaging

detection tools [37, 44, 66] and malware detection tool [45] also

adopt the whitelist-based method to remove third-party libraries.

However, such a method exists hysteresis and lacks robustness,

which cannot cover all TPLs and finds emerging libraries, as well

as obfuscated libraries. To seek more effective approaches to find

in-app TPL, various detection tools appear. We will elaborate on

these tools in the following sections.

Android Testing Tool Comparison. Shauvik et al. [40] compared

the effectiveness of Android test input generation tools based on

four aspects: ease of use, compatibility, code coverage, and fault

detection ability. They reveal the strengths and weaknesses of differ-

ent tools and techniques. Xia et al. [61] also conducted an empirical

study of various Android input generation tools and found Mon-

key could get the best performance. They also developed a new

method to improve the code-coverage of Monkey. Kong et al. [46]

reviewed 103 papers related to automated testing of Android apps.

They summarized the research trends in this direction, highlighted

the state-of-the-art methodologies employed, and presented cur-

rent challenges in Android app testing. They pointed out that new

testing approaches should pay attention to app updates, continuous

increasing of app size, and the fragmentation problem in the An-

droid ecosystem. Fan et al. [41, 42, 57] evaluated the effectiveness

of both dynamic testing tools and static bug detection tools in An-

droid apps, especially for Android-specific bugs. Chen et al. [38, 39]

evaluated the effectiveness of static security bug detection tools for

Android apps.

Clone App Detection Comparison. Li et al. [48] surveyed 59

state-of-the-art approaches of repackaged app detection, in which

they compared different repackaging detection techniques and elab-

orated current challenges in this research direction. They found

that current research on repackaging detection is slowing down.

They also presented current open challenges in this direction and

ASE ’20, September 21–25, 2020, Virtual Event, Australia X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo, Y. Liu

compared existing detection solutions. Besides, they also provided

a dataset of repackaged apps, which can help researchers reboot

this research or replicate current approaches. Zhan et al. [62] con-

ducted a comparative study of Android repackaged app detection.

They reproduced all repackaged app detection tools and designed a

taxonomy for these detection techniques and then analyzed these

techniques and compared their effectiveness. Finally, they listed the

advantages and disadvantages of current techniques. Furthermore,

Baykara et al. [35] investigated malicious clone Android apps. They

revealed potential threats that can affect users’ experience. Finally,

they provided some potential solutions for these risks.

4 OVERVIEW OF TPL DETECTION
To investigate existing TPL detection techniques, we first follow a

well-defined Systematic Literature Review (SLR) methodology [1,

60] to find related research in this area. We search the candidate pa-

pers from four digital databases: ACM Digital Library, IEEE Xplore,

SpringerLink, and ScienceDirect and top conferences and Journals

on both software engineering and security. We do not consider

posters [34] or short papers that provide a preliminary idea. Fi-

nally, we get nine publications to compare and analyze. LibD2
[49]

is an extension of LibD [50], therefore we discuss them together.

Based on the detection process, we introduce and compare the

state-of-the-art TPL detection techniques, with details shown in

Table 1.

4.1 Preprocessing Comparison
In the preprocessing stage, we can find fromTable 1 that Apktool [9]

is themost frequently-used tool (5/9). Androguard [5] can be used to

generate the class dependency relationship; both Androguard and

Soot [22] can be used to construct CFGs. Besides, Androguard and

Apktool can restore the package structure, and each independent

tree structure indicates a package hierarchy structure, which is

used by some systems (e.g., LibRadar [53], LibPecker [64]) as a

supplementary feature to construct the library instances.

4.2 Library Instance Construction Comparison
As shown in Table 1 on library instance construction, apart from

the package name (PN), another three features are used to iden-

tify the boundaries of TPLs: (1) package hierarchy structure (PHS).
PHS is a tree, which can be treated as a directed graph where each

node indicates a package, a sub-package or a file, and each edge

indicates the inclusion relations between two nodes. Tools (i.e.,

LibID, LibPecker, [43], LibRadar) that use PHS regard each indepen-

dent directory tree as a library instance candidate. (2) Homogeny
graph, which indicates the parent or sibling relations between two

nodes, including call relations, inheritance relations, and inclusion

relation [50]. (3) package dependency graph (PDG). PDG considers

the dependency in the intra-packages [56], including member field

reference relation, method invocation relation, inheritance rela-

tion, and intra-package homogeny relation. Different dependency

relations will be set different weights based on intimacy.

Insights. We give a brief discussion about the three features. (1)

Tools that only depend on the PHS (e.g., LibID, LibPecker, LibRadar)

may miss some TPLs. For instance, TPLs can be inserted into the

package of the host app as part of the host app, which may be

deleted during pre-preprocessing without further consideration. (2)

Tools depending on the homogeny graph (i.e., LibD), if packages of

two TPLs have the inclusion or inheritance relations, they may be

considered as one TPL. (3) Tools depending on PDG (i.e., LibSift,

AdDetect) would be more reliable than other tools since the PDG-

based method considers both the PHS and homogeny relations, and

it splits an app into different parts based on the package dependency.

4.3 Feature Extraction Comparison
We use two metrics to compare the feature extraction process of

existing TPL detection methods: feature generation method and

signature representation.

Feature generation method. As shown in Table 1, LibID and

LibPecker exploit class dependency relations as features, including

class dependency, class inheritance dependency, field dependency,

and method prototype dependency, but they adopt different hash

algorithms to generate signatures. LibD and Han et al. [43] use

opcode from CFG blocks as features and use hash methods to gen-

erate the opcode. The only difference is that besides the opcode,

Han et al. adoptMethod Type Tag as well. Both ORLIS and LibScout

select the fuzzy method signature as the feature, but with different

generation methods. LibScout uses the Merkel tree to generate the

hash to represent a TPL based on the package structure. ORLIS

first uses one feature hash algorithm (sdhash) [4] to hash the fuzzy

method signature to represent the library-level signature and then

applies the ssdeep hash algorithm to generate the class-level feature.

LibRadar exploits the Android APIs, the total number of Android

APIs, and the number of API types to construct the feature vector.

LibRadar calculates the hash value of the feature vector as the final

fingerprint. AdDetect extracts app component usages information,

device identifiers and users’ profile, Android permissions, as well

as Android APIs to represents ad library features.

Signature Representation. Based on Table 1, we can find five

systems that adopt hash value to represent features. LibScout ex-

ploits Merkle Tree to generate the TPL feature, and the feature

representation is also a hash value at the package level. Note that

LibSift does not identify specific TPLs but split independent TPL

candidates out. AdDetect employs static analysis to extract the code

feature represented as vectors.

4.4 Library Identification Comparison
In this stage, the comparison features have two different granularity:

the fine-grained features at the class level and the coarse-grained

features at the package level. From another perspective, the identi-

fication strategies can be divided into three categories: 1) similarity

comparison, 2) clustering-based method, and 3) classification-based

method. Table 1 shows that LibD and LibRadar choose the clus-

tering method to identify TPLs, which does not require collecting

ground-truth TPLs to build a database. Compared with the cluster-

ing method, the similarity comparison methods usually conduct

pairwise comparison, which needs to collect the TPL files as ground

truth. If the similarity between the in-app TPL and a TPL in the

database is large than a pre-defined threshold, tools will consider

it as a TPL. Classification-based methods (i.e., AdDetect) employ

SVM to classify the ad/non-ad libraries.

