
Towards Understanding the Faults of JavaScript-Based
Deep Learning Systems

Lili Quan
College of Intelligence and

Computing, Tianjin University
Tianjin, China

Qianyu Guo
Zhongguancun Laboratory

Beijing, China

Xiaofei Xie
Singapore Management University

Singapore

Sen Chen∗
College of Intelligence and

Computing, Tianjin University
Tianjin, China

Xiaohong Li∗
College of Intelligence and

Computing, Tianjin University
Tianjin, China

Yang Liu
Nanyang Technological University

Singapore

ABSTRACT
Quality assurance is of great importance for deep learning (DL) sys-
tems, especially when they are applied in safety-critical applications.
While quality issues of native DL applications have been extensively
analyzed, the issues of JavaScript-based DL applications have never
been systematically studied. Compared with native DL applications,
JavaScript-based DL applications can run on major browsers, mak-
ing the platform- and device-independent. Specifically, the quality
of JavaScript-based DL applications depends on the 3 parts: the
application, the third-party DL library used and the underlying DL
framework (e.g., TensorFlow.js), called JavaScript-based DL system.
In this paper, we conduct the first empirical study on the quality
issues of JavaScript-based DL systems. Specifically, we collect and
analyze 700 real-world faults from relevant GitHub repositories,
including the official TensorFlow.js repository, 13 third-party DL
libraries, and 58 JavaScript-based DL applications. To better un-
derstand the characteristics of these faults, we manually analyze
and construct taxonomies for the fault symptoms, root causes, and
fix patterns, respectively. Moreover, we also study the fault dis-
tributions of symptoms and root causes, in terms of the different
stages of the development lifecycle, the 3-level architecture in the
DL system, and the 4 major components of TensorFlow.js frame-
work. Based on the results, we suggest actionable implications and
research avenues that can potentially facilitate the development,
testing, and debugging of JavaScript-based DL systems.

CCS CONCEPTS
• Software and its engineering → Software post-development
issues; • Computing methodologies → Artificial intelligence.

∗Sen Chen (senchen@tju.edu.cn) and Xiaohong Li (xiaohongli@tju.edu.cn) are the
corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3560427

KEYWORDS
JavaScript, Deep Learning, TensorFlow.js, Faults

ACM Reference Format:
Lili Quan, Qianyu Guo, Xiaofei Xie, Sen Chen, Xiaohong Li, and Yang Liu.
2022. Towards Understanding the Faults of JavaScript-Based Deep Learning
Systems. In 37th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3551349.3560427

1 INTRODUCTION
Deep learning (DL) has been widely applied into various applica-
tions such as image classification [51], natural language process-
ing [84], and speech recognition [45]. To support the DL-based
applications, many DL libraries and frameworks such as Tensor-
Flow [5], PyTorch [72], and Keras [2] have been developed and
widely used. However, DL systems have been demonstrated to be
vulnerable (e.g., adversarial attack [11, 12, 15, 25]), which can cause
serious consequences when they are applied to some safety-critical
applications such as healthcare [65] and autonomous driving [10].
Hence, quality assurance of DL systems is required.

Recently, extensive researches have been conducted from vari-
ous communities including AI, software engineering, and security
to study the quality issues of DL systems. For example, a lot of
adversarial attack techniques [8, 26, 71] have been proposed to
evaluate the model robustness. The quality of DL frameworks is
also important for DL systems. Some works including bug anal-
ysis [17, 52, 54, 85] and framework testing [48, 73, 82] have been
studied for DL frameworks. In addition to the model and DL frame-
works, some studies are conducted on the programming bugs of DL
applications (e.g., programming bugs with TensorFlow [87], bugs
on the model architectures [86]). However, most of the studies focus
on the native applications that can run on specific environments
(e.g., Android and iOS) and DL frameworks.

A main drawback of the native applications is that they are often
platform-specific (e.g., Windows, iOS, and Android) and device-
specific (e.g., PC, mobile phones, and IoT devices). Considering the
requirements for easy deployment and migration, JavaScript-based
DL applications are becoming more and more popular. Compared to
native DL applications, JavaScript-based applications are platform-
agnostic and device-agnostic because they can easily run on major
browsers such as Chrome, Firefox, and Safari on different platforms

https://doi.org/10.1145/3551349.3560427
https://doi.org/10.1145/3551349.3560427

ASE ’22, October 10–14, 2022, Rochester, MI, USA Lili Quan and Qianyu Guo, et al.

Browser Nodejs

Hardware

Application

TensorFlow.js
Framework

Program Logic3rd-party DL Library
Tensorflow.js Framework

Operator Layer ModelUser-specific API (Multi-level)

Mobile App
React Native,Ionic...

Desktop App
Electron...Platform

Wasm,WebGL
TF(CPU,GPU)

Pure-JS CPU

Wasm,WebGL

Pure-JS CPU
Wasm

Pure-JS CPU

TF(CPU,GPU)

Pure-JS CPU

Wasm,WebGL
Backend

Device

Program
Logic

UI Framework
Vuejs,Reactjs,AngularJS,Angular...

Figure 1: The typical architecture of JavaScript-based DL system

and devices [67]. Various JavaScript-based DL frameworks and
libraries (e.g., TensorFlow.js [30], Keras.js [81], and ML5.js [3]) have
also been developed. While the quality issues of native applications
have received a lot of attention, the quality study of JavaScript-
based DL applications is still less touched, which also motivates
this work to study the faults in JavaScript-based DL systems and
their unique characteristics compared with native applications.

To fill this knowledge gap, in this paper, we conduct the first
empirical study towards understanding the faults in JavaScript-
based DL applications that run on multiple platforms (i.e., browsers,
Node.js, mobile apps, and desktop apps). The quality of a JavaScript-
based DL application typically depends on three parts: the applica-
tion itself, the 3rd-party DL libraries used in the application and the
underlying JavaScript-based DL framework. As shown in Figure 1,
DL software including the 3-level architecture (i.e., application
level, 3rd-party DL library level, and framework level) is called the
JavaScript-based DL system. The faults in any of the three levels
can significantly affect the quality of the entire system. Hence, in
this paper, we conduct a comprehensive study on faults of all the
three levels. In particular, for the DL framework, this paper focuses
on TensorFlow.js which is the most popular JavaScript-based DL
framework. As shown in Figure 1, TensorFlow.js contains four ma-
jor components (i.e., API, Platform, Backend, and Device). Note that
it contains several DL backends (e.g., WebGL and Wasm) specific to
JavaScript, compared to native DL frameworks (e.g., TensorFlow).

On the other hand, we can observe the faults from the develop-
ment lifecycle of JavaScript-based DL systems. As shown in Figure 2,
the lifecycle usually includes 6 stages [14, 19, 49, 54]. Specifically,
Environment Integration refers to integrating DL framework (i.e.,
TensorFlow.js) into the applications. Data Processing mainly focuses
on preprocessing the input and post-processing the model inference
results. Model Training aims to build and train the model. Model
Conversion converts models taken from other platforms into the
target format. Model Loading loads the models through relevant
APIs. Model Inference performs the prediction.

Specifically, we collected 72 relevant GitHub repositories in-
cluding 1 official TensorFlow.js, 13 3rd-party DL libraries, and 58
JavaScript-based DL applications that cover the 3-level architec-
ture shown in Figure 1. We collected 700 faults in total from these
repositories. Based on these 700 faults, we perform a comprehensive
analysis to investigate their symptoms, root causes, and fix patterns.
We also highlight the unique characteristics of JavaScript-based DL
systems compared to the bugs of native applications.

From these 700 faults, we summarized 26 symptoms, 17 root
causes, and 16 fix patterns. Furthermore, we study the distribution

Environment
Integration

Data
Processing

Model
Training

Model
Conversion

Model
Loading

Model
Inference

Figure 2: The typical developing stage of JavaScript-based DL system

of symptoms on the 6 stages of the developing lifecycle; the distri-
bution of root causes on the 3-level architecture, and 4 components
of TensorFlow.js. The classification results (i.e., symptoms, root
causes, and fix patterns) and the distribution results can help de-
velopers and researchers better understand the various faults and
their characteristics, providing insights for developing different
testing, debugging, and repairing techniques on JavaScript-based
DL systems.

In summary, we make the following main contributions:

• To the best of our knowledge, this is the first empirical study to-
wards understanding the characteristics of the faults in JavaScript-
based DL systems. We constructed the taxonomies for fault symp-
toms, root causes, and fix patterns respectively, and further dis-
cussed the different characteristic of faults between the native
DL systems and the JavaScript-based DL systems.

• We studied the fault distributions of symptoms and root causes on
the 6 stages of the lifecycle of DL system, the 3-level architecture
in the DL system, and the 4 components of TensorFlow.js.

• Weprovided a series of findings that benefitmultiple stakeholders
such as application developers, 3rd-party DL library developers,
framework developers, and researchers in JavaScript-based DL
ecosystems.

• We collected a dataset of real faults from a wide spectrum of
sources, including the official TensorFlow.js repository, the 3rd-
party DL libraries based on TensorFlow.js, and the high-level
applications, which can be a valuable benchmark for further
analyzing and testing the JavaScript-based DL ecosystems. We
have made the fault dataset publicly available to facilitate the
new research field. More details can be found on our website [4].

2 EMPIRICAL STUDY METHODOLOGY
2.1 Study Design
To characterize issues in JavaScript-based DL systems, we first col-
lect and analyze relevant repositories from GitHub. As JavaScript-
based DL systems can be built on top of various JavaScript-based
DL frameworks, in this work, we mainly focus on the DL sys-
tems developed with TensorFlow.js [30], which is the most popular
JavaScript-based DL framework. The overview of the methodology
is illustrated in Figure 3. We first collect popular Github reposito-
ries through keyword search, including the official TensorFlow.js
repository, the 3rd-party DL library repositories that wrap Tensor-
Flow.js, and the repositories of DL-based web applications based
on TensorFlow.js. For each repository, we crawl issues that may
be related to fixing/discussing relevant problems and construct the
candidate dataset for further analysis.

