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Abstract—Due to the competitive environment, mobile apps
are usually produced under pressure with lots of complicated
functionality and UI pages. Therefore, it is challenging for
various roles to design, understand, test, and maintain these apps.
The extracted transition graphs for apps such as ATG, WTG,
and STG have a low transition coverage and coarse-grained
granularity, which limits the existing methods of graphical user
interface (GUI) modeling by UI exploration. To solve these
problems, in this paper, we propose SceneDroid, a scene-driven
exploration approach to extracting the GUI scenes dynamically
by integrating a series of novel techniques including smart
exploration, state fuzzing, and indirect launching strategies. We
present the GUI scenes as a scene transition graph (SceneTG) to
model the GUI of apps with high transition coverage and fine-
grained granularity. Compared with the existing GUI modeling
tools, SceneDroid has improved by 168.74% in the coverage of
transition pairs and 162.42% in scene extraction. Apart from
the effectiveness evaluation of SceneDroid, we also illustrate
the future potential of SceneDroid as a fundamental capability
to support app development, reverse engineering, and GUI
regression testing.

Index Terms—Android app, Scene-driven exploration, GUI
exploration, GUI modeling

I. INTRODUCTION

Mobile applications (apps) are indispensable for daily
life [1]. Excessive demand also means that people have
higher requirements for these apps, therefore, they are usually
developed under pressure with more complex functionalities
and UI pages. Every coin has two sides. It is challenging to
design, understand, test, and maintain these apps for different
roles such as product manager, designer, developer, and main-
tainer. To mitigate such a problem and to help understand
these complex apps, app abstract and graphical user interface
(GUI) modeling have been used to realize apps by levering
UI exploration [1]–[6]. Many different approaches to GUI
modeling are raised gradually such as activity transition graph
(ATG) [2], [7], window transition graph (WTG) [3], and screen
transition graph (STG) [4].

Although static and dynamic methods are available for
UI exploration, there are two significant issues that have
not been dealt with yet. (1) it is challenging to construct a
relatively complete ∗TG.1 Due to numerous implementations
and various code styles, the static UI exploration is missing
several transitions [5], [8]. Besides, as some activities are
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1We use ∗TG to present these existing transition graphs.

too complex to fully explore or required complex inputs that
cannot be completed automatically, the coverage may still
be far from acceptable [9]–[11]. (2) The UI pages are more
significant than the ∗TG structure since Android apps are
event-driven with rich UI pages. The UI page is more helpful
and intuitive for users to understand the app.

Under the situation, Chen et al. [1] inspired by the con-
ception of storyboard in the movie industry, proposed Sto-
ryDroid and automatically extracted storyboards for Android
apps, which contains both ATG and rendered UI pages along
with many other useful features such as UI components,
the corresponding layout and logic code, method hierarchy.
Another work StoryDistiller [5] is an extension of it [1], which
enhanced StoryDroid on both the ATG construction and UI
page rendering by adding dynamic UI exploration. In other
words, StoryDistiller is a hybrid solution to extract storyboards
for apps with rich features for app abstract and GUI modeling
with rich visible UI features.

However, StoryDistiller [5] still has shortcomings that ob-
struct understanding and realizing apps: (1) The strategy of
dynamic exploration is only to trigger each interactive UI
component on the rendered activity, missing many deep-level
interactive UI components. The simple strategy inevitably lost
a lot of transition pairs. (2) The extracted ∗TG is coarse-
grained. In addition to the ∗TG, many other GUI “scenes”
can be triggered in activity as shown in Figure 1, leading
to the creation of numerous new UI pages containing new
functionalities. An urgent need for a fine-grained GUI model-
ing solution exists. In fact, addressing the above-mentioned
problems poses the following challenges: C1: Reasonable
UI Granularity. Achieving a reasonable UI granularity is
challenging when seeking to define app UI updates, as we
must preserve key UI information while avoiding the recording
of excessive unnecessary states. An overly coarse granularity
may lead to misjudgments of UI states, adversely affecting
test results, while an excessively fine granularity may generate
a multitude of redundant states, hindering testing efficiency.
Consequently, identifying an appropriate granularity balance
to achieve efficient and accurate UI update recognition is a
key challenge. C2: Launching Activity. During the dynamic
exploration of Android apps, enhancing the ability to launch
activities is a key challenge. Android apps typically comprise
multiple activities, which are the core components of the app,
responsible for displaying various user interfaces and handling
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Fig. 1: Scene examples triggered by different UI components.

user interactions. However, during the dynamic testing process,
some activities may not be easily triggered, as they might
require specific user input or a particular application state.
Furthermore, certain activities might only be triggered under
specific conditions, rendering the dynamic exploration process
potentially unable to cover all possible activities.