Automated Third-Party Library Detection for Android Applications: Are We There Yet? ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 1: A comparison of existing TPL detection systems (in descending order by publication year)

Tool (Year) Tool
Available

Preprocessing
Tool

Lib Instance Construction Feature Extraction Library Identification
Feature Method Feature Method Granularity Method

LibID (2019) ✓
Androguard

dex2jar
PHS,PN

Construct GT

BIP
Class dependency LSH Class Similarity comparison

LibPecker (2018) ✓
Apktool

Androguard
PHS, PN Construct GT Class dependency Hash Class

Fuzzy class match

(Similarity comparison)

Han et al. [43](2018) ✗ Androguard PHS, PN Construct GT

Opcode of CFG

Basic Block
Hash Package Similarity comparison

LibD (2017)

✓ Apktool

Androguard

Homogeny graph,

PN

-

Opcode of CFG

Basic Block

Hash Package Clustering

ORLIS (2018) ✓ Soot - Construct GT Method Signature Hash Class Similarity comparison

LibRadar (2016)

✓
Apktool PHS, PN -

API calls

Number/types of API

Hash Package Clustering

LibSift (2016) ✗ Apktool PDG HAC - - Package -

LibScout (2016) ✓ - - Construct GT Method Signature Merkle tree Package

Fuzzy match

(Similarity comparison)

AdDetect (2014) ✗ Apktool PDG -

API, Permission, etc.

(Feature vector)
Static analysis Package SVM

PN: package name, PHS: package hierarchy structure; GT: ground truth; PDG: package dependency graph;
LSH: Locality-Sensitive Hashing: HAC: Hierarchy Agglomerative Clustering; BIP: Binary Integer Programming models

5 EMPIRICAL STUDY DESIGN
In this section, we attempt to thoroughly compare the state-of-the-

art TPL detection tools using the following four criteria:

C1: Effectiveness. We compare the effectiveness of existing tools

on a unified dataset (without bias) by using three metrics: recall,

precision, and F1-Score [25].

C2: Efficiency/Scalability.We compare the detection time of each

tool and point out the tools that are scalable to large-scale detection

and can be extended for industries.

C3: Capability of Obfuscation-resilience. Based on a previous

study [51], more than 50% TPL in apps are obfuscated. Obfus-

cated TPLs can affect the detection accuracy. We thus compare

the obfuscation-resilience capability of each tool against different

obfuscation strategies. Besides, for the same obfuscation strategy,

different obfuscators (obfuscation tools) have various implemen-

tation schemes, we also compare the detection ability of existing

TPL detection tools against different obfuscators.

C4: Ease of Use. Usability of a tool is usually the primary concern

for users. Thus, we attempt to reveal the usability of each detection

tool by designing a survey to investigate different users’ using

experiences and let users rate each tool.

5.1 Tool Selection
Our evaluation only considers the publicly available tools in Table 1,

among which LibD is reported containing an error in terms of the

hash method by the owner [7], we thus excluded it in this paper but

we still conduct the comparison of LibD. The detailed comparison

results can be seen in our website [28]. Eventually, we consider

presenting the comparison results of five tools (i.e., LibID, LibRadar,

LibScout, LibPecker, and ORLIS) here.

5.2 Data Construction
For the evaluation dataset, we collect two datasets for different pur-

poses: (1) Detecting TPLs in closed-source apps (e.g., from Google

play store) to evaluate the effectiveness/efficiency of each tool in

the real world (C1 & C2). (2) Detecting TPLs in open-source apps

with/without obfuscation to evaluate the obfuscation-resilient ca-

pability of each tool (C3). The reason we use a separate dataset for

assessing C3 is that the first dataset: 1) Lacks controlled trials.
To evaluate the obfuscation-resilient capability, we need to collect

apps with/without code obfuscation. However, the real-world apps

from Google Play cannot meet this condition; 2) Lacks ground
truth for code obfuscation. The apps from Google Play may be

obfuscated by developers, and we cannot know which tool they use

to obfuscate apps and which obfuscation techniques are adopted.

Therefore, the first dataset cannot be used to evaluate C3.

5.2.1 Dataset for Effectiveness/Efficiency Evaluation. This dataset
needs to meet two requirements: 1) providing the mapping informa-

tion between apks and TPLs; and 2) providing a full version set of

each TPL. Note that we need to collect the TPLs with their full ver-

sions to ensure fairness when comparing these tools. The reasons

are as follows: (1) We can only know the libraries used in an app by

referring to some websites, such as AppBrain [2], without knowing

the specific library version. Even for the same TPL, the code sim-

ilarity of different versions also varies, ranging from 0% to 100%.

If an app uses TPLs whose versions are not included in the TPL

dataset, it could cause false negatives when the code similarity of

two versions is below the defined threshold. Thus, to eliminate the

side-effects caused by the incomplete versions of TPLs, we should

collect the TPLs with their full versions. (2) The ways in which

the libraries update are diverse. Some TPLs require developers to

manually update them while some TPLs support automatic update.

Therefore, it is difficult to ensure the specific mapping relations

between TPLs’ version and some apps.

We find that only ORLIS and LibID released a dataset to evaluate

the capability of obfuscation-resilience. However, the number of

in-app TPLs from open-source apps is usually small, and most of

TPLs are non-obfuscated, which cannot reflect the ability of these

tools to handle real-world apps. Besides, they do not provide full

versions of TPLs in the dataset, which may lead to bias for some

ASE ’20, September 21–25, 2020, Virtual Event, Australia X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo, Y. Liu

tools. Therefore, we need to collect both the real-world apps and

the full versions of used TPLs.

TPL Collection.We use library-scraper [19] to crawl TPL files

from Maven Central [20], Jcenter [18], Google’s maven reposi-

tory [17], etc. We refer to AppBrain [2] to get the app-library

mapping information and manually check their relationship to

ensure the correctness. Besides, we also crawl the apps that use the

TPLs in our dataset from Google Play. We filter out TPLs whose

full versions are not included in our dataset. Finally, we select 59

unique TPLs and 2,115 corresponding library versions.

App Collection. According to the collected TPLs, we can acquire

the apps using these TPLs from AppBrain. We download 221 An-

droid apps (the newest versions) that use at least one TPL in our

collected TPL database from Google play. This dataset containing

TPLs and the corresponding apps is used as the ground-truth to

evaluate the accuracy and performance of each tool. We clarify a

confusing concept here. LibRadar and LibD adopt clustering-based

method to identify in-app TPLs, which require considerable number

of apps (million-level) as input to generate enough TPL signatures.

Whereas, we collect apps to verify their performance here, thus, we

do not need so many apps here. Moreover, The size of our dataset is

closed to existing similarity detection tools, such as LibScout [33].

5.2.2 Dataset for Obfuscation Evaluation. In order to investigate the

obfuscation-resilient ability of existing available tools in terms of

Android apps protected by code obfuscation techniques, we employ

the benchmark [11] containing 162 open-source apps downloaded

from F-Droid [15], mapping to 164 TPLs. The dataset includes two

parts: apps with non-obfuscated TPLs and the corresponding obfus-

cated ones.We use the dataset to evaluate two aspects: 1) capabilities
towards different obfuscation tools; 2) capabilities towards different
obfuscation techniques.