With the labeled issues, we study 4 research questions (i.e., the
symptoms, root causes, fix patterns, and the differences from na-
tive DL systems). For the analysis of the symptoms in RQ1, we
first summarize the taxonomy of fault symptoms and then ana-
lyze the distribution of symptoms on the 6 stages involved in the
development of JavaScript-based DL systems. The findings from

Towards Understanding the Faults of JavaScript-Based Deep Learning Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

Issue Collection

TensorFlow.js Keywords

Manual

Filter

Collected
Issues

 DL
Keywords

Labeled
Issues

Refined
Issues

Web Applications

3rd-party DL Libraries

TensorFlow.js

Crawl

G
ith

ub
Re

po
si

to
rie

s

Crawl

Analysis

Issue Analysis

 RQ1: Symptoms

Symptom Classification
Distribution on 6 stages (the lifecycle of DL system)

RQ2: Root Causes

RQ3: Fix Patterns

Root cause classification
Distribution on 3 levels in DL system
Distribution on 4 components in TensorFlow.js

Fix Pattern Summary

RQ4: Differences from Native DL Systems
Differences based on symptom
Differences based on root cause

Figure 3: Overview of our methodology

RQ1 can provide insights for understanding and detecting bugs for
JavaScript-based DL systems. The root cause analysis in RQ2 aims
to characterize the fundamental reasons for these faults. We first
summarize the different types of root causes, and further analyze
the distribution of these root causes on the 3-level architecture and
the components of TensorFlow.js, respectively. We summarize the
fix pattern in RQ3 aiming to characterize the solutions to fix these
faults. Finally, in RQ4, we analyze the different features of the fault
symptoms and fault root causes between the native DL systems
studied in the previous work and JavaScript-based DL systems.

2.2 Data Collection
Following existing work [14, 17, 46, 52, 54], we first use the GitHub
search API [23] to collect repositories that are related to JavaScript-
based DL systems, including the DL framework TensorFlow.js [30],
3rd-party DL libraries, andweb applications using DL. In HTML and
JavaScript code, TensorFlow.js is usually imported using the script
tag1 and the statement import * as tf from @tensorflow/tfjs
respectively. Therefore, we use “tfjs” and “TensorFlow.js” as the
keywords to search the repositories. For each repository, we also
collect the attributes such as links, number of stars [21], number
of forks [22], number of issues, and language type. In total, we
collected 924 candidate repositories. We filter out non-JavaScript-
based and unpopular repositories based on the following criteria:
1) the language type is not HTML, JavaScript or TypeScript [68]; 2)
there are no issues; and 3) the total number of stars and forks is less
than 10. In addition, we manually check the remaining repositories
to exclude irrelevant repositories that are not real DL systems, e.g.,
some tutorials, books, or repositories that contain the keyword but
do not actually use the TensorFlow.js. In the end, 72 repositories are
selected, including 1 official TensorFlow.js framework, 13 3rd-party
DL libraries, and 58 web applications. The details of the repositories
can be found on our website [4].

Based on the repositories, we then collect issues before Dec. 2021
for the following study because these issues contain more detailed
information such as original reports, discussions between users
and developers, and the fix strategy. Table 1 shows the number of
issues collected under each type of repository, where AF and MF
stand for Automatic Filtering and Manual Filtering, respectively. A
total of 3,859 issues are crawled initially, of which 2,374 are from
the official TensorFlow.js repository, 1,194 are from 13 3rd-party
DL libraries, and 291 are from 58 web applications. We exclude the
issues with the corresponding label (e.g., stat:awaiting response) or
without answers. Note that, considering that manually analyzing
bugs is time-consuming, we cannot analyze all the historical issues
1<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/dist/tf.min.js"> </script>

Table 1: TensorFlow.js-related issues on GitHub
Repository Type #Repositories #Issues Crawled After AF After MF
Official TensorFlow.js 1 2,374 463 359
3rd-Party DL Library 13 1,194 724 291
Web Applications 58 291 106 34
Total 72 3,859 1,293 684

of TensorFlow.js. Therefore, to balance scale and cost, we filter out
the issues related to deprecated versions of TensorFlow.js (before
2020-01-01).

For issues from 3rd-party DL libraries and web applications, we
adopt the similar filtering strategies used in previous work [52] to
discard the DL irrelevant issues. Specifically, in [52], a vocabulary of
relevant words (e.g., “epoch”) related to native DL frameworks (e.g.,
TensorFlow) are defined, and all issues without these words are
excluded. Considering the difference between TensorFlow.js and na-
tive DL frameworks, we update the vocabulary with TensorFlow.js-
specific keywords (e.g., dispose, WebGL). The vocabulary finally
contains 147 relevant words. As a result, 1,293 refined issues are
selected as shown in column After AF of Table 1. Furthermore, dur-
ing the manual labeling process (see Section 2.3), we discard issues
with unclear descriptions and false positives. For example, some
issues contain the keywords but are not errors. We finally obtain
684 issues, of which 359, 291, and 34 are from the TensorFlow.js,
3rd-party DL libraries, and web applications, respectively.

2.3 Manual Labeling
To answer the research questions, wemanually label the faults in the
684 issues from 6 aspects: (1) symptoms, which show what the fault
looks like, (2) development stages, which show at which stage the
error happens, (3) root causes, which explain why the faults occur, (4)
3-level architecture, showing at which level of the DL system a root
cause comes from, (5) components of TensorFlow.js, indicating which
component the root cause of a framework-related failure comes
from and (6) fix patterns, which describes how a fault is resolved.
Note that we need to construct the labels for the symptoms, root
causes and the fix patterns in our study. The labels about development
stages, 3-level architecture and components of TensorFlow.js are fixed
(see details in Figure 1), which are used to perform the distribution
analysis of the symptoms and the root causes. The classification
and the distribution analysis can help researchers and developers
better understand, detect and fix different kinds of faults.

Regarding the labeling, we first randomly sample 50% of issues
for pilot labeling. The first two authors label each fault of the issue
following an open coding procedure [74]. Specifically, they care-
fully read each issue’s title, descriptions and inter-developer dis-
cussions to understand the context, and construct the taxonomies
for symptoms, root causes and fix patterns by grouping similar

ASE ’22, October 10–14, 2022, Rochester, MI, USA Lili Quan and Qianyu Guo, et al.

faults together into categories. The taxonomies are adjusted con-
tinuously in the construction process. During the labeling process,
any disagreement is resolved by an arbitrator, who has more than
five years of experience in DL-relevant research. All labels and
taxonomies are finally discussed and finalized by all participants.

Second, the first two authors independently label the faults in
the remaining issues based on the taxonomies generated in the
pilot labeling. The issues that cannot be classified into the current
taxonomies are labeled with a new category. The labeling process
involves five rounds, and 20% of the remaining issues are labeled in
each round. Following existing work [14, 46], we adopt the Cohen’s
Kappa coefficient [18] to measure the inter-rater agreement of the
independent labeling. After the first round, the Cohen’s Kappa co-
efficient is just about 39% and then the two authors discuss all these
inconsistent results with the arbitrator. After the second round, the
Cohen’s Kappa coefficient reached 70%. Through further discussion
with the arbitrator on inconsistencies, the Cohen’s Kappa coeffi-
cients are over 90% after all the subsequent rounds. After manual
labeling, we identify 700 faults from 684 issues collected, of which
16 issues contain 2 faults.

3 SYMPTOMS (RQ1)
3.1 Symptom Classification Results
Figure 4 shows the hierarchical taxonomy of fault symptoms in
JavaScript-based DL systems. It is grouped into 5 high-level cate-
gories (i.e., Crash, Build & Initialization Failure, Poor Performance,
Incorrect Functionality, and Document Error), 15 inner categories,
and 15 leaf categories specific to Reference Error, Data&Model Error,
and Poor Performance. Note that the blue and pink rectangles indi-
cate symptoms specific to JavaScript-based and native DL systems
respectively, which will be further detailed in Section 6.1.
3.1.1 Crash (A). This category indicates the functionality of DL
systems is terminated unexpectedly with error messages like “un-
defined” or “uncaught Error”, accounting for the largest proportion
(45.43%) of faults in this study, including 318/700 faults and 5 sub-
categories. Note that non-functional terminations like performance
issues (e.g., out of memory) are not included in this category.

Among them, Fetch Failure (A.3) and Browser & Device Error
(A.4) mainly appear in the browser-based DL tasks, accounting for
26.42% of all crashes in this study. Browser & Device Error refers to
the crashes showing messages that browsers or devices are prob-
lematic. For example, WebGL (i.e., a JavaScript API for rendering
high-performance graphics on browsers, which can be used to ac-
celerate DL tasks) is not supported on a Macbook Pro 2018 [31].
JavaScript-based DL systems need to request model files or data
via the web API (i.e., Fetch [69]). Fetch Failure occurs during this
process, which refers to crashes with error messages showing the
fetch failure, i.e., it cannot directly access the local file system due
to the same-origin policy [70] that browsers follow. These 2 subcat-
egories jointly reveal that JavaScript-based DL systems are affected
by the limitations of browsers and devices.

Reference Error is the most common crash type with 154 faults
(see A.1 in Figure 4), referring to that certain objects (i.e., function,
variable, and training argument) are not implemented, defined, or
found. Specifically, the function reference errors include DL-related
function exceptions (i.e., A.1.1) and traditional function exceptions

(i.e., A.1.2). Variable reference errors refer to disposed tensors and
undefined variable properties/function return values are accessed
by program (i.e., A.1.3 and A.1.4). The remaining 24 faults are Train-
ing Argument Exception (A.1.5). Among them, A.1.1 (DL Operator
Exception) is the most common, indicating the implementations
of current JavaScript-based DL systems are still in fragile status,
which can easily bring errors when using a lot of DL functions.

The Data & Model Error (A.2) refers to the crashes that data or
model is reported to be problematic. Specifically, data errors rep-
resent the incorrect data types, shapes, and values, involving both
DL-related tensors (see A.2.1 in Figure 4) and JavaScript variables
(see A.2.2 in Figure 4). For example, the invalid data shape reports
“tensor should have 131072 values but has 14636” [77], and the invalid
data type reports “expected input to be of type HTMLImageEle-
ment” [58]. The model errors usually show failure occurs on model
usage or structure construction with messages like “model needs
to be complied before used”. The remaining 14 crashes with low
frequency (occurring only once or twice) are thus categorized in
Others.
Finding: Crash is the most common symptom, accounting for
45.43% of all faults. In particular, Fetch Failure and Browser &
Device Error mainly appear when performing DL tasks on the
browsers. Meanwhile, the 154 Reference Error indicates that the
JavaScript-based DL systems are still in fragile status.

3.1.2 Build & Initialization Failure (C). At the start of devel-
oping JavaScript-based DL applications, developers need to build
and initialize the necessary environments. 141/700 (20.14%) faults
occurred in this process, which consists of 3 typical symptoms.
Specifically, 63 faults belong to the building failure when develop-
ers compile TensorFlow.js from source code and further compile the
DL applications (i.e., C.1 in Figure 4). Alternatively, developers can
install compiled TensorFlow.js via NPM (i.e., the package manager
for JavaScript), during which 27 faults were found (C.2 in Figure 4).

Apart from the explicit building errors mentioned above, there
may still be exceptions even after the application has been success-
fully compiled. Consider the Multi-backend Initialization Failure
(C.3), 51 faults show that JavaScript-based DL systems fail to ini-
tialize certain DL backends (e.g., Wasm) even though they have
already installed TensorFlow.js successfully [32]. The main reasons
include: the device/browser used is incompatible with the backend,
and some errors in the implementation of TensorFlow.js. More than
20% of the faults occurring during the building or initialization
process indicate the complexity of the JavaScript-based DL system.