To this end, in this paper, we propose SceneDroid, a
scene-driven exploration and GUI modeling approach, which
leverages a smart exploration to dynamically extract the GUI
scenes.2 Specifically, to address C1, SceneDroid proposes
a scene recognition method that considers the hierarchical
structure of components on the UI page and ignores minor
changes that may lead to layout changes, thus identifying
unique scenes. SceneDroid constructs a finer GUI model based
on scenes, called the Scene Transition Graph (SceneTG). To
address C2, SceneDroid designs an exhaustive exploration
strategy to explore all scenes of an app and interact with
as many interactive UI components as possible. SceneDroid
also introduces state fuzzing techniques to improve scene
transition coverage. Most importantly, SceneDroid designs
an indirect launch strategy that leverages already explored
activities to indirectly launch activities that Inter-Component
Communication (ICC) messages failed to launch.

To demonstrate the effectiveness of SceneDroid, we con-
ducted comprehensive experiments. To evaluate the scene
identification ability of SceneDroid, we run it on 10 self-
developed apps containing different types of interactive UI
components that can trigger new scenes, results show that
SceneDroid can recognize all the preset scenes. We further
compared SceneDroid with 4 state-of-the-art GUI modeling
tools to evaluate the effectiveness on 100 apps. The results
demonstrate that the SceneDroid surpasses other existing tools
in terms of the number of transition pairs (30.25 on aver-
age) and scenes (22.93 on average). With improvements of
168.74% in transition pair coverage and 162.42% in scene
extraction, SceneDroid has significantly enhanced its perfor-
mance. In addition, we also conducted an ablation study
to evaluate the contribution of each strategy employed by
SceneDroid. The result indicates that the Indirect Launching

2In this paper, a scene is defined as the UI page that is triggered by
interactive UI components of the activity A, whose layout is different from
that of A. Such new scenes may be rendered as the current activity A with
new views, a new fragment of A, or a new activity.

strategy is the most contributing one, achieving an average
improvement of 15.59% in terms of activity exploration,
47.02% improvement in scene exploration, and 35.08% im-
provement in transition pair extraction. As SceneDroid serves
as a fundamental tool for app exploration, we also discussed
some applications based on SceneDroid such as regression
testing and UI-based testing.

In summary, we made the following contributions.
• We propose SceneDroid, which is a novel approach

leveraging a set of new techniques to construct the fine-
grained app UI model by defining the scene transition
graph (SceneTG). It can handle both open-source and
closed-source apps.

• SceneDroid proposes a smart exploration algorithm,
which mainly includes three strategies of exhaustive
exploration, state fuzzing, and indirect launch method.
These techniques improve the depth of exploration and
the completeness of the SceneTG.

• Our comprehensive experiments demonstrate the effec-
tiveness of SceneDroid in app exploration and UI mod-
eling compared with existing tools. Moreover, our exper-
iments indicate the indirect launch strategy is the most
contributing one to improving UI modeling.

• This is a fundamental work providing a novel UI model-
ing method for apps, which facilitates future work in the
reverse analysis of app structure, design and guidance
of app development, creation of regression testing tools,
etc. We have released SceneDroid and the experimental
dataset on https://github.com/SceneDroid/SceneDroid.

II. BACKGROUND

A. Android Activity and Fragment

The Activity is the keystone of all Android apps. A
component that contains a user interface primarily for user
interaction. Android Fragment is a type of view that can be
embedded in an activity. An activity can contain more than
one Fragment, and a Fragment can also be reused in multiple
activities, which can adapt to devices with different resolutions
and make screen space utilization more reasonable. Like mini-
activity, Fragment has its own layout and lifecycle [12].