To evaluate the abilities regarding different obfuscators, TPLs in

each app from our benchmark are obfuscated by using three obfus-

cators (i.e., Proguard [21], DashO [13], and Allatori [8]), respectively.
Finally, our dataset includes four sets: 162 non-obfuscated apps with

three sets of apps (162 × 3) whose TPLs are obfuscated by three

obfuscators, respectively. To further investigate the capability re-

garding different obfuscation strategies, we randomly choose 88

open-source Android apps in the previous experiment and choose

DashO to obfuscate the 88 apps (non-obfuscation) with different

obfuscation techniques (i.e., control flow randomization, package

flattening, and dead code removal). Finally, we get three groups (88

× 3) of obfuscated apps.

6 EVALUATION
Our experiments were conducted on 3 servers running Ubuntu

16.04 with 18-core Intel(R) Xeon(R) CPU @ 2.30GHz and 192GB

memory.

6.1 C1: Effectiveness
We aim to compare existing library detection tools regarding the

dataset collected in Section 5.2. Note that LibRadar (a clustering-

based method) have published their TPL signature database, we

directly employ this database to evaluate its effectiveness.

Overall Results. As shown in Figure 2, we can observe that most

existing tools can achieve high precision but all tools have low

Figure 2: Detection result of different TPL detection tools

recall (i.e., less than 50%), indicating that existing tools can only

detect less than half of the TPLs used by the apps. LibScout (49.03%)

achieves the highest recall, followed by LibID (45.79%). As for the

precision, LibRadar achieves the best performance, which reaches

97.9%, the precision of LibRadar (97.90%) and LibScout (97.40%)

and LibPecker (91.50%) are very close; all of them are above 90%.

The precision and recall of ORLIS are the lowest among these

tools, which are 57.50% and 9.44%, respectively. To evaluate the

comprehensive performance of these tools, we use the F1 value

as an indicator. We can see that LibScout outperforms other tools,

achieving 65.20%, followed by LibID (59.30%). ORLIS has the lowest

performance, reaching only 16.21%.

FP Analysis. The false positives are mainly caused by two reasons.

The first one is due to the TPL dependency. If a TPL LIB3 is built on

LIB1 and the test app include the LIB3, LIB2 and LIB3 are the same

TPL but different versions. LIB2 does not depend on other TPLs,

the core code of LIB2 and LIB3 are the same, and the signatures of

LIB1, LIB2 as well as LIB3 are stored in our database. When a tool

search the database, the in-app modules may match LIB1 and LIB2

at the same time, leading to false positives.

Other false positives come from the code of closed versions with

high similarity and some TPL detection. tools (e.g., LibRadar, LibID,

and LibScout) choosing package hierarchy as a supplementary fea-

ture to identify TPLs. Different versions of the same TPL may have

different package hierarchy structure. Taking the library “OkHttp”

as the example, for the versions before 3.0.0, the root package was

“com/squareup/okhttp”, while it changed to “okhttp3” for versions

after 3.0.0. They are considered as two different TPLs since they

have different root package structures. These tools find the TPLs

but report it twice; one of them is regarded as a false positive. This

example also illustrates that these tools cannot identify the root

package mutation of the same TPL.

FN Analysis.We take an in-depth analysis of the reasons for the

low detection rate of these tools. There are two reasons affecting

the recall: 1) code obfuscation, 2) TPL identification methods.

Apps in our dataset are from Google Play Store, which may be

obfuscated by developers. If the obfuscator removes the whole pack-

age structure of a TPL and put all files in the root directory of apps,

this code obfuscation can dramatically decrease the detection rate

of all tools. Dead code removal can also affect all tools. Moreover,

the package structure can affect the fingerprint generated by Lib-

Scout and LibRadar, and the package name mutation can affect the

Automated Third-Party Library Detection for Android Applications: Are We There Yet? ASE ’20, September 21–25, 2020, Virtual Event, Australia

Figure 3: Detection rate of different tools towards handling
multiple Dex and single Dex problems

TPL identification of LibID, LibRadar. Therefore, code obfuscation

causes false negatives of current TPL detection tools.

In addition, the selected identification algorithms may also affect

the detection rate. The detection rate of clustering-based methods

primarily relies on the number of collected apps and the reuse rate

of TPLs used by these apps. It may cause false negatives when an

insufficient number of apps are collected for clustering. Besides,

clustering-based tools assume the modules that are used by a large

number of apps are TPLs. This assumption causes it can only find

some widely-used TPLs. If some TPLs are seldom used by apps or

very new, they will fail to identify them. Another minor reason

for the false negatives of LibRadar is that its pre-defined database

may not contain the TPLs we use in our experiment. In contrast,

the similarity comparison algorithm can alleviate the FN caused by

rarely-used TPLs by adding them to the database. From our experi-

mental result, we can find the recall of the similarity comparison

methods (i.e., LibID, LibScout) is higher than that of clustering-

based methods (i.e., LibRadar, LibD).

Besides, we find LibID, LibPecker and ORLIS cannot handle TPLs

in “.aar” files. In fact, a TPL could include both the “.aar” format

files and “.jar” format files. In our dataset, about 52% TPLs are

represented in “.aar” format. Thus, this is another reason that results

in the false negatives of these three tools. We also find that LibID

would report some errors when it profiles the TPL files by using

dex2jar [14], above reasons lead to 1,106 TPL signatures missing in

the database of LibID and directly increase the FN of LibID.

Multidex Problem. Another reason which can affect the recall

is the 64K limit problem. In Android, the executable Java code is

compiled into Dalvik Executable (Dex) file and is stored in the APK

file. The Dalvik Executable specification limits the total number of

method references to 64K in a single Dex file. Since Android 5.0

(API level 21), it supports to compile an app into multiple Dex files

if it exceeds the limited size. We thus refer to the source code of

these publicly-available tools and find that LibRadar and ORLIS

only consider the analysis on a single Dex file, which causes the

missing of a considerable amount of TPLs in detection. The specific

detection result of these tools to handle the single dex and Multidex

is shown in Figure 3. The result also indicates that when LibRadar

and ORLIS deal with the single dex, the detection rate of LibRadar

and ORLIS are 60.4% and 38.6%, respectively. However, when they

handle the apps with multi-dex, the detection rate decreases by

almost half than the original one.

Table 2: Detection time of different tools

Tool LibID LibRadar LibScout LibPecker ORLIS

Q1 2.07h 5s 47s 3.38h 876.75s

Mean 23.12h 5.53s 82.42s 5.11h 1438.50s

Median 6.56h 5s 66s 4.65h 1199.5s

Q3 20.04h 6s 95.25s 6.46h 1571.5s

We further investigate the percentage of such multiple Dex apps

in our evaluation dataset. We find that only 41 apps contain a

single Dex file, and the remaining 180 apps contain multiple Dex

files, more than 80% of them contain three Dex files. Surprisingly,

the app “com.playgendary.tom” even contains 98 Dex files. For

example, “bubbleshooter.orig” uses 19 TPLs, but the classes.dex file

only contains 4 TPLs of them; the remaining libraries are included

in other classes_N.dex files. Without a doubt, if the tool just

considers the single Dex situation, its effectiveness (especially the

recall) will be significantly decreased. Therefore, we suggest that

TPL detection tools should take into accountmultiple Dex situations

to ensure reliable results.

Answer to C1: As for effectiveness, LibScout performs the best.