Finding: 20.14% of all faults are introduced when building and
initializing the necessary environments for JavaScript-based DL
systems, which is the second most common symptom.

3.1.3 Poor Performance (B). Poor Performance is another typical
symptom for JavaScript-based DL systems, which slow down the
execution processes, consume excessive resources, and bring bad
user experiences. 117/700 faults belong to this category, covering
16.71% of all faults. It is organized into 3 inner categories (i.e., Time,
Memory, and Others) and 7 leaf categories, as shown in Figure 4.

Time (B.1). This category covers the performance faults ex-
hibiting high time cost, which accounts for the largest portion of
Poor Performance, i.e., 57.26%. Particularly, 38.46% of performance

Towards Understanding the Faults of JavaScript-Based Deep Learning Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

[C.3] Multi-backend
Initialization Failure

[B.3.2]
Unstable

[B.3.1]
Regression

Symptoms(700)

Reference Error Data&Model
Error

Others

npm Package
Installation Failure

Inconsistency between
Backends/Platforms/Devices

Browser&
Device Error

TF.js/JS Application
Compile Failure

Multi-backend
Initialization Failure

DL Operator
Exception

154

28

66 56

27 38 63 9 51 36

14

Poor
Accuracy

28 Inf/None/Null
Results

Fetch
Failure

Others

Build&Initialization
Failure(141)

Crash(318) Poor
Performance(117)

Document
Error(13)

Incorrect
Functionality(111)

Function
Inaccessible

Attribute/Return
Value Undefined

Training Argument
Exception

Tensor
Disposed

Tensor Shape/
Type/Value Error

Model Usage/
 Design Error

JS Variable Shape/
Type/Value Error

Slow
Execution

Unstable

Regression

Time Memory Others

Memory
Leak

Out of
Memory

Abnormal GPU
Memory/Utilization

Browser
Hangs

56 40

31 24

3 31

9

26

61 34 22

45

16

25 6

3

18

4

specific to native DL systems
specific to JS DL systems
similar to traditional software

Symptoms(700)

[A.1] Reference
Error

[A.2] Data&
Model Error

[A.5] Others

[C.2]npm Package
Installation Failure

[D.1]Inconsistency between
Backends/Platforms/Devices

[A.4]
Browser&

Device Error

[C.1]TF.js/JS Application
Compile Failure

[A.1.1] DL
Operator
Exception

154

28

66 56

27 38 63 9 51 36

14

[D.2]Poor
Accuracy

28 [D.3]Inf/None
/Null Results

[A.3] Fetch
Failure

[D.4]
Others

[C] Build&Initialization
Failure(141)

[A] Crash(318) [B] Poor
Performance(117)

[E] Document
Error(13)

[D] Incorrect
Functionality(111)

[A.1.2]
Function

Inaccessible

[A.1.4] Attribute/Return
Value Undefined

[A.1.5] Training
Argument Exception

[A.1.3]
Tensor

Disposed

[A.2.1] Tensor
Shape/Type/
Value Error

[A.2.3] Model Usage/
 Design Error

[A.2.2] JS Variable
Shape/ Type
 /Value Error

[B.1.1]Slow
Execution

[B.1]Time [B.2] Memory [B.3]Others

[B.2.1]
Memory Leak

[B.2.2]Out
of Memory

[B.2.3]Abnormal GPU
Memory/Utilization

[B.1.2]
Browser Hangs

56 40

31 24

3 31

9

26

61 34 22

45

16

25 6

3

18

4

specific to native DL systems
specific to JS DL systems
similar to traditional software

Figure 4: Symptom taxonomy of faults in JavaScript-based DL systems

faults show Slow Execution Time when performing DL tasks, in-
cluding data processing, model building, training, and prediction.
The systems can still work but are extremely slow. 13.68% of the
performance faults result in a more severe symptom (i.e., Browser
Hangs) that JavaScript-based DL systems cease to respond to inputs.
For example, the desktop browsers hang and cannot respond over
a long period of time [59].

Memory (B.2). This category covers 29.06% of the performance
faults which consume RAM/GPU memory abnormally. It contains
3 subcategories: the Memory Leak (B.2.1), Out of Memory (B.2.2),
and Abnormal GPU Memory/Utilization (B.2.3). Specifically, B.2.2
is the most severe symptom and can cause the JavaScript-based
DL systems to terminate unexpectedly. Moreover, B.2.1 is the most
common symptom in this category, which can lead to out ofmemory
in severe cases. The remaining 3 memory faults show unexpectedly
high or low GPU memory usage, i.e., B.2.3.

Others (B.3). We also summarize two special types of perfor-
mance faults, i.e., the Regression and Unstable, covering 18.80% of
all performance faults in this study. Specifically, Regression refers
to the faults occurring after the TensorFlow.js upgradation. For
example, the fragment shader compilation fails after TenorFlow.js
upgrading from version 3.5.0 to 3.6.0 [79]. Unstable means the in-
ference results of JavaScript-based DL systems are unstable. For
example, when the portrait in front of the camera remains still, the
face recognition results are constantly changing [60].

Poor Performance accounts for a considerable proportion of all
faults in this study, and it can directly affect the user experience.
There are two main reasons for the poor performance: 1) Web ap-
plications inherently suffer from low performance due to the use of
DOM [83] tree in the browser. 2) The explicit memory management
can easily introduce memory performance issues, e.g., manually
releasing memory. It is especially required on the WebGL backend,
because the browser does not automatically recycle WebGLTex-
tures, a variable where tensor data is ultimately stored.

Finding: As a kind of non-functional fault, Poor Performance
covers 16.71% of all faults in this study. It has various symptoms,
e.g., more than one-third of the performance faults slow down
JavaScript-based DL systems, and nearly 30% of the performance
faults consume extremely high memory.

3.1.4 Incorrect Functionality (D). Wefind another kind of faults
that can run normally without crashes/failures, but the final results
are incorrect. We refer to these faults as the Incorrect Functionality,

covering 111/700 (15.86%) faults in this study. Specifically, 38 faults
show that JavaScript-based DL systems produce different results
under multiple DL backends, platforms, or devices (D.1). Models
may give wrong inference results under some data in 28 faults
(known as Poor Accuracy (D.2)) and even non-numerical outputs in 9
faults, such as the infinity and Null/None results (D.3). Besides, there
are other discrete cases (36 faults) that JavaScript-based DL systems
provide incorrect functionality. For example, TensorFlow.js can not
properly switch the WebGL backend to the CPU backend [78].

Notably, we clarify the incorrect functionality involves two lev-
els. 1) The DL system level. That is, JavaScript-based DL systems
give an incorrect inference result. For example [24], when there
is a hand/phone in the camera, the blazeface infers that there is a
face, indicating the inference of the DL system is not robust. 2) The
DL operator level. Namely, the DL operators in TensorFlow.js give
wrong calculation results without crashing. For example [33], with
an input NaN, the operator tf.isNaN outputs FALSE, indicating the
implementation of this operator is incorrect. We emphasize this is
a severe symptom that should arouse more attention from Tensor-
Flow.js vendors. Due to the statistical characteristics of DL models
in decision-making, the inference outputs show more uncertainty
and uninterpretability than traditional software, which require
carefully-designed oracles to capture the unexpected results.
Finding: Incorrect Functionality accounts for 15.86% of all faults
in this study. This symptom category appears not only in the
DL system but also in the specific operator. Moreover, we need
to design test oracles for capturing these faults.

3.1.5 Document Error (E). Document Error refers to the faults
related to TensorFlow.js official documents/tutorials, including in-
valid links, incorrect instructions, and missing tutorials. Although
the 13 documental faults only account for 1.86% in this study, they
will not only bring bad experiences to TensorFlow.js users but also
may cause implementation bugs or even security vulnerabilities for
the entire DL systems. Similar implementation problems caused by
poor-quality docs have been extensively studied in other fields [13].
As the foundation of DL development in JavaScript ecosystems, the
rigorousness and correctness of the TensorFlow.js guidance docs
should also be seriously paid attention to.
Finding: Although the Document Error only accounts for a
small proportion (i.e., 1.86%), it will bring bad experiences to
the TensorFlow.js users.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Lili Quan and Qianyu Guo, et al.

Table 1

Build &
Initialization
Failure Crash

Poor
Performance

Incorrect
Functionality

Document
Error

Model
Inference 0 164 91 86 0
Environment
Integration 140 5 0 0 13
Model Loading 0 80 7 1 0
Data
Processing 0 36 15 19 0
Model Training 0 19 4 4 0
Model
Conversion 1 14 0 1 0

Model Inference

Environment Integration

Model Loading

Data Processing

Model Training

Model Conversion

0 50 100 150 200 250 300 350

13

1

4

19

1

86

4

15

7

91

14

19

36

80

5

164

1

140

Build & Initialization Failure Crash Poor Performance
Incorrect Functionality Document Error

Model Inference

Environment Integration

Model Loading

Data Processing

Model Training

Model Conversion

0 100 200 300 400

Build & Initialization Failure Crash Poor Performance
Incorrect Functionality Document Error

1

Figure 5: Symptom distribution in each stage

3.2 Symptom Distribution
We further investigate the symptom distributions in the 6 stages
(See Figure 2) to understand how the faults differ across different
stages. Figure 5 shows the distribution in each stage where faults
are exposed. As we can see, the symptoms at different stages are
different. Particularly, Crash and Poor Performance are the common
symptoms in all stages (except Environment Integration), especially
the Model Inference stage. Build & Initialization Failure mainly
appear in Environment Integration stage.

In terms of stages, all faults are scattered throughout the life
cycle of JavaScript-based DL system, including model development
(e.g., model training) and model deployment. Model Inference and
Environment Integration are the most error-prone stages, account-
ing for 71.28% of all faults. By contrast, Model Conversion is the
stage with the least errors. This fault distribution is quite differ-
ent from that on mobile DL applications [17], e.g., most faults (i.e.,
48.4%) in mobile DL applications occur during the Model Conver-
sion stage. This is caused by the differences between JavaScript DL
applications and mobile DL applications. For example, the models
in mobile DL applications are usually pretrained on servers and
then converted for mobile usage, while models in JavaScript-based
DL applications can be directly trained on browsers or servers with
Node.js. Besides, the complex and diverse runtime environment
(e.g., different backends) in TensorFlow.js makes that more faults
belong to Environment Integration, which is also different from
native DL frameworks.
Finding: Faults exposed at different stages present different
symptoms. Crash and Poor Performance are the top two symp-
toms that go through the entire life cycle of JavaScript-based
DL systems. Model Inference and Environment Integration are
the most error-prone stages, covering 71.28% of all faults, due
to the complexity of the architecture of the JavaScript-based DL
system (multi-level and multi-component).