B. Android UI Components

Android provides a large number of UI components [13] that
can be used flexibly to have a grandstand view of the app’s
functionality. For example, TextView is mainly used to display
a text message on the current page. Button is an essential UI
component used to interact with the users. Button objects can
receive user-clickable events. ImageView and ImageButton are
UI components available for displaying icons. In addition to
these common and basic types, other types of UI components
are usually used to enrich the user interface. For example,
Menus are used in most apps to deliver user actions and some
options. The menus are often laid out with important options
that allow changes to be made to the environment variables
and environment data that the apps depend on. The navigation
drawer is one of the most general effects in Material Design

https://github.com/SceneDroid/SceneDroid


ICC Message 
Collection

Dynamic Analysis

Smart Exploration Scene 
Identification

SceneTG Construction

SceneTG

ATG 
Collection 

Exhaustive Exploration

Indirect Launch

State Fuzzing

Data Collection

Fig. 2: An overview of SceneDroid.

which can hide some menu options on the left of the top
app bar. It can display the main navigation items of the app.
AlertDialog and ProgressDialog can pop up dialogs on the
current page.

III. APPROACH

Fig. 2 shows the overview of SceneDroid, which consists
of three main parts: data collection, dynamic analysis, and
scene transition graph (SceneTG) construction. SceneDroid
takes an APK file as input and outputs a visual SceneTG
and other related parsing results such as the corresponding
screenshot for each scene and its corresponding layout files.
The data collection module collects the Inter-Component Com-
munication (ICC) message for activity launching to facilitate
dynamic analysis and the activity transition graph (ATG). The
dynamic analysis module runs the apps by employing the
Smart Exploration algorithm and identifies new scenes. The
SceneTG Construction module takes the outputs of dynamic
analysis to generate the SceneTG, including the screenshot of
each scene and the scene transitions.

A. Data Collection

The goal of data collection is to provide the dynamic
exploration module with as much information as possible,
including the ICC messages for direct activity launching and
ATG for indirect activity launching, so as to improve the
efficiency and effectiveness of dynamic analysis.

1) ICC Message Collection: Android enables activity
launching via console interfaces, with some requiring extra
data. ICC messages, mainly Intent objects with data items,
launch target activities. Generating ICC messages entails iden-
tifying Basic Attributes and Extra Parameters, found in intent-
filters or Java code. Extra Parameters provide necessary spe-
cific data for successful launching. Comprising basic structures
like String, Char, and Boolean, we generate data according to
types to populate the Extra Parameter. The resulting Basic
Attribute and Extra Parameter form ICC messages, used
for activity launching and supplied to the dynamic analysis
module.

2) ATG Collection: Activity Transition Graph (ATG) is
also one of the important features for app exploration, which
states the transition relations between different activities. Lots
of studies have been proposed to construct ATGs [1], [2], [5],

[14], [15], and we use them to collect the initial ATGs for
further analysis.

In this paper, ATG is mainly used to guide SceneDroid in
the following dynamic analysis, especially when the activities
fail to be launched directly with ICC messages, ATG can
facilitate the exploration by providing the precursor activity
for launching. Besides, ATG will be augmented by dynamic
analysis and acts as the basis to construct the SceneTG.

B. Dynamic Analysis

Based on the collected data, the dynamic analysis aims to
exhaustively explore the scenes within the apps and identify
new scenes and scene transitions during exploration.

1) Smart Exploration: Smart exploration focuses on ob-
taining as many different scenes as possible within an app.
To achieve it, three strategies are designed: (1) State fuzzing;
(2) Exhaustive exploration of each activity; and (3) Indirect
launching for failed activities, where different strategies are
used in different stages. Specifically, given an app, SceneDroid
first tries to launch each activity based on the obtained ICC
messages, the target activity is launched successfully, and
the first two strategies are used to explore each activity
exhaustively. If the activity fails to be launched, SceneDroid
will employ the third strategy to indirectly launch activities
first and then continue using the first two strategies to explore
activities. Details are described as follows.
• State fuzzing. Since some activities contain UI compo-
nents that users can interact with, however, would not trigger
a transition to other scenes including EditText, CheckBox,
Switch Button, etc. These kinds of components would not
cause scene transition, however, may change the execution
path of the app and thus potentially explore more states and
scenes. Motivated by this, before operating on the interactive
components that would trigger new scenes (e.g., Button,
ImageButton, MenuButton), we proposed to employ the state
fuzzing strategy first.