Most TPL detection tools achieve high precision but low re-

call since they more or less depend on package name/structure

(which is fragile and unreliable) as auxiliary features to generate

TPL signatures, leading to lots of false negatives.

6.2 C2: Efficiency
Considering efficiency, we compare the time cost of each tool. To

ensure a fair comparison, we first employ each tool to generate TPL

features for these tools which do not offer database. The detection

time does not include the TPL feature generation time, which is

the practice in all related work. The time cost consists of the TPL

detection process for an app, i.e., pre-process an app, profile the

app, extract the code feature, identify TPLs inside. For each tool,

the detection time is closely related to the number of TPLs in the

collected database and the number of TPLs in each app.

Table 2 shows the detection time of the five selected tools. The

average detection time of LibRadar is 5.53s, which is the fastest

one among these tools, followed by LibScout (82.24s). LibRadar

can directly process the classes.dex files by using their tool lib-

dex [6] that dramatically improves the performance while other

tools adopt the reverse-engineering tools (e.g., Soot and Andro-

guard) that are much more time-consuming. Besides, as we men-

tioned in Section 6.1, LibRadar only handles the single Dex file and

ignores the multiple Dex problem, which is also one of the reasons

LibRadar is faster than other tools.

The detection time of LibID and LibPecker is much longer; the

median detection time of these two tools is more than 4 hours for

each app. Surprisingly, the average detection time of LibID is even

nearly one day per app. We find that if the size of a dex file of a

TPL is larger than 5MB, the detection time of LibID dramatically

increases. Based on our observation, we find that LibID cannot

handle too many TPLs at one time and is computation heavy in

terms of CPU and memory. For each detection process, LibID needs

ASE ’20, September 21–25, 2020, Virtual Event, Australia X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo, Y. Liu

to load all the features of TPLs in the memory, and it costs about 21

minutes to load all data. Furthermore, the average detection time

of ORLIS is 1438.50s per app. These three tools are not suitable for

large-scale TPL detection. We summarize two factors affecting the

efficiency of different tools as follows.

Comparison Strategy. We found that comparison strategies dra-

matically affect efficiency. LibRadar and LibD first compare the top

package level hash and the order of comparison is top-down, which

is more efficient. While LibPecker, LibID, LibScout, and ORLIS adopt

the pair-wise comparison strategy to identify a specific library and

the comparison strategy of LibID, LibPecker, and ORLIS are bottom-

up. We find this comparison strategy is more time-consuming.

Feature Granularity.We also found that the granularity of TPL

code feature can affect detection efficiency. Currently, there are two

levels of granularity used by existing TPL detection tools: package-

level (i.e., LibRadar and LibScout) and class-level (i.e., LibID, ORLIS,

and LibPecker). The number of package-level items is far less than

that of the class level. According to our experimental result, we can

also observe that the overhead of systems that use class-level fea-

tures is higher than systems using package-level features. Therefore,

the efficiency of LibID, LibPecker and ORLIS is obviously worse

than other tools. If the functionality of a TPL is complicated, the

number of classes and methods could also increase, thus the com-

parison time increases accordingly. The growth rate of comparison

time between the lib-class and app-class is exponential. Thus, we

can find that the average detection time of LibID, LibPecker and

ORLIS is much longer than the median time. This is because it takes

more time to extract code features of some complicated TPLs. Take

LibPecker as an example, even if an app contains just one TPL,

one comparison could cost time ranging from about 5s to 10s, and

there are 2,115 TPL features to be compared with in our dataset,

the average detection time could reach to 5.11 hours.

Answer to C2: LibRadar outperforms existing TPL detection

tools in terms of the detection time, taking only 5.53s per app on

average. LibID takes more time than others, almost one day per

app. Feature granularity can affect the performance of detection

tools, and the features at class-level cost more system resources

and detection time.

6.3 C3: Obfuscation-resilient Capability
In this section, we attempt to investigate the obfuscation-resilient

capability of existing tools from two aspects: (1) towards different

obfuscation tools; and (2) towards different obfuscation strategies,

by comparing their detection rate. The detection rate is the ratio of

the number of the correct identified TPLs to the total number of

TPLs in the ground truth.

6.3.1 Evaluation towards Different Obfuscators. Users can
configure the obfuscation strategies of obfuscators by themselves.

The obfuscation strategies of the three obfuscators are shown in

Table 3. We can see that Proguard only enables two strategies,

including identifier renaming and package flattening while DashO
enables all of the listed strategies. We compare the detection rate of

the five tools on apps with/without being obfuscated by different

obfuscation tools, in an attempt to investigate their effectiveness.

Table 3: Enabled obfuscation strategies of each obfuscator

Obfuscation strategy Proguard Allatori DashO

Dead Code Removal ✗ ✗ ✓

String Encryption ✗ ✓ ✓

Control Flow Randomization ✗ ✓ ✓

Identifier Renaming ✓ ✓ ✓

Package Flattening ✓ ✓ ✓

✓ : enabled ✗: disabled

Table 4 shows the detection results. As for the apps without code

obfuscation, LibPecker outperforms others, reaching 98.72%, fol-

lowed by LibScout with 88.73% of detection rate. The performance

of LibID is the worst, only reaching 11.70%. We can note that the

performance of LibID in C1 and C3 has orders of magnitude of

differences. The recall of LibID dramatically dropped in C3. That

is because the detection capability of LibID is greatly limited by

dex2jar [14]. Most problems are caused by the compatibility of

TPLs. Java only supported the Android to the version eight, if a

TPL is developed by Java 9+, dex2jar cannot identify some new

features in this TPL. We find that many TPLs cannot be decompiled

successfully in this dataset. Thus, LibID cannot generate code sig-

natures for these TPLs, leading to false negatives when the TPL to

be identified is matched with these unsuccessful-decompiled TPLs.

Besides, the experiment in C1 has TPLs with full versions while in

this experiment, we can ensure the specific TPL version in each app

in C3. Therefore, we just give one version in this dataset, which

also leads to the recall decrease of LibID in C3 because our detec-

tion granularity is at the library level instead of versions. Above

mentioned reasons lead to the inconsistent results of LibID in C1

and C3. More importantly, for apps with obfuscation, we can find

that the detection rate of all tools remain unchanged for apps ob-

fuscated by Proguard, indicating that all tools can effectively detect

TPLs in apps obfuscated by Proguard. However, they all fail to effec-

tively detect TPLs obfuscated by Dasho, leading to a sharp decline

in detection rate. LibScout is the worst one, i.e., 22.02% (dropping

by 66.71%), followed by LibPecker, LibRadar and ORLIS, and they

reduce to 34.95% (dropping by 64.13%), 8.96% (dropping by 56.47%)

and 30.41% (dropping by 33.10%), respectively. The code obfuscation

effect of Allatori lies between Proguard and DashO.

There are two main reasons for such differences in detection

rate decline: (1) different enabled obfuscation strategies in differ-

ent obfuscation tools; the more obfuscation strategies are enabled,

the lower the detection rate is. (2) Even if apps use the same code

obfuscation technique, different tools have different implementa-

tions and final effects may also be different. In our dataset, we find

that the package flattening strategy implemented by Proguard only

changes the package name, while both Allatori and DashO change

the package name/hierarchy structure but DashO also includes the

class encryption in this process, which directly affects the detec-

tion rate. It is worth noting that the recall (without obfuscation)

of some tools is higher than that in C1 because the apps in C1 are

closed-source apps from Google Play, and some of them have been

obfuscated by developers.