4 ROOT CAUSES (RQ2)
4.1 Root Cause Classification Results
The root cause taxonomies of the studied faults are shown in Fig-
ure 6, which is organized into 5 high-level categories (i.e., Incor-
rect Programming, Execution Environment Error, Configuration &
Dependency Error, Data/Model Error and Unknown) and 17 inner
categories. The number of faults assigned to each category is in
the top right corner. Note that, there are 46 (6.57%) faults that are
difficult to analyze their root causes, and are therefore classified as
Unknown. The blue and pink rectangles indicate root causes specific
to JavaScript-based DL systems and native DL systems respectively,
which will be further detailed in Section 6.2.

4.1.1 Incorrect Programming (A). This category covers faults
caused by program code, which is the most common category and
accounts for 357 (51.00%) of the faults. It contains 7 subcategories
i.e., Unimplemented Operator, Inconsistent Modules in TF.js, Incorrect
Code Logic, Incompatibility between 3rd-party DL Library and TF.js,
API Misuse, Import Error, and Improper Exception Handling.

Incorrect Code Logic causes the most faults, accounting for 23.29%
of all faults in this study, which can be divided into three subcat-
egories based on the code functionality. ① Incorrect DL-specific
algorithms due to incorrect implementation of DL-specific func-
tions in TensorFlow.js (e.g., basic DL operators [34]), 3rd-party DL
libraries (e.g., face recognition algorithm [61]), and incorrect code
logic in web applications (e.g., [1]). The most Incorrect Code Logic
faults (119 faults) belong to this subcategory. ② Incorrect memory
management algorithm due to improper memory management,
accounting for 24 (3.43%) of all faults. It mainly appears when ex-
plicit memory management is used on the WebGL backend. For
example [35], there is a memory leak in operator tf.signal.stft,
because some intermediate tensors are not released in time. The
TensorFlow.js vendors explained it as “Complex components cannot
be released if there are multiple references on the components and
those references are disposed before the complex tensor is disposed.”
③ Poor environmental adaptability due to the incorrect/missing
condition checking (i.e., if-else blocks) required to handle different
environments (e.g., specific browsers). It accounts for 20 (2.86%) of
all faults. Such faults mainly occur in 3rd-party libraries and Ten-
sorFlow.js. For example [36], the application works well on Chrome
and Edge but fails on Opera. The TensorFlow.js vendors explained
that “In certain cases (e.g. in a webworker running in Opera), the
window is not defined, which will fail the isMobile function. This PR
adds a fallback check which uses navigator.userAgentData.mobile.”

46 faults are caused by Unimplemented Operator, i.e., the DL
operators used in DL systems are not yet supported or imple-
mented by TensorFlow.js. For example [37], the operation tf.mod
is not supported by the Wasm backend of TensorFlow.js. Besides,
there are many modules in TensorFlow.js (e.g., the tfjs-core and
tfjs-tflite), which cooperate with each other to complete vari-
ous DL tasks and adapt to various environments. Inconsistent im-
plementations between these modules lead to 21 faults in this study
(see A.2 in Figure 6). For example [38], tfjs-core does not support
tensor of type Int8Array provided by another module tfjs-tflite.

Apart from the faults caused by TensorFlow.js implementations,
43 faults are introduced by the flaws in 3rd-party DL libraries, i.e.,
A.5 in Figure 6. It refers to faults caused by the wrong Tensor-
Flow.js versions, as the 3rd-party DL library requires the specific
version of TensorFlow.js. For example [62], the 3rd-party DL library
face-api.js executes based on outdated versions of TensorFlow.js
(i.e., 2.x), resulting in an incompatibility error “t.toFloat not being
a function”.
Finding: Incorrect Programming is the most common root cause
category and covers 7 subcategories, accounting for 357 (51.00%)
of all faults. Among them, Unimplemented Operator, Inconsistent
Modules in TF.js, and Incorrect Code Logic are related to the im-
plementations of TensorFlow.js. The most common subcategory
is Incorrect Code Logic, especially the incorrect implementation
of DL-specific algorithms.

Towards Understanding the Faults of JavaScript-Based Deep Learning Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

Confused
Document

Root Causes(700)

Unimplemented
Operator

Inconsistent
Modules

Improper Exception
Handling

Dependency
Error

Device
Incompatibility

Data/Model
Inaccessibility

Incorrect Code
Logic Misconfiguration

Untimely
Update

Incompatibility between 3rd Party
DL Library and TF.js

46 163 21

43

57 55 61

41

28

14

14

13

11

6

Browser
Incompatibility

28 Cross-platform App
Framework Incompatibility

API
Misuse

 21 Import
Error

WebGL
Limits

Improper Model

Attribute
(design,parameter,size)

32

Unknown(46)

Configuration &
Dependency Error(116)

Execution
Environment Error(94)

Incorrect
Programming(357)

Data/Model
Error(87)

[B.4] Confused
Document

Root Causes (700)

[A.1]Unimplemented
Operator

[A.2] Inconsistent
Modules in TF.js

[A.7] Improper
Exception Handling

[B.2] Dependency
Error

[D.1] Device
Incompatibility

[C.1] Data/Model
Inaccessibility

[A.4] Incorrect
Code Logic

[B.1] Multi-environment
Misconfiguration

[B.3] Untimely
Update

[A.5] Incompatibility between
 3rd Party DL Library and TF.js

46 163 21

43

57 55 61

41

28

14

14

13

11

6

[D.2] Browser
Incompatibility

28 [D.3] Cross-platform App
Framework Incompatibility

[A.3] API
Misuse

[D.4]WebGL
Limits

[C.2] Improper Model/
Tensor Attribute

(design,parameter,size)

32

[E] Unknown(46)

[B] Configuration &
Dependency Error(116)

[D] Execution
Environment Error(94)

[A] Incorrect
Programming(357)

[C] Data/Model
Error(87)

specific to native DL systems
specific to JS DL systems
similar to traditional software

21 [A.6] Import

Error

Figure 6: Root cause taxonomy of faults in JavaScript-based DL systems

The remaining 3 root causes are common in traditional soft-
ware. Specifically, API Misuse refers to the faults due to the users’
misunderstanding of APIs, including missing or redundant calls
to an API, wrong API names, and invalid API input/parameters
(i.e., type/shape/value error). It contains 57 faults, accounting for
8.14% of all faults. Our further analysis finds 52.63% (30/57) of API
Misuse faults are due to invalid usage of inputs/parameters, indicat-
ing that in JavaScript-based DL systems, developers are confused
about the types and shapes of parameters/inputs supported by the
APIs, especially for data types that can only be used in specific
environments. Import Error refers to the faults (21 faults) caused by
the missing/incorrect import of TensorFlow.js, and the import of
multiple versions of TensorFlow.js at the same time. The remaining
6 faults are due to Improper Exception Handling, including missing
exceptions, suspicious exceptions, and confusing error messages.

Finding: For the root causes that are also common in tradi-
tional software, API Misuse accounts for a considerable amount,
especially the invalid API input/parameters.

4.1.2 Configuration&Dependency Error (B). 116/700 (16.57%)
faults are caused by the incorrect configuration and dependencies,
which is the second most common category. In particular, 28 Multi-
environment Misconfiguration faults are specific to JavaScript-based
DL systems. They are caused by incorrect bundler configurations
that are used to ensure the same implementation of a JavaScript-
based DL system can be deployed on heterogeneous environments
(e.g., browser and Node.js), regardless of the underlying hardware
types (i.e., PC, smartphones, and wearable devices) and the oper-
ating systems (e.g., Windows, iOS, and Android). For example, a
fault is caused by not marking “os” as the external attribute in the
bundler configuration for the browser target [39].

74 faults are caused by dependency-related problems, of which
61 faults suffer from the missing/redundant dependency, the depen-
dency versionmismatch, and dependencies with security vulnerabil-
ities [40] (see Dependency Error); the remaining 13 faults are caused
by the untimely updates of tensorflow.so [41] and npm packages
(see Untimely Update). These dependency faults are closely related
to the characteristics of TensorFlow.js, which relies on various li-
braries. For example, XNNPACK [44] is a highly optimized library
for floating-point neural network inference that can be used on
ARM, WebAssembly, and x86 platforms. Such complicated depen-
dencies will inevitably introduce fragility during the configuration
and runtime. The dependencies that are not updated in time or
the relevant properties are not given correctly may cause serious

problems in the entire system. Another 14 faults in this category are
due to Confused Document in TensorFlow.js. Although the number
is small, it brings bad experiences to users.

Finding: Configuration & Dependency Error is the second most
common root cause, covering 116 (16.57%) of all faults. Multi-
environment Misconfiguration and Dependency Error constitute
two notable root causes, which are closely determined by the
characteristics of TensorFlow.js (i.e., it depends on various li-
braries and can be used on multiple environments/platforms).

4.1.3 Data/Model Error (C). DL model and data introduce 87
(12.43%) faults. Particularly, 55/87 faults are caused by the Data/-
model Inaccessibility, due to 1) the browser limitations, i.e., local
data/model cannot be accessed because of the same-origin pol-
icy [70] that browsers follow; 2) the UI framework limitations,
i.e., model is not placed in specified folders (e.g., public/asset) as
required by the UI framework; 3) the incorrect model path or exten-
sion. If developers are unfamiliar with the features of browsers and
UI frameworks, it is easy to introduce the inaccessibility of models
or data.

The remaining 32 faults are caused by Improper Model/Tensor
Attribute, including the poor model design (e.g., incorrect inference
due to the poor quality of models provided by the 3rd-party DL
libraries [53]), improper model parameter (e.g., long inference time
due to the large input size [63]), and improper model size (e.g., ssd
mobilenetv1 model cannot run on Android because it requires a lot
of resources [64]). This shows that the quality of the pre-trained
models provided in the 3rd-party DL libraries needs to be improved,
and somemodels with large size cannot work well due to the limited
computing power of the web platform.

Finding: 63.22% of Data/Model faults are caused by the Data/-
Model Inaccessibility. Such faults are mainly related to the limi-
tations of browsers and UI frameworks.

4.1.4 Execution Environment Error (D). As stated before, Ten-
sorFlow.js is designed to execute on various environments, such
as different backends (e.g., WebGL and Wasm) for browsers, and
cross-platform applications [30]. In this study, 94/700 (13.43%) faults
are caused by imperfect support of TensorFlow.js for some hard-
ware/software environments, which can be further divided into 4
subcategories, i.e., the Device Incompatibility, Browser Incompati-
bility, Cross-platform App Framework Incompatibility, andWebGL
Limits.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Lili Quan and Qianyu Guo, et al.

Table 1

root cause TensorFlow.js
3rd-party
Library

Web
Application

Incorrect Code
Logic 85 43 35
Dependency
Error 52 9 0
API Misuse 0 0 57
Data/Model
Inaccessibility 5 2 48
Unimplemente
d Operator 46 0 0
TF.js
Incompatibility 0 43 0

0

45

90

135

180

In
co

rr
ec

t C
od

e
Lo

gi
c

D
ep

en
de

nc
y

Er
ro

r

AP
I M

is
us

e

D
at

a/
M

od
el

 In
ac

ce
ss

ib
ili

ty

U
ni

m
pl

em
en

te
d

O
pe

ra
to

r

TF
.js

 In
co

m
pa

tib
ili

ty

4857

35

432

9

43

4655285

TensorFlow.js 3rd-party Library Web Application

Incorrect Code Logic

Dependency Error

API Misuse

Data/Model Inaccessibility

Unimplemented Operator

TF.js Incompatibility

0 15 30 45 60 75 90 105 120 135 150 165

48
57

35

43

2

9
43

46
5

52
85

TensorFlow.js 3rd-party Library Web Application

1

Figure 7: The distributions of root causes on 3 levels of DL systems

Device Incompatibility is the major environmental root cause,
covering the largest number of faults (41/94 faults). Such issues
persist when TensorFlow.js executes on specific hardware (e.g.,
graphics card) and operating systems (e.g., Android). For exam-
ple [27], the DL system gives abnormal results on devices equipped
with Intel HD Graphics. Compared with native DL frameworks [14],
such faults are more prominent in JavaScript-based DL frameworks,
indicating the implementation of DL backends specific to JavaScript
usage needs to be improved in order to fit more diverse devices.

Browser Incompatibility (i.e., PC browser and mobile browser) is
another major cause, covering 28 faults. Such faults are reasonable
because the DL inference on browsers is executed in JavaScript
and relies on the browser engine for interpretation. There are also
14 faults caused by Cross-platform App Framework Incompatibility.
Specifically, TensorFlow.js can be integrated into mobile/desktop
applications via cross-platform application frameworks (e.g., React
Native). However, some of them are not compatible with the under-
lying libraries (e.g., expo-gl) on which TensorFlow.js depends. Apart
from the incompatibility factors mentioned above, the inherited
limitations ofWebGL (a set of JavaScript APIs which can be used for
accelerating DL tasks) can also bring faults in some browser-based
DL scenarios (14 faults). For example, the GUI is blocked due to the
management mechanism of GPU resources in WebGL [42].

Finding: Execution Environment is a common root cause that is
quite specific to JavaScript-based DL systems, due to the com-
plex software/hardware environments they execute on. Device
Incompatibility and Browser Incompatibility are top two envi-
ronmental causes, accounting for 73.40% of this category.

4.2 Root Cause Distribution
4.2.1 Distribution on the 3 levels of DL systems. We further
analyze the distribution of root causes to understand how these
faults present on the 3 levels of JavaScript-based DL systems (i.e.,
Web application, 3rd-party DL library, and TensorFlow.js). As shown
in Figure 7, the top 6 common root causes (425/700 faults, 60.71%) are
considered due to the space limit. Note that the TF.js Incompatibility
stands for A.5 in Figure 6.

In terms of root cause, Incorrect Code Logic is the most common
type, which distributes over all of the 3 levels. Such faults should
be a concern for all developers and researchers. The remaining root
causes are distributed over a specific level. For example, 85.25% of
Dependency Errors and all of the TF.js Incompatibility faults appear in
TensorFlow.js and 3rd-party library, respectively. In terms of system
levels, most faults are caused by TensorFlow.js. Different levels
present different fault distribution tendencies. Specifically, faults
on TensorFlow.js are closely related to low-level implementation,
e.g., Incorrect Code Logic and Unimplemented Operator, indicating
that TensorFlow.js is still at the early stages of development. The

API

Platform

Backend

D
evice

41

Nodejs 2Desktop 5

Mobile 24

Browser 28

Layer 28

Model 23

Operator 65

WebGL 68

Wasm 52

TF(CPU/GPU/TPU) 44

WebGPU 17
CPU 4

59

10
4

185

Figure 8: The distribution of faults across TensorFlow.js components

vendors need to enrich DL operators and check the libraries on
which TensorFlow.js depends in time. As a comparison, faults on
3rd-party libraries are mainly caused by TF.js Incompatibility, and
faults on web applications are more about the high-level usage of
TensorFlow.js, e.g., the API Misuse and Data/Model Inaccessibility. In
these cases, the 3rd-party library vendors need more effort to keep
compatible with TensorFlow.js, and web application developers
should carefully use DL-related APIs and handle model/data.

4.2.2 Distribution on the framework components. Tensor-
Flow.js contains 4 components (see Figure 1), i.e., API, Platform,
Backend, and Device. To evaluate the quality of them, we further an-
alyze the distribution of faults on each component, as shown in Fig-
ure 8. The inner layer represents the 4 components and correspond-
ing faults number. The outer layer represents the sub-component
corresponding to the component (the inner node of the same color)
and the number of errors caused by each sub-component.

As we can see, 389/700 (55.57%) faults are introduced by the 4
TensorFlow.js components. DL-backend-related faults cover the
most faults (i.e., 185/389 faults), of which the JavaScript-specific
backends (i.e., WebGL, Wasm, WebGPU, and Pure-JS CPU) account
for the majority of cases (141 faults), especially the WebGL (68/141)
and Wasm (52/141). A large scale of faults brought by DL backends
indicates that JavaScript-based DL systems are still at dawn for
the goal of conducting DL across multiple environments. In par-
ticular, JavaScipt-specific backend (e.g., WebGL) are more fragile
than the native backend. API component introduces the second
most faults (104/389 faults), which consists of 3 levels of APIs, i.e.,
the operator-level, layer-level, and model level. Among them, the
operator-level APIs bring the most faults (65 faults). Since existing
testing techniques [14, 48, 73, 82] suffer from low operator cover-
age, we emphasize this is a challenge for detecting API errors on
JavaScript-based DL systems. Regarding the Platform component,
it causes 59 faults, which mainly occur on browsers and mobile
applications. The remaining 41 faults are due to device components.

Finding: In terms of the 3 system levels, the root causes present
certain tendencies on different levels. Incorrect Code Logic is the
most common one that affects all of the 3 levels. In terms of
the components in TensorFlow.js, most faults are caused by the
DL backends, especially the JavaScript-specific backends (e.g.,
WebGL), which calls for new testing techniques and debugging
methods for detecting such errors.

Towards Understanding the Faults of JavaScript-Based Deep Learning Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 2: Fix patterns of the faults

Object Subject Fix Pattern #

Environment

Developer Changing version 99
Developer, Vendor Modifying dependency configuration 63

Developer Changing device/browser 39
Developer Changing backend 31
Developer Modifying the value of environment variable 19
Developer Fix import confusion in program 13

Model Developer Modifying model file path/extension 37
Developer Changing model 32

Data Developer Add data processing 27
Developer, Vendor Replace data shape/type 27

Program & API

Vendor Add unsupported operator 40
Developer, Vendor Replace API with another effective one 29

Developer Modify API parameter usage 25
Developer, Vendor Fix environment adaptability 20
Developer, Vendor Adjust API invocation sequence 19
Developer, Vendor Add API usage for memory management 19

Total - - 539

5 FIX PATTERNS (RQ3)
A fix pattern means that the subject fixes these faults by using them
to modify the object. Table 2 shows the 16 common fix patterns
with 539 faults, which involve 4 major objects (i.e., Environment,
Model, Data, and Program & API) and 2 subjects (i.e., application
developers and framework/3rd-party library vendors). Note that we
consider the subject to be the framework/3rd-party library vendors
if the fault is fixed via PR in the framework/third-party library
repository, otherwise it is the application developers.
Environment. Modifying the environment configuration is the
most common, which resolve 264 faults and is typically used by
developers. Specifically, changing versions of the TensorFlow.js, 3rd-
party DL libraries, and compiler/installer (e.g., Typescript, Node.js,
and NPM) can solve most faults (i.e., 99). 89 faults can be resolved
by changing the browser/device, backend, and values of environ-
ment variables. Besides, 13 import confusion in the program can be
fixed by adding/removing imports and changing import statements.
Note that the pattern of modifying the dependency configuration
includes adding dependencies, removing dependencies, replacing
mismatched dependencies, and modifying related configuration
options, which can be used by both developers and vendors.
Model. Developers fix 69 faults by modifying the models. Specif-
ically, modifying the model file path/extensions solves 37 faults,
which are mainly model inaccessibility faults. Another 32 faults
are fixed by model reconstruction, including retraining the model,
reconverting the model, and replace with another similar model.
Data. There are two patterns that act on the data, including adding
data processing and replacing data shape/types. Specifically, de-
velopers fix 27 faults by adding preprocessing of inputs and post-
processing of model predictions. Another 27 faults are fixed by
developers and vendors by replacing the shape/type of related data.
Program & API. 152 faults are resolved by modifying the related
programs and API usage. For this object, there are 6 fix patterns,
1 of which is typically used by the vendors (i.e., add unsupported
operator), 1 by the developer (i.e., modify API parameter usage),
and the remaining 4 can be used by both the developers and the
vendors. Specifically, vendors solve 40 faults (i.e., unimplemented
operators) by adding unsupported operators. Developers solve 25
API Misuse faults by modifying the usage of the API parameters.
The remaining 4 patterns resolve 87 faults that can be introduced
by any of TensorFlow.js, 3rd-party library, and web application.

Note that, the fix pattern applied to one object can also repair
faults caused by other objects. For example, for the pattern of chang-
ing versions in the environment, developers can also use it to re-
solve incorrect program logic errors in TensorFlow.js in addition
to faults caused by the environment, because vendors fix bugs in-
side TensorFlow.js and update the TensorFlow.js version frequently.
Additionally, faults caused by the same root cause can be fixed by
different patterns. For example, for an error caused by the Wasm
backend not supporting a certain operator, the developer can bypass
the faults by changing the backend into WebGL backend, however,
the vendor can add support for the operator to solve the faults.
Although both methods can solve the faults, adding support for the
operator is the most direct and effective method.

Finding: We summarize 16 common fix patterns based on 2
subjects and 4 objects. Modifying the environment is the most
common pattern, especially changing versions of the Tensor-
Flow.js, 3rd-party DL libraries, and compiler/installer. We find
that faults caused by the same root cause can be fixed by differ-
ent patterns in practice.

6 DIFFERENCES FROM NATIVE DL SYSTEMS
(RQ4)

In this section, we discuss the differences between the taxonomies
proposed in this study and that proposed by previous work on
native DL systems from 2 aspects: the symptom and the root cause.

6.1 Differences Based on Symptom
As highlighted by the pink rectangles in Figure 4, 5 symptoms
(e.g., DL Operator Exception) involving the characteristics of DL are
shared with the existing symptom taxonomies for native DL (e.g.,
TensorFlow and TensorFlow Lite) faults [14, 17, 46, 52]. Despite all
this, their symptoms on different DL frameworks are not exactly
the same. For example, we found some cases where a basic DL op-
erator/training argument is problematic in TensorFlow.js, but it is
supported in TensorFlow (see [43]). This shows that TensorFlow.js
needs to be aligned with the native framework in providing com-
plete implementations of DL operators and training parameters.