Based on the result, we can find that all TPL detection tools

are obfuscation-resilient to identifier/ package renaming. DashO

has the best obfuscation performance and LibPecker has the best

performance to defend against the three popular obfuscators.

Automated Third-Party Library Detection for Android Applications: Are We There Yet? ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 4: Results of code obfuscation-resilient capability for
different obfuscators

Tool Without
obfuscation

With Obfuscation
Proguard Allatori Dasho

LibID 11.70% 11.70% 8.49% 5.80%

LibPecker 98.72% 98.72% 95.13% 34.95%
ORLIS 63.51% 63.51% 60.31% 30.41%

LibRadar 65.43% 65.43% 63.38% 8.96%

LibScout 88.73% 88.73% 27.40% 22.02%

6.3.2 Evaluation towardsDifferentObfuscationTechniques.
We evaluate the capabilities of the five selected TPL detection tools

towards defending against three obfuscation techniques: 1) control

flow obfuscation, 2) package flattening, 3) dead code removal. The

change of CFG structure can affect some tools that employ CFG as

signature. Package flattening technique can affect tools depending

on the package hierarchy to generate code features, for example,

LibRadar computes a hash value for each package level; LibScout

uses the package tree to generate code features. Besides, dead code

removal can remove some fingerprints of TPLs and decrease the

detection rate. We aim to investigate how the code obfuscation tech-

niques affect the detection rate of each tool, and which technique

has the most prominent effects on these detection tools.

According to Table 5, for appswithout obfuscation, LibPecker has

the highest detection rate (98.91%), followed by LibScout (87.75%).

LibID achieves 12.19%, which is still the worst. For the obfuscated

apps, we can see the three techniques reduce the detection rate of

these tools. LibPecker outperforms other tools in defending against

these obfuscation techniques, achieving 81.61% (CFO), 73.52% (PKG

FLT), and 73.74% (code RMV) of detection rate. LibID still has the

lowest detection rates of three obfuscation techniques are 0.00%,

0.09% and 1.45%, respectively. The reasons were elaborated in Sec-

tion 6.3.1. Besides, we also find that feature granularity can affect

the obfuscation-resilient capabilities. LibPecker and ORLIS achieve

better performance than other tools in this experiment. LibPecker

and ORLIS use fine-grained code features (i.e., class level) that are

not sensitive to small code changes. In contrast, LibScout and Li-

bRadar use coarse-grained features (i.e., package level), whose hash

values may easily change due to slight code modification.

Moreover, we can see that different code obfuscation techniques

have various effects on different tools. We can see that package

flattening has the most prominent effect on the detection rate of

LibPecker and LibRadar while it has little effect on ORLIS; control

flow randomization has the least effect on LibPecker and LibRadar

while has the biggest effect on ORLIS. All of the three obfuscation

techniques all have great impact on the detection rate of LibScout,

dropping by more than 70%. LibRadar uses APIs as the code feature.

Therefore, the dead code removal and control flow randomization

can affect the final library code feature. It generates the feature

vector based on the package structure. The change of package struc-

ture can modify the feature vector. LibScout is sensitive to control

flow obfuscation, package flattening, and dead code removal. The

reason is that LibScout exploits the Merkle tree to generate the TPL

profile, and it partially depends on the package hierarchy structure.

Besides, LibScout uses MD5 to generate the library fingerprint, a

small change can lead to the fingerprint change and finally affect

Table 5: Evaluation of the capabilities of existing tools for
different code obfuscation techniques

Tool Without
obfuscation

With Obfuscation
CFO PKG FLT Code RMV

LibID 12.19% 0.00% 0.09% 1.45%

LibPecker 98.91% 81.61% 73.52% 73.74%

ORLIS 63.46% 58.86% 63.46% 60.61%

LibRadar 64.77% 49.67% 48.36% 49.02%

LibScout 87.75% 17.72% 16.63% 16.63%

CFO: Control Flow Obfuscation; PKG FLT: Package Flattening;

Code RMV: Dead Code Removal

the detection accuracy. Thus, the three obfuscations can affect the

detection rate. Moreover, three code obfuscation techniques have

similar effects on existing tools.

Answer to C3: LibPecker outperforms other tools in defend-

ing against different obfuscators and different obfuscation tech-

niques. Tools using class-level features have better performance

than those using package-level features regarding defending

against code obfuscation.

6.4 C4: Ease of Use
Whether a tool is user-friendly is an essential factor in evaluating

the usability of the tool. We attempt to compare the usability of the

available tools (i.e., LibID, LibPecker, ORLIS, LibRadar, LibD
2
, and

LibScout) from three aspects: 1) the installation and setup process,

2) the usage steps, and 3) the result presentation. To assess them

objectively, we design a questionnaire [32] and recruit participants

to rate for these tools from the three aspects.

Participant Recruitment. We recruit 20 people from different

industrial companies and universities via word-of-mouth, who are

developers in IT companies, post-doc, Ph.D. students, etc. To mini-

mize the interference factors due to unprofessional factors of partic-

ipants, all the participants we recruited have over 3-year experience

in Android app development, and they are from different countries

such as Singapore, Germany, China and India. Besides, they did not

install or use these tools before. The participants received a $50

coupon as a compensation of their time.

Experiment Procedure.We provided the links of the source code

together with the instruction files that guide participants to install

and use these tools. Note that since some tools require users to

take apks (and TPLs) as input, we also provide another repository

containing some sample apps and sample TPLs in case that partici-

pants have no idea about where to download the input data, which

may hinder the process of using them. In fact, when conducting it

in the real world, it is even more difficult since users have to find

where to download and collect these input datasets, especially for

the tools that require a ground-truth database beforehand. We ask

the participants to install and use these six tools one by one, and

rate each tool from the aforementioned three aspects. The specific

rating criteria can be seen in Table 6. All participants carried out ex-

periments independently without any discussions with each other

and they were encouraged to write some comments about each

2
We consider the usability of LibD though it was reported containing a calculation

error, which would not affect the installation and using process.

ASE ’20, September 21–25, 2020, Virtual Event, Australia X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo, Y. Liu

Table 6: Rating options for each item in the questionnaire

Installation
Easy

⋆⋆⋆⋆
Acceptable

⋆⋆⋆
Complicated

⋆⋆
Very complicated

⋆

Usage
Easy

⋆⋆⋆⋆
Acceptable

⋆⋆⋆
Complicated

⋆⋆
Very complicated

⋆

Output
Clear & direct

⋆⋆⋆

Understand/

not concise

⋆⋆

Confusing

⋆

tool. After finishing the tasks, we also interviewed them about the

user experience with detailed records.

Results. Figure 4 shows the results of the questionnaire. For each
rating item, we take the average of the rating stars from all partic-

ipants. According to Figure 4, we can find that LibRadar gets the

most stars while ORLIS receives the lowest score.