Moreover, 8 symptoms are closely related to the characteristics
of JavaScript-based DL systems, as shown by the blue rectangles
in Figure 4, covering 35% faults. In Particular, theMulti-backend Ini-
tialization Failure and Inconsistency between Backends/Platforms/De-
vice are determined by the characteristics of TensorFlow.js, which
provide several parallel DL backends (e.g., WebGL and Wasm) spe-
cific to the different JavaScript execution environment. Similarly,
The Fetch Failure and Browser&Device Error are determined by the
fact that JavaScript-based DL systems mainly run on heterogenous
browsers, including both PC browsers and mobile browsers. Such
new symptoms cover more than one-third of the faults in this study,
indicating that the quality of JavaScript-based DL systems deserves
a comprehensive investigation.

The remaining symptoms are similar to traditional software,
as shown by the white rectangles in Figure 4. The performance
faults account for a large proportion in this study. Considering the
low performance of JavaScript DOM manipulation and the explicit
memory management of the WebGL backend, JavaScript-based DL

ASE ’22, October 10–14, 2022, Rochester, MI, USA Lili Quan and Qianyu Guo, et al.

systems are more prone to performance issues, which should arouse
developers’ attention and be analyzed exclusively in the future.

6.2 Differences Based on Root Cause
JavaScript-based DL systems experience some common issues as
is for native DL systems, which have been extensively studied in
prior work [14, 57, 85]. As shown by the pink rectangles in Fig-
ure 6, these issues are primarily caused by incorrect code logic (163
faults), unimplemented operators (46 faults), improper model/ten-
sor attribute (32 faults), and inconsistent implementations between
different modules in TensorFlow.js (21 faults). Although the afore-
mentioned problems are expected, it is crucial to stress that a total
of 262 faults (over 37%) brought on by typical DL-specific problems
illustrate the incompleteness of JavaScript-based DL systems in
supporting core DL functionalities.

Besides, we summarized 220 faults (31.4% of all faults) whose
root causes are specific to JavaScript-based DL systems, covering 7
major subcategories. As shown by the blue rectangles in Figure 6,
126 faults are caused by the incompatibility problem. These com-
patibility issues can be summarized into two levels: 1) the 3rd-party
DL library level, i.e., the incompatibility between TensorFlow.js
and the 3rd-party DL libraries that wraps TensorFlow.js (43 faults);
2) the environment level, i.e., the incompatibility of TensorFlow.js
with various execution environments, including the devices (41
faults), browsers (28 faults), and cross-platform applications (14
faults). Notably, another 28 faults are caused by the unique multi-
environment characteristic of JavaScript-based DL systems. Com-
pared with other single-environment DL systems (e.g., mobile DL
apps), the JavaScript-based DL systems are designed to run in a
variety of environments that rely on different configurations (e.g.,
browsers and Nodejs). In addition, 55 faults are mainly caused by
the limitations of the browser and UI framework (e.g., Local data/-
models inaccessible due to the same-origin policy [70] in browsers),
and 11 faults are caused by WebGL limitations (e.g., GUI block due
to the WebGL management mechanism of GPU resources). Such
new root causes introduce more than 30% faults, suggesting the
differences between the JavaScript-based systems and others.

The remaining categories in Figure 6 are common causes in tradi-
tional software, as shown by the white rectangles. The dependency-
related error (61 faults) and API misuse (57 faults) are two leading
factors. Particularly, as for API Misuse, 52.6% API-misuse cases
are due to the invalid inputs/parameters in JavaScript-based DL
systems, which is quite different from traditional software [6, 7]
and even native DL framework [14], where the API missing/redun-
dancy, and incorrect API names are uppermost cases. Therefore,
for the JavaScript-based DL systems, some existing problems in
traditional software are still worth exploring in combination with
the characteristics of these systems.

Finding: 8 symptoms (35% of all faults) in our study are spe-
cific to the JavaScript-based DL systems, suggesting that the
quality of JavaScript-based DL systems deserves a comprehen-
sive investigation. 7 root causes (nearly one-third of all faults)
in our study are specific to the JavaScript-based DL systems.
Particularly, the incompatibility issues are prominent (18%) in
TensorFlow.js usage. More efforts are needed for TensorFlow.js
vendors to adapt to more environments.

7 DISCUSSION
7.1 Implications
7.1.1 For Application Developers. Data/Model Inaccessibility
and API Misuse are major fault causes for the JavaScript-based DL
applications, as shown in Section 4.2.1. Therefore, we conclude
some tips: 1) Avoid data/model inaccessibility. Since data and mod-
els are the foundation of DL applications, developers should first
ensure their accessibility. Depending on the causes of such issues,
we recommend that developers avoid such errors by ① putting the
model on the Internet and using TensorFlow.js to load the online
model via the URL to bypass the limitation that the browsers cannot
directly access local files; ② checking if the model is placed in the
folder required by the UI frameworks (e.g., Angular); ③ checking
if the model path and extension are correct. 2) Use API carefully.
Quite a few faults are caused by the confusion on the API parame-
ters/inputs in TensorFlow.js. Therefore, developers should use the
APIs carefully, such as understanding the usage of the API based
on the official documentation before programming.

7.1.2 For 3rd-party DL Library Developers. 1) Improve the
environmental adaptability. Section 4.1.1 reveals that faults caused
by poor environmental adaptability mainly appear in 3rd-party DL
libraries. Developers are expected to conduct cross-platform testing
before releasing a library, ensuring the library adapts to any plat-
form, especially the browsers and Node.js. 2) Enhance compatibility
with TensorFlow.js. Only a specific version of TensorFlow.js can
work with 3rd-party DL libraries, which brings great inconvenience
to users. Such issues should arouse the attention of developers.

7.1.3 For Framework Developers. 1) Enhanced testing of the
implementations of DL backends specific to JavaScript (e.g.,WebGL).
JavaScript-specific DL backends present more faults compared to
native DL backends (see Section 4.2.2). Such faults should be noted
and detected promptly. 2) Do more unit testing. Incorrect Code Logic
is the most common root cause (see Section 4.2.1). It causes various
fault symptoms and is difficult to locate, so developers should focus
on detecting such faults before releasing a new version to ensure
that the implementation logic of each module is correct. 3) Check
and update dependencies in time. Many faults in TensorFlow.js are
related to the libraries on which it depends, especially the libraries
with real vulnerabilities. To avoid these errors, we recommend that
developers check and update dependencies in time. 4) Expand DL
operators. Many operators have not been supported by Tensor-
Flow.js, developers should support as many operators as possible
to align with the mature native frameworks (e.g., TensorFlow).

7.1.4 For Researchers. 1) Call for testing techniques for per-
formance faults. In terms of symptoms, poor performance faults
are prominent in JavaScript-based DL systems and the reasons for
such faults are difficult to analyze. Therefore, testing and debugging
techniques for such faults are desired. 2) Focus on testing the frame-
work. For the 3 levels in the JavaScript-based DL system, framework
introduces the most faults. Particularly, JavaScript-specific DL back-
ends present more faults compared to native DL backends, but there
is currently no testing techniques for such errors. Thus, how to
design effective testing methods according to the characteristics of
JavaScript-based DL framework is a challenge for future research.

Towards Understanding the Faults of JavaScript-Based Deep Learning Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

7.2 Threats to validity
The external threat to validity lies in the dataset. First, the selection
of our study subjects (i.e., TensorFlow.js, 3rd-party DL libraries,
and web applications) may be biased. To mitigate this threat, we
choose the most popular and representative JavaScript-based DL
framework (i.e., TensorFlow.js) as a base. The selected 3rd-party DL
libraries and web applications are all built on TensorFlow.js. The
findings based on TensorFlow.js-related systems can be largely ap-
plied to other JavaScript-based DL frameworks (e.g., Paddle.js [28]
and WebDNN [29]) as most of them can run on DL backends (e.g.
WebGL) specific to JavaScript like TensorFlow.js. Second, we iden-
tify relevant GitHub repositories and issues related to TensorFlow.js
based on keyword matching. Some candidates may be ignored due
to the predefined keywords, which would introduce biased in the
data construction. To mitigate such a threat, we follow the pre-
vious work [52] to carefully select effective keywords to ensure
most of the relevant repositories and issues can be identified. The
internal threat to validity lies in our manual labeling process. To
minimize the subjectivity of researchers, two authors conducted the
labeling process independently, and another arbitrator with 3-year
DL development experience helps to reach an agreement through
discussions. Moreover, we leveraged Cohen’s Kappa coefficient to
measure the inter-rater agreement of independent labeling. The
high kappa value indicates a high agreement between researchers.

8 RELATEDWORK
A number of empirical studies have emerged recently on analyzing
the bugs relevant to DL/ML frameworks. Thung et al. [80] first tar-
getedML systems (i.e., ApacheMahout, Apache Lucene, andApache
OpenNLP) and analyzed 500 bug reports. They focused on the fre-
quencies, types, severity&impact, fixing effort&duration of these
bugs. Sun et al. [75] focused onML frameworks (i.e., Scikitlearn, Pad-
dle, and Caffe) andmanually analyzed 329 real bugs to study the bug
types and bug evolution. Several studies focused on the bugs in DL
frameworks and applications, which generally collected real faults
from Stack Overflow and GitHub, and applied taxonomic methods
for fault summarizing. Specifically, [50, 52, 54, 55, 66, 87] studied
the bugs symptoms, root causes, and effects of DL applications
under PC platform, which rely on popular native DL frameworks
(e.g., TensorFlow, Keras, and PyTorch). [20, 56, 57] analyzed the
implementation bugs of TensorFlow itself in terms of the symptom,
root cause, and fix pattern. Chen et al. [14] extended to four DL
frameworks (i.e. TensorFlow, PyTorch, MXNet, and DL4J), and ana-
lyzed the current testing status of DL frameworks. Moreover, there
are also some empirical studies focusing on specific bug types. For
example, Gu et al. [46] studied the training issues of developers in
DL software. Cao et al. [9] characterized the performance bugs in
DL systems. Tambon et al. [76] studied the silent bugs existed in
DL frameworks. Deploying DL techniques onto mobile platforms
has currently become another trend. Chen et al. [16] built a taxon-
omy of specific challenges that developers encounter during the
deployment of DL software. They further studied the deployment
faults of mobile DL applications in terms of the symptoms and fix
patterns [17].

The aforementioned studies target the DL systems on the PC or
mobile platforms, which are built on top of native DL frameworks
(e.g., TensorFlow and TensorFlow Lite). Different from them, firstly,

we target the JavaScript-based DL systems built on TensorFlow.js,
which is totally different from native frameworks in terms of the
implementations of DL backends and the execution environments.
Secondly, previous studies analyzed the faults on a specific level
(i.e., framework-level or application-level), while this study ana-
lyzes the faults over a 3-level architecture of JavaScript-based DL
systems, including the web applications, 3rd-party DL libraries, and
TensorFlow.js. Thirdly, different from the existing studies [16, 17]
that are related to the deployment faults of DL models on mobile
devices, we mainly focus on the faults related to both the devel-
opment (e.g., model training) and deployment of DL models on
multi-environments (i.e., browsers, Node.js, and cross-platform
apps). Apart from the symptom and fix pattern analyzed in [17],
we also classify the root cause in detail and analyze the fault distri-
bution on the 3 levels of JavaScript-based DL system and 4 major
TensorFlow.js components. We further detail the different features
of fault symptoms and root causes between other DL systems [17]
and JavaScript-based DL system in Section 3.

Moreover, various JavaScript-based DL frameworks have been
released to enable DL tasks on browsers. To understand how well
these frameworks behave in practice, Ma et al. [67] measured the
performance gap of 7 JavaScript-based frameworks when running
different DL tasks on Chrome. Guo et al. [47] aimed at the DL soft-
ware deployment across different platforms, and investigated the
performance gap when the trained models are migrated from the
PC platform to mobile devices and Web browsers. Instead of focus-
ing on the performance problems, we focus on the characteristics
of faults in TensorFlow.js, 3rd-party DL libraries, and the web DL
applications built on top of TensorFlow.js.

9 CONCLUSION
In this work, we conducted the first comprehensive study on faults
in JavaScript-based DL systems by manually inspecting 700 related
faults from 3 levels of GitHub repositories (i.e., TensorFlow.js, 3rd-
party DL libraries wrapping TensorFlow.js, and web DL applications
based on TensorFlow.js). We constructed taxonomies for fault symp-
toms, root causes, and fix patterns, respectively. Besides, we also
analyzed the distribution of symptoms from the 6 stages involved
in the lifecycle of JavaScript-based DL systems and analyzed the dis-
tribution of root causes based on the 3 levels in JavaScript-based DL
systems and the 4 components of the TensorFlow.js. Additionally,
we highlighted the different fault features between JavaScript-based
DL systems and native DL systems. The symptoms, root causes,
and fix patterns discovered by our study can be adopted to facilitate
fault fix in JavaScript-based DL systems. Finally, we discussed the
implications for different stakeholders based on our findings.

ACKNOWLEDGMENTS
This work was partly supported by the National Natural Science
Foundation of China (No. 62102284, 61872262), the Ministry of
Education, Singapore under its Academic Research Fund Tier 1 (21-
SIS-SMU-033), the National Research Foundation, Singapore under
its the AI Singapore Programme (AISG2-RP-2020-019), the National
Research Foundation, Prime Ministers Office, Singapore under its
National Cybersecurity R&D Program (Award No. NRF2018NCR-
NCR005-0001), NRF Investigatorship NRF-NRFI06-2020-0001.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Lili Quan and Qianyu Guo, et al.

REFERENCES
[1] [n.d.]. .
[2] 2022. Keras: The Python Deep Learning Library. https://keras.io
[3] 2022. ML5.js. https://learn.ml5js.org
[4] 2022. Website of this study. https://sites.google.com/view/dl-fault-study4js
[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale
Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI. USENIX Association, 265–283.

[6] Sven Amann, Sarah Nadi, Hoan A Nguyen, Tien N Nguyen, and Mira Mezini.
2016. MUBench: A benchmark for API-misuse detectors. In Proceedings of the
13th international conference on mining software repositories. 464–467.

[7] Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N Nguyen, and Mira Mezini.
2018. A systematic evaluation of static api-misuse detectors. IEEE Transactions
on Software Engineering 45, 12 (2018), 1170–1188.

[8] Wieland Brendel, Jonas Rauber, and Matthias Bethge. 2018. Decision-Based Ad-
versarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models.
In Proceedings of the 6th International Conference on Learning Representations,
ICLR. OpenReview.net.

[9] Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, and Xin Peng. 2021.
Characterizing Performance Bugs in Deep Learning Systems. arXiv preprint
arXiv:2112.01771 (2021).

[10] Chenyi Chen, Ari Seff, Alain L. Kornhauser, and Jianxiong Xiao. 2015. Deep-
Driving: Learning Affordance for Direct Perception in Autonomous Driving. In
Proceedings of the IEEE International Conference on Computer Vision, ICCV. IEEE
Computer Society, 2722–2730. https://doi.org/10.1109/ICCV.2015.312

[11] Guangke Chen, Sen Chen, Lingling Fan, Xiaoning Du, Zhe Zhao, Fu Song, and
Yang Liu. 2021. Who is real bob? adversarial attacks on speaker recognition
systems. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 694–711.

[12] Guangke Chen, Zhe Zhao, Fu Song, Sen Chen, Lingling Fan, and Yang Liu. 2022.
AS2T: Arbitrary source-to-target adversarial attack on speaker recognition sys-
tems. arXiv preprint arXiv:2206.03351 (2022).

[13] Jianjun Chen, Jian Jiang, Haixin Duan, Nicholas Weaver, Tao Wan, and Vern
Paxson. 2016. Host of Troubles: Multiple Host Ambiguities in HTTP Implemen-
tations. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. 1516–1527.

[14] Junjie Chen, Yihua Liang, Qingchao Shen, and Jiajun Jiang. 2022. Toward Un-
derstanding Deep Learning Framework Bugs. arXiv preprint arXiv:2203.04026
(2022).

[15] Sen Chen, Minhui Xue, Lingling Fan, Shuang Hao, Lihua Xu, Haojin Zhu, and
Bo Li. 2018. Automated poisoning attacks and defenses in malware detection
systems: An adversarial machine learning approach. computers & security 73
(2018), 326–344.

[16] Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, HaoyuWang, Tao Xie, and Xuanzhe
Liu. 2020. A comprehensive study on challenges in deploying deep learning based
software. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
750–762.

[17] Zhenpeng Chen, Huihan Yao, Yiling Lou, Yanbin Cao, Yuanqiang Liu, Haoyu
Wang, and Xuanzhe Liu. 2021. An Empirical Study on Deployment Faults of
Deep Learning Based Mobile Applications. In Proceedings of the 43rd IEEE/ACM
International Conference on Software Engineering, ICSE. IEEE, 674–685. https:
//doi.org/10.1109/ICSE43902.2021.00068

[18] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational
and psychological measurement 20, 1 (1960), 37–46.

[19] Mengnan Du, Fan Yang, Na Zou, and Xia Hu. 2020. Fairness in deep learning: A
computational perspective. IEEE Intelligent Systems 36, 4 (2020), 25–34.

[20] Xiaoting Du, Guanping Xiao, and Yulei Sui. 2020. Fault triggers in the TensorFlow
framework: An experience report. In 2020 IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 1–12.

[21] Github. 2022. About Stars. https://help.github.com/articles/about-stars/
[22] Github. 2022. Forking a Repo. https://help.github.com/articles/fork-a-repo/
[23] Github. 2022. Github Serach API. https://docs.github.com/cn/rest/search
[24] Github. 2022. Issues. https://github.com/tensorflow/tfjs/issues/5486
[25] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining

and Harnessing Adversarial Examples. In Proceedings of the 3rd International
Conference on Learning Representations, ICLR.

[26] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and Harnessing Adversarial Examples. In Proceedings of the 3rd International
Conference on Learning Representations, ICLR.

[27] google. 2022. face-api.js. https://github.com/justadudewhohacks/face-api.js/
issues/299

[28] google. 2022. face-api.js. https://github.com/PaddlePaddle/Paddle.js
[29] google. 2022. face-api.js. https://github.com/mil-tokyo/webdnn

[30] Google. 2022. TensorFlow.js. https://github.com/tensorflow/tfjs
[31] google. 2022. TensorFlow.js. https://github.com/tensorflow/tfjs/issues/4768
[32] google. 2022. TensorFlow.js. https://github.com/tensorflow/tfjs/issues/4593
[33] google. 2022. TensorFlow.js. https://github.com/tensorflow/tfjs/issues/5800
[34] google. 2022. TensorFlow.js. https://github.com/tensorflow/tfjs/issues/5641
[35] google. 2022. TensorFlow.js. https://github.com/tensorflow/tfjs/issues/4378
[36] google. 2022. TensorFlow.js. https://github.com/tensorflow/tfjs/issues/5334
[37] google. 2022. TensorFlow.js. https://github.com/tensorflow/tfjs/issues/5110
[38] google. 2022. TensorFlow.js. https://github.com/tensorflow/tfjs/issues/5700
[39] google. 2022. TensorFlow.js. https://github.com/tensorflow/tfjs/issues/4745
[40] google. 2022. TensorFlow.js. https://github.com/tensorflow/tfjs/issues/5492
[41] google. 2022. TensorFlow.js. https://github.com/tensorflow/tfjs/issues/5702
[42] google. 2022. TensorFlow.js. https://github.com/tensorflow/tfjs/issues/5454
[43] google. 2022. TensorFlow.js. https://github.com/tensorflow/tfjs/issues/4852
[44] google. 2022. XNNPACK. https://github.com/google/XNNPACK
[45] Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. 2013. Speech

Recognition with Deep Recurrent Neural Networks. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP. IEEE,
6645–6649. https://doi.org/10.1109/ICASSP.2013.6638947

[46] Diandian Gu, Zhenpeng Chen, Yuanqiang Liu, Zili Zhang, Yun Ma, Xin Jin, and
Xuanzhe Liu. 2021. Demystifying Developers’ Issues in Distributed Training of
Deep Learning Software. arXiv preprint arXiv:2112.06222 (2021).

[47] Qianyu Guo, Sen Chen, Xiaofei Xie, Lei Ma, Qiang Hu, Hongtao Liu, Yang Liu,
Jianjun Zhao, and Xiaohong Li. 2019. An Empirical Study Towards Characterizing
Deep Learning Development and Deployment Across Different Frameworks
and Platforms. In Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering, ASE. IEEE, 810–822. https://doi.org/10.1109/
ASE.2019.00080

[48] Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao
Shen. 2020. Audee: Automated Testing for Deep Learning Frameworks. In 2020
35th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 486–498.

[49] Hannes Hapke and Catherine Nelson. 2020. Building Machine Learning Pipelines.
O’Reilly Media.

[50] Nima Shiri Harzevili, Jiho Shin, Junjie Wang, and Song Wang. 2022. Characteriz-
ing and Understanding Software Security Vulnerabilities in Machine Learning
Libraries. arXiv preprint arXiv:2203.06502 (2022).

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the 29th IEEE Conference on
Computer Vision and Pattern Recognition, CVPR. IEEE Computer Society, 770–778.
https://doi.org/10.1109/CVPR.2016.90

[52] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea
Stocco, and Paolo Tonella. 2020. Taxonomy of Real Faults in Deep Learning Sys-
tems. In Proceedings of the 42nd International Conference on Software Engineering,
ICSE. ACM, 1110–1121. https://doi.org/10.1145/3377811.3380395

[53] infinitered. 2022. nsfwjs. https://github.com/infinitered/nsfwjs/issues/16
[54] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A

comprehensive study on deep learning bug characteristics. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 510–520.