• Installation: As for the installation process, LibPecker gets the

highest score (4 stars) since it only needs one command, and LibID

is regarded to be the most complicated one because it requires

participants to install the Gurobi Optimizer [26] and register the

license by themselves. Some users commented that:

“When I first installed LibID, I spent about 2 hours. Installing the
necessary dependency (e.g., Gurobi Optimizer) takes most of my time
since the instruction is confusing.”
“The design of the website of Gurobi Optimizer is terrible. It is difficult
to follow the instructions because some of them are scattered. ”
Both LibRadar and LibD get 3 scores because they just need to

install basic Java and python running environment and then users

can run them. The installation of ORLIS and LibScout is almost

acceptable (2.5 stars). Both of them require users to download the

Android SDK. Besides, ORLIS requires users to download some

dependencies and TPLs to make it run.

•Usage:As for the usage, LibRadar and LibD get the highest scores,

while LibID is regarded as the most unsatisfactory tool. Participants

said they consider more about the execution efficiency of the tools

when using them:

“For LibID, LibPecker and ORLIS, I have to wait for several minutes
for some apps, sometimes LibID even needs more than 30 minutes to
get the results. That’s too long for me. While the execution time of
LibRadar and LibScout is more acceptable.”
“LibID usually gets crash when detecting some TPLs. For me, it does
work when processing the TPL named AppLovin, while crashes when
processing the TPL named Dropbox.”
In fact, the reason for such crashes of LibID is that the size of these

TPLs is too large. LibID needs to load all the TPLs and apps into

the memory first; its detection strategy usually consumes many

computing resources, especially the memories and CPU. When

users input many large size TPLs, it will crash when it exceeds the

memory. Another reason that may affect the rating is that LibID,

ORLIS and LibPecker would report an error when processing some

“.aar” files and users need to modify them manually to proceed with

the detection process.

• Output: According to the results, participants thought the de-

tection results of LibID, LibRadar, and LibScout are much easier to

understand; and ORLIS gets the lowest score since it only provides

the matching relations of the class name, without telling the apps

or TPLs that the class belongs to, making participants confused.

Figure 4: Rating result of each tool from the questionnaire

“The results of LibID, LibRadar and LibScout are easy to understand.
All of the results are represented in “.json” format, I can quickly find
the in-app TPLs, the similarity value and other meta information.”
The result provided by LibD is the MD5 of TPLs, which requires

users to find the used TPLs by mapping with the database file

provided by LibD:

“I can understand the result of LibD, but not very direct and clear. Some
information that I really interested in is missing, e.g., the similarity
value and library name.”

Answer to C4: LibRadar gets the highest score from partici-

pants mainly due to its simple usage and user-friendly output

format, which is regarded as the most easy-to-use tool. ORLIS

should be improved most, especially the result representation.

7 DISCUSSION
Based on our evaluation, we highlight lessons learned from different

perspectives (i.e., tool users, tool implementation), and provide

useful insights for future research.

7.1 Lessons Learned
7.1.1 From the perspective of users. We give an in-depth dis-

cussion on current Android TPL detection tools and propose tool

selection suggestions for different stakeholders with different pur-

poses. (1) For malware/repackaged app detection, we suggest choos-

ing the strategy of LibSift to help filter TPLs out, because it uses

the package dependency graph (PDG) as the feature and hierar-

chy clustering to split different TPL candidate modules from the

host app. Different from the clustering-based method depending

on the input apps reuse rate of in-app TPLs, the module decou-

pling method focuses more on the characteristics of the app itself.

Using the PDG to split TPLs is more reliable than other methods

that depend on package trees. Therefore, it can achieve a better

recall than others and is a good choice to filter TPLs when conduct

malware/repackaged app detection. (2) For vulnerable in-app TPL

detection, we recommend LibScout that has better performance in

identifying the specific library versions in TPL detection. It is easy

to confirm the vulnerabilities via the TPL version information in

vulnerability database like NVD [31]. (3) For component analysis

of apps, we recommend LibPecker which is proven to have the best

code obfuscation-resilient capability against common obfuscators

Automated Third-Party Library Detection for Android Applications: Are We There Yet? ASE ’20, September 21–25, 2020, Virtual Event, Australia

and common obfuscation techniques. (4) For large-scale TPL detec-

tion, we suggest using LibRadar that has high-efficiency (i.e., 5.53s

per app on average) and is scalable to large-scale detection. (5) For

advertising investors or developers who want to choose popular

ad networking (i.e., ad libraries) to show their ads, we recommend

them to use LibRadar that can efficiently find commonly-used ad

libraries in Android apps at market scale. With these identified

TPLs, developers can choose some competitive ones to embed in

their products to ensure their competitive edge in the market.

7.1.2 From the perspective of tool implementation. We elab-

orate on the key points that are usually ignored by previous research

in this paper to raise the attention to future tool implementation.

Android system updates frequently and usually introduces new

features. However, current researchers seem to pay less attention

to these new features, which could directly discount the detection

performance. For example, (1) Android runtime (ART) compilation
mechanism [3], proposed since 2013, is ignored by existing tools.

Current tools usually can handle apps with traditional DVM com-

pilation mechanism, which only generate one single “classes.dex”

file. Apps compiled by ART will generate the “.oat” file that can

be decompiled into a set of “.dex” files. Besides, we find most apps

in Google Play are compiled by ART since 2015, and more than

81% of the apps in our dataset are compiled by ART, therefore,

researchers should pay more attention to the new features of An-

droid to improve their tools empirically. (2) New app formats. The
apps published with Android App Bundle [24] format will finally

be released with the file suffix “.apks” or “.xapk”, which cannot

be directly handled by all existing tools. We observed that some

versions of the apps in our dataset are published with such formats,

which should draw more attention to tool developers/researchers

when implementing their tools.

7.2 Tool Enhancement
Defect Repair. Based on our study, we fixed the defects of existing

TPL detection tools with: (1) ability to handle all formats of TPLs.

The recall of LibID, LibPecker, and ORLIS has increased by 6.30%,

19.32%, and 12.59%, respectively. (2) Ability to handle APKs (API >
21) that are compiled by ART mechanism (i.e., LibRadar and ORLIS).

The recall of LibRadar and ORLIS has increased by 16.15% and

14.69%. (3) Apart from the aforementioned common problems, we

find that LibID can be enhanced from two aspects: 1) Bypass reverse-

engineering protection (for dex2jar tool), and 2) fix run-time errors.

The detection rate of LibID increased by 14.84%. We have published

the related code on GitHub [30] anonymously. Users can directly

use our enhanced tools to achieve better performance. For more

details, please refer to our website [29].

Online service for TPL detection. To make it more convenient

for users to access and compare these tools, we build a framework

which integrates the five publicly available tools and make it as

an online service [29] to detect the in-app TPLs. Our framework

can easily be extended if new tools are available. Users can upload

an app to the online platform, and our framework will show the

detection result of each tool. Users can compare each tool intuitively

and clearly observe the commonalities and differences of the results.