[55] Md Johirul Islam, Rangeet Pan, Giang Nguyen, andHridesh Rajan. 2020. Repairing
Deep Neural Networks: Fix Patterns and Challenges. In Proceedings of the 42nd
International Conference on Software Engineering, ICSE. ACM, 1135–1146. https:
//doi.org/10.1145/3377811.3380378

[56] Li Jia, Hao Zhong, Xiaoyin Wang, Linpeng Huang, and Xuansheng Lu. 2020.
An empirical study on bugs inside tensorflow. In International Conference on
Database Systems for Advanced Applications. Springer, 604–620.

[57] Li Jia, Hao Zhong, Xiaoyin Wang, Linpeng Huang, and Xuansheng Lu. 2021. The
symptoms, causes, and repairs of bugs inside a deep learning library. Journal of
Systems and Software 177 (2021), 110935.

[58] justadudewhohacks. 2022. face-api.js. https://github.com/justadudewhohacks/
face-api.js/issues/788

[59] justadudewhohacks. 2022. face-api.js. https://github.com/justadudewhohacks/
face-api.js/issues/826

[60] justadudewhohacks. 2022. face-api.js. https://github.com/justadudewhohacks/
face-api.js/issues/59

[61] justadudewhohacks. 2022. face-api.js. https://github.com/justadudewhohacks/
face-api.js/issues/66

[62] justadudewhohacks. 2022. face-api.js. https://github.com/justadudewhohacks/
face-api.js/issues/794

[63] justadudewhohacks. 2022. face-api.js. https://github.com/justadudewhohacks/
face-api.js/issues/32

[64] justadudewhohacks. 2022. face-api.js. https://github.com/justadudewhohacks/
face-api.js/issues/77

[65] Siqi Liu, Sidong Liu, Weidong Cai, Sonia Pujol, Ron Kikinis, and Dagan Feng. 2014.
Early Diagnosis of Alzheimer’s Disease with Deep Learning. In Proceedings of the
11th IEEE International Symposium on Biomedical Imaging, ISBI. IEEE, 1015–1018.
https://doi.org/10.1109/ISBI.2014.6868045

https://keras.io
https://learn.ml5js.org
https://sites.google.com/view/dl-fault-study4js
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/ICSE43902.2021.00068
https://doi.org/10.1109/ICSE43902.2021.00068
https://help.github.com/articles/about-stars/
https://help.github.com/articles/fork-a-repo/
https://docs.github.com/cn/rest/search
https://github.com/tensorflow/tfjs/issues/5486
https://github.com/justadudewhohacks/face-api.js/issues/299
https://github.com/justadudewhohacks/face-api.js/issues/299
https://github.com/PaddlePaddle/Paddle.js
https://github.com/mil-tokyo/webdnn
https://github.com/tensorflow/tfjs
https://github.com/tensorflow/tfjs/issues/4768
https://github.com/tensorflow/tfjs/issues/4593
https://github.com/tensorflow/tfjs/issues/5800
https://github.com/tensorflow/tfjs/issues/5641
https://github.com/tensorflow/tfjs/issues/4378
https://github.com/tensorflow/tfjs/issues/5334
https://github.com/tensorflow/tfjs/issues/5110
https://github.com/tensorflow/tfjs/issues/5700
https://github.com/tensorflow/tfjs/issues/4745
https://github.com/tensorflow/tfjs/issues/5492
https://github.com/tensorflow/tfjs/issues/5702
https://github.com/tensorflow/tfjs/issues/5454
https://github.com/tensorflow/tfjs/issues/4852
https://github.com/google/XNNPACK
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/ASE.2019.00080
https://doi.org/10.1109/ASE.2019.00080
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3377811.3380395
https://github.com/infinitered/nsfwjs/issues/16
https://doi.org/10.1145/3377811.3380378
https://doi.org/10.1145/3377811.3380378
https://github.com/justadudewhohacks/face-api.js/issues/788
https://github.com/justadudewhohacks/face-api.js/issues/788
https://github.com/justadudewhohacks/face-api.js/issues/826
https://github.com/justadudewhohacks/face-api.js/issues/826
https://github.com/justadudewhohacks/face-api.js/issues/59
https://github.com/justadudewhohacks/face-api.js/issues/59
https://github.com/justadudewhohacks/face-api.js/issues/66
https://github.com/justadudewhohacks/face-api.js/issues/66
https://github.com/justadudewhohacks/face-api.js/issues/794
https://github.com/justadudewhohacks/face-api.js/issues/794
https://github.com/justadudewhohacks/face-api.js/issues/32
https://github.com/justadudewhohacks/face-api.js/issues/32
https://github.com/justadudewhohacks/face-api.js/issues/77
https://github.com/justadudewhohacks/face-api.js/issues/77
https://doi.org/10.1109/ISBI.2014.6868045

Towards Understanding the Faults of JavaScript-Based Deep Learning Systems ASE ’22, October 10–14, 2022, Rochester, MI, USA

[66] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao
Xie, Li Li, Yang Liu, Jianjun Zhao, et al. 2018. Deepmutation: Mutation testing of
deep learning systems. In 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 100–111.

[67] Yun Ma, Dongwei Xiang, Shuyu Zheng, Deyu Tian, and Xuanzhe Liu. 2019.
Moving Deep Learning into Web Browser: How Far Can We Go?. In Proceedings
of the 28th World Wide Web Conference, WWW. ACM, 1234–1244. https://doi.
org/10.1145/3308558.3313639

[68] Microsoft. 2022. TypeScript. https://www.typescriptlang.org/
[69] Mozilla. 2022. Fetch API. https://developer.mozilla.org/en-US/docs/Web/API/

Fetch_API
[70] Mozilla. 2022. Same-origin policy. https://developer.mozilla.org/en-US/docs/

Web/Security/Same-origin_policy
[71] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay

Celik, and Ananthram Swami. 2016. Practical Black-Box Attacks against Deep
Learning Systems using Adversarial Examples. CoRR abs/1602.02697 (2016).
arXiv:1602.02697 http://arxiv.org/abs/1602.02697

[72] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic Differentiation in PyTorch. Openreview (2017).

[73] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE:
Cross-backend Validation to Detect and Localize Bugs in Deep Learning Libraries.
In Proceedings of the 41st International Conference on Software Engineering, ICSE.
IEEE/ACM, 1027–1038. https://doi.org/10.1109/ICSE.2019.00107

[74] Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software
engineering. IEEE Transactions on software engineering 25, 4 (1999), 557–572.

[75] Xiaobing Sun, Tianchi Zhou, Gengjie Li, Jiajun Hu, Hui Yang, and Bin Li. 2017.
An Empirical Study on Real Bugs for Machine Learning Programs. In Proceedings
of the 24th Asia-Pacific Software Engineering Conference, APSEC. IEEE Computer
Society, 348–357. https://doi.org/10.1109/APSEC.2017.41

[76] Florian Tambon, Amin Nikanjam, Le An, Foutse Khomh, and Giuliano Antoniol.
2021. Silent Bugs in Deep Learning Frameworks: An Empirical Study of Keras
and TensorFlow. arXiv preprint arXiv:2112.13314 (2021).

[77] TensorFlow.js. 2022. Issues. https://github.com/tensorflow/tfjs/issues/5821
[78] TensorFlow.js. 2022. Issues. https://github.com/tensorflow/tfjs/issues/5632

[79] TensorFlow.js. 2022. TensorFlow.js. https://github.com/tensorflow/tfjs/issues/
5246

[80] Ferdian Thung, Shaowei Wang, David Lo, and Lingxiao Jiang. 2012. An Empirical
Study of Bugs in Machine Learning Systems. In Proceedings of the 23rd IEEE Inter-
national Symposium on Software Reliability Engineering, ISSRE. IEEE Computer
Society, 271–280. https://doi.org/10.1109/ISSRE.2012.22

[81] Transcranial. 2022. Keras.js. https://github.com/transcranial/keras-js
[82] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep

Learning Library Testing via Effective Model Generation. In Proceedings of the
28th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE. ACM, 788–799. https://doi.org/
10.1145/3368089.3409761

[83] Wikipedia. 2022. Document Object Model. https://en.wikipedia.org/wiki/
Document_Object_Model

[84] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s
Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation. CoRR abs/1609.08144 (2016). arXiv:1609.08144 http://arxiv.
org/abs/1609.08144

[85] Qixue Xiao, Kang Li, Deyue Zhang, and Weilin Xu. 2018. Security Risks in
Deep Learning Implementations. In Procedings of the IEEE Security and Privacy
Workshops, SP Workshops. IEEE Computer Society, 123–128. https://doi.org/10.
1109/SPW.2018.00027

[86] Xiaoyu Zhang, Juan Zhai, Shiqing Ma, and Chao Shen. 2021. AUTOTRAINER:
An Automatic DNN Training Problem Detection and Repair System. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
359–371.

[87] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018.
An Empirical Study on TensorFlow Program Bugs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA. ACM,
129–140. https://doi.org/10.1145/3213846.3213866

https://doi.org/10.1145/3308558.3313639
https://doi.org/10.1145/3308558.3313639
https://www.typescriptlang.org/
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
http://arxiv.org/abs/1602.02697
https://doi.org/10.1109/ICSE.2019.00107
https://doi.org/10.1109/APSEC.2017.41
https://github.com/tensorflow/tfjs/issues/5821
https://github.com/tensorflow/tfjs/issues/5632
https://github.com/tensorflow/tfjs/issues/5246
https://github.com/tensorflow/tfjs/issues/5246
https://doi.org/10.1109/ISSRE.2012.22
https://github.com/transcranial/keras-js
https://doi.org/10.1145/3368089.3409761
https://doi.org/10.1145/3368089.3409761
https://en.wikipedia.org/wiki/Document_Object_Model
https://en.wikipedia.org/wiki/Document_Object_Model
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.1109/SPW.2018.00027
https://doi.org/10.1109/SPW.2018.00027
https://doi.org/10.1145/3213846.3213866

	Abstract
	1 Introduction
	2 Empirical Study Methodology
	2.1 Study Design
	2.2 Data Collection
	2.3 Manual Labeling

	3 Symptoms (RQ1)
	3.1 Symptom Classification Results
	3.2 Symptom Distribution

	4 Root Causes (RQ2)
	4.1 Root Cause Classification Results
	4.2 Root Cause Distribution

	5 Fix Patterns (RQ3)
	6 Differences from native DL systems (RQ4)
	6.1 Differences Based on Symptom
	6.2 Differences Based on Root Cause

	7 Discussion
	7.1 Implications
	7.2 Threats to validity

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