7.3 Future Research Directions
We highlight some useful insights to inspire and motivate future

research on TPL detection techniques. (1) Select stable features.
Existing tools mostly depend on package name and package hierar-

chy structure to identify TPLs. However, these approaches are not

reliable enough. Firstly, many different TPLs may have the same

package name if they belong to the same group. For example, there

are 16 different TPLs in the same group “com.google.dagger”, which

means these different TPLs have the same package name. It is diffi-

cult to use the package name/structure to correctly split different

TPLs if one app includes some TPLs from the same group, and using

package name and package structure would generate incorrect code

features and lead to misidentification. Secondly, package flattening

obfuscation can remove the entire package tree or modify the pack-

age structure, which also can change the signatures of the in-app

TPLs. Using the package structure as the supplementary feature

to split the TPL could lead to some false negatives, we suggest

researchers can directly use more stable features such as the class

dependency relation to split the TPLs. (2) Consider TPLs devel-
oped in other languages. According to our study, we find over

15% in-app TPLs are developed in Kotlin [27]. However, some gram-

mar rules of Kotlin are different from Java, which can directly affect

performance of existing TPL detection tools. Specifically, the source

files of Kotlin can be placed in any directory which can cause similar

effects like the package flattening obfuscation technique. There-

fore, existing tools depending on package structure to generate

code features may become ineffective if app developers customize

Kotlin TPLs, especially modify the package name/structure that can

easily change the signatures of TPLs. Besides, future researchers

also can consider the native library (binary code) detection and

related security problems understanding. (3) Detect vulnerable
TPLs. Although LibScout claims that it can detect vulnerable TPLs,

the complete dataset of vulnerable TPLs is missing now. We know

nothing about the risks of vulnerable TPLs and infected apps. Fu-

ture research on vulnerable TPL detection and understandings is

necessary and meaningful. (4) Catch emerging TPLs. Existing
tools rely on a reference database to identify TPLs, which limits

their ability in detecting TPLs in the database, thus cannot identify

newly-published TPLs that are not in the database. (5) Identify
TPLs by using dynamic techniques. Current methods for TPL

detection are static analysis, which cannot identify TPLs that are

dynamically loaded at run-time or with dynamic behaviors.

8 CONCLUSION
In this paper, we investigated existing TPL detection techniques

from both literature-based perspectives and implemented tool per-

spectives. We conducted a thorough comparison on existing tools

from 4 aspects, including effectiveness, efficiency, code obfuscation-

resilience capability, and ease of use, and summarized their ad-

vantages and disadvantages. We also discuss lessons learned from

different perspectives, enhance existing tools and further provide

an online service for TPL detection. Besides, our dataset and eval-

uation details are publicly available. We believe our research can

provide the community with a clear viewpoint on this direction

and inspire future researchers to find more creative ideas in this

area.

ASE ’20, September 21–25, 2020, Virtual Event, Australia X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo, Y. Liu

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their helpful comments.

This work is partly supported by the National Natural Science Foun-

dation of China (No. 61702045), the Australian Research Council

(ARC) under projects DE200100016 and DP200100020, the Hong

Kong RGC Projects (No. 152223/17E, 152239/18E), the Hong Kong

PhD Fellowship Scheme and the Singapore National Research Foun-

dation under NCR Award Number NRF2018NCR-NSOE004-0001.

REFERENCES
[1] 2007. survey. Guidelines for performing systematic literature reviews in software

engineering.

[2] 2010-2019. AppBrain. https://www.appbrain.com/stats/libraries/.

[3] 2013. ART. https://source.android.com/devices/tech/dalvik.

[4] 2013. sdhash. http://roussev.net/sdhash/sdhash.html.

[5] 2016. Androguard. https://github.com/androguard/androguard.

[6] 2016. LibRadar. https://github.com/pkumza/LibRadar

[7] 2017. LibD. https://github.com/IIE-LibD/libd

[8] 2019. Allatori. http://www.allatori.com/

[9] 2019. Apktool. https://ibotpeaches.github.io/Apktool/.

[10] 2019. App Future. https://www.smashingmagazine.com/2017/02/current-trends-

future-prospects-mobile-app-market/

[11] 2019. Benchmark data. https://github.com/presto-osu/orlis-orcis/tree/master/

orlis/open_source_benchmarks

[12] 2019. BitBucket. https://bitbucket.org/

[13] 2019. DashO. https://www.preemptive.com/products/dasho/overview

[14] 2019. dex2jar. https://github.com/pxb1988/dex2jar

[15] 2019. F-Droid. https://f-droid.org/en/packages/

[16] 2019. Github. https://github.com/

[17] 2019. Google Mvn. https://dl.google.com/dl/android/maven2/index.html

[18] 2019. Jcenter. https://jcenter.bintray.com/

[19] 2019. Library Scraper. https://github.com/reddr/LibScout/blob/master/scripts/

library-scraper.py

[20] 2019. Maven. https://mvnrepository.com/

[21] 2019. Proguard. https://www.guardsquare.com/en/products/proguard

[22] 2019. Soot. https://github.com/Sable/soot

[23] 2019. statista. https://www.statista.com/statistics/266210/number-of-available-

applications-in-the-google-play-store/.

[24] 2020. Android App Bundle. https://developer.android.com/platform/technology/

app-bundle.

[25] 2020. F1 score. https://en.wikipedia.org/wiki/F1_score.

[26] 2020. gurobi. https://www.gurobi.com/.

[27] 2020. kotlin. https://kotlinlang.org/.

[28] 2020. LibDetect. https://sites.google.com/view/libdetect

[29] 2020. LibDetect. https://sites.google.com/view/libdetect/.

[30] 2020. LibID updated code. https://github.com/MIchicho/LibID

[31] 2020. National Vulnerability Database. https://nvd.nist.gov/

[32] 2020. Questionnaire of User Study. https://forms.gle/ueJAkuone9ZnCXn68.

[33] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable Third-Party Library

Detection in Android and Its Security Applications. In CCS.
[34] Salman A. Baset, Shih-Wei Li, Philippe Suter, and Omer Tripp. 2017. Identify-

ing Android Library Dependencies in the Presence of Code Obfuscation and

Minimization. In Proceedings of the 39th International Conference on Software
Engineering Companion.

[35] M. Baykara and E. Colak. 2018. A review of cloned mobile malware applications

for Android devices. In Proc. ISDFS. 1–5. https://doi.org/10.1109/ISDFS.2018.

8355388

[36] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving accuracy and scalability

simultaneously in detecting application clones onAndroidmarkets. In Proceedings
of the 36th International Conference on Software Engineering. ACM, 175–186.

[37] Kai Chen, Peng Liu, and Y. Zhang. 2014. Achieving Accuracy and Scalability

Simultaneously in Detecting Application Clones on Android Markets. In Proc.
ICSE.

[38] Sen Chen, Lingling Fan, Guozhu Meng, Ting Su, Minhui Xue, Yinxing Xue, Yang

Liu, and Lihua Xu. 2020. An Empirical Assessment of Security Risks of Global

Android Banking Apps. In Proceedings of the 42st International Conference on
Software Engineering. IEEE Press, 596–607.

[39] Sen Chen, Ting Su, Lingling Fan, Guozhu Meng, Minhui Xue, Yang Liu, and

Lihua Xu. 2018. Are mobile banking apps secure? What can be improved?. In

Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. ACM,

797–802.

[40] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-

mated Test Input Generation for Android: Are We There Yet?. In Proc. ASE.
[41] Lingling Fan, Ting Su, Sen Chen, GuozhuMeng, Yang Liu, Lihua Xu, and Geguang

Pu. 2018. Efficiently manifesting asynchronous programming errors in android

apps. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. ACM, 486–497.

[42] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang Pu,

and Zhendong Su. 2018. Large-scale analysis of framework-specific exceptions

in Android apps. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). IEEE, 408–419.

[43] Hongmu Han, Ruixuan Li, and Junwei Tang. 2018. Identify and Inspect Libraries

in Android Applications. Wireless Personal Communications vol 103, pp491-503
(2018).

[44] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song. 2012. Juxtapp: a scalable

system for detecting code reuse among Android applications. In Proc. DIMVA.
[45] C. Kai, W. Peng, L. Yeonjoon, Wang XiaoFeng, Zhang Nan, Huang Heqing, Zou

Wei, and Liu Peng. 2015. Finding unknown malice in 10 seconds: Mass vetting

for new threats at the google-play scale. In Proc. USENIX Security.
[46] P. Kong, L. Li, J. Gao, K. Liu, T. F. BissyandÃ©, and J. Klein. 2019. Automated

Testing of Android Apps: A Systematic Literature Review. IEEE Transactions on
Reliability 68, 1 (March 2019), 45–66.

[47] Li Li, Taegawende Bissyandé, Jacques Klein, and Yves Le Traon. 2016. An Inves-

tigation into the Use of Common Libraries in Android Apps. In SANER.
[48] L. Li, T. F. Bissyande, and J. Klein. 2019. Rebooting Research on Detecting

Repackaged Android Apps: Literature Review and Benchmark. IEEE Transactions
on Software Engineering (2019), 1–1. https://doi.org/10.1109/TSE.2019.2901679

[49] M. Li, P. Wang,W.Wang, S. Wang, D.Wu, J. Liu, R. Xue, W. Huo, andW. Zou. 2018.

Large-scale Third-party Library Detection in Android Markets. IEEE Transactions
on Software Engineering (2018), 1–1. https://doi.org/10.1109/TSE.2018.2872958

[50] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui Xue,

and Wei Huo. 2017. LibD: Scalable and Precise Third-party Library Detection in

Android Markets. In Proc. ICSE.
[51] J. Lin, B. Liu, N. Sadeh, and J.I. Hong. 2014. Modeling users mobile app privacy

preferences: Restoring usability in a sea of permission settings. In Proc. SOUPS.
[52] B. Liu, B. Liu, H. Jin, and R. Govindan. 2015. Efficient privilege de-escalation for

ad libraries in mobile apps. In MobiSys.
[53] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: Fast and

Accurate Detection of Third-party Libraries in Android Apps. In Proc. ICSE-C.
[54] Annamalai Narayanan, Lihui Chen, and Chee Keong Chan. 2014. AdDetect:

Automated detection of Android ad libraries using semantic analysis. In Proc.
ISSNIP.

[55] Yuru Shao, Xiapu Luo, Chenxiong Qian, Pengfei Zhu, and Lei Zhang. 2014. To-

wards a scalable resource-driven approach for detecting repackaged Android

applications. In Proc. ACSAC.
[56] C. Soh, H. B. K. Tan, Y. L. Arnatovich, A. Narayanan, and L. Wang. 2016. LibSift:

Automated Detection of Third-Party Libraries in Android Applications. InAPSEC.
[57] Ting Su, Lingling Fan, Sen Chen, Yang Liu, Lihua Xu, Geguang Pu, and Zhendong

Su. 2020. Why My App Crashes Understanding and Benchmarking Framework-

specific Exceptions of Android apps. IEEE Transactions on Software Engineering
(2020).

[58] Haoyu Wang and Yao Guo. 2017. Understanding Third-party Libraries in Mobile

App Analysis. In Proc. ICSE-C.
[59] Yan Wang, Haowei Wu, Hailong Zhang, and Atanas Rountev. 2018. ORLIS:

Obfuscation-resilient Library Detection for Android. In Proc. MOBILESoft.
[60] Claes Wohlin. 2014. Guidelines for Snowballing in Systematic Literature Studies

and a Replication in Software Engineering. In Proc. 18thInt. Conf. Eval. Assessment
Softw. Eng.

[61] Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang Deng, Wing Lam, Wei

Yang, and Tao Xie. 2016. Automated Test Input Generation for Android: Are We

Really There yet in an Industrial Case?. In Proc. FSE.
[62] Xian Zhan, Tao Zhang, and Yutian Tang. 2019. A Comparative Study of Android

Repackaged Apps Detection Techniques. In Proc. SANER.
[63] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu. 2014.

ViewDroid: Towards Obfuscation-Resilient Mobile Application Repackaging

Detection. In Proc. ACM WiSec.
[64] Yuan Zhang, Jiarun Dai, Xiaohan Zhang, Sirong Huang, Zhemin Yang, Min Yang,

and Hao Chen. 2018. Detecting third-party libraries in Android applications with

high precision and recall. In SANER.
[65] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou. 2013. Fast, scalable detection

of Piggybacked mobile applications. In Proc. CODASPY.
[66] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. 2012. Detecting repackaged smartphone

applications in third-party Android marketplaces. In Proc. CODASPY.

https://www.appbrain.com/stats/libraries/
https://source.android.com/devices/tech/dalvik
http://roussev.net/sdhash/sdhash.html
https://github.com/androguard/androguard
https://github.com/pkumza/LibRadar
https://github.com/IIE-LibD/libd
http://www.allatori.com/
https://ibotpeaches.github.io/Apktool/
https://www.smashingmagazine.com/2017/02/current-trends-future-prospects-mobile-app-market/
https://www.smashingmagazine.com/2017/02/current-trends-future-prospects-mobile-app-market/
https://github.com/presto-osu/orlis-orcis/tree/master/orlis/open_source_benchmarks
https://github.com/presto-osu/orlis-orcis/tree/master/orlis/open_source_benchmarks
https://bitbucket.org/
https://www.preemptive.com/products/dasho/overview
https://github.com/pxb1988/dex2jar
https://f-droid.org/en/packages/
https://github.com/
https://dl.google.com/dl/android/maven2/index.html
https://jcenter.bintray.com/
https://github.com/reddr/LibScout/blob/master/scripts/library-scraper.py
https://github.com/reddr/LibScout/blob/master/scripts/library-scraper.py
https://mvnrepository.com/
https://www.guardsquare.com/en/products/proguard
https://github.com/Sable/soot
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://developer.android.com/platform/technology/app-bundle
https://developer.android.com/platform/technology/app-bundle
https://en.wikipedia.org/wiki/F1_score
https://www.gurobi.com/
https://kotlinlang.org/
https://sites.google.com/view/libdetect
https://sites.google.com/view/libdetect/
https://github.com/MIchicho/LibID
https://nvd.nist.gov/
https://forms.gle/ueJAkuone9ZnCXn68
https://doi.org/10.1109/ISDFS.2018.8355388
https://doi.org/10.1109/ISDFS.2018.8355388
https://doi.org/10.1109/TSE.2019.2901679
https://doi.org/10.1109/TSE.2018.2872958

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Android Third-party Library
	2.2 TPL Detection Process
	2.3 Code Obfuscation Strategies

	3 Related Work
	4 Overview of TPL Detection
	4.1 Preprocessing Comparison
	4.2 Library Instance Construction Comparison
	4.3 Feature Extraction Comparison
	4.4 Library Identification Comparison

	5 Empirical Study Design
	5.1 Tool Selection
	5.2 Data Construction

	6 Evaluation
	6.1 C1: Effectiveness
	6.2 C2: Efficiency
	6.3 C3: Obfuscation-resilient Capability
	6.4 C4: Ease of Use

	7 Discussion
	7.1 Lessons Learned
	7.2 Tool Enhancement
	7.3 Future Research Directions

	8 Conclusion
	References