Specifically, we consider employing fuzzing on 3 types of
such non-transitive UI components: EditText, CheckBox, and
Switch Button. For EditText, since some apps require user
input to proceed to the next step, such as adding new items
or searching the interface, we need to determine the format
or some specific inputs that the component requires users to
enter. To achieve it, we first dump the Component Tree (i.e.,
UI layout) of the current activity, and extract the attributes of



EditText, such as className, resource-id, and bounds. Since
the dynamically obtained layout does not contain information
about the required type of user input in terms of EditText, we
use the extracted attributes to match the component declared in
the source layout files, and obtain the required type of string
(declared in inputType). We have summarized text, number,
phone, date, time, and EmailAddress as common inputType.
According to different input types, SceneDroid will randomly
generate a correctly formatted string and fill it into the specific
EditText. For CheckBox and Switch Button, we can directly
identify them by the component type in the layout file. These
two kinds of components have two states, checked or not
checked (open or close, respectively). We can set them easily
by clicking them.

When there are multiple types of the aforementioned non-
transitive UI components on a single activity, to explore
potential new scenes, we go through all the possible com-
binations to form an initial state for the next strategy (i.e.,
exhaustive exploration). For example, if an activity contains
all these 3 types, i.e., EditText has two values (“fill in” or
“blank”), similarly, CheckBox has values of “checked” or
“not checked”, and Switch Button has values of “open” or
“close”. SceneDroid will consider all the combinations of them
and finally generate 23 = 8 initial activity states for further
exploration.
• Exhaustive exploration. From a high level, SceneDroid
employs a breadth-first strategy at the Activity level, while
exploring scenes on a specific activity, SceneDroid uses a
depth-first strategy, aiming to explore as many scenes within
the activity. Therefore, based on each generated initial ac-
tivity, SceneDroid extracts all the actionable components ac-
cording to the attribute “clickable=true” of each component
in the dumped layout file, such as Button, ImageButton,
CheckBox, ImageView, and RadioGroup. It combines these
actionable components into an exploration queue and takes
one component at a time from the queue to interact with.
When a new scene associated with the current activity is
identified, SceneDroid will record its layout file, screenshots,
and experienced components. Besides, SceneDroid iteratively
performs this exploration process on the scene and records the
scene transition relation as scene1

e,c→ scene2 where e and c
represent the event and component triggering this transition,
respectively. If it does not reach the new scene or reaches a
visited scene, it returns to the previous scene and interacts
with the next component. In addition, during exploration, the
current activity A may transit to a new activity B by operating
on specific components (i.e., activity transition), SceneDroid
will rollback to A and continue exploring other scenes within
A. Such activity transitions (i.e., A

e,c→ B) are also recorded
to augment the static ATG and are further used to help
exploration and SceneTG construction.
• Indirect launching for failure activities. Due to the incon-
sistency of activity declaration between the app implementa-
tion and the AndroidManifest.xml file or incorrect static ICC
messages, some activities may not be launched successfully
with ICC messages. SceneDroid will find the upstream caller
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Fig. 3: Cases of indirect launching for failed activities.

activity as a bridge to indirectly launch the target activity, by
utilizing the SceneTG that has been constructed so far. For
example, in Fig. 3(a), when Callee Act. failed to be launched
with ICC messages, SceneDroid will find the caller of it from
ATG, i.e., Caller Act a and Caller Act b, both of which
can be used to indirect launch Callee Act. Note that ATG is
dynamically augmented and updated during exploration, here,
we use the latest ATG to ensure the successful launch of the
target activity. Specifically, if an activity actdes failed to be
directly launched with ICC messages, SceneDroid will traverse
the ATG and find the caller activity of actdes, i.e., actsrc,
where actsrc → actdes. After that, we will try to launch
actsrc with ICC messages, if it is successfully launched, we
then use the event (i.e., action) that triggers such an activity
transition and operate on it to launch actdes. To extract the
events triggering the specific transition, we use the maintained
ATG which contains the transition relation between different
activities together with the events and components that trigger
such relation, i.e., actA

e,c→ actB .
However, there may be cases that the direct caller activity

actsrc cannot be launched, either. Therefore, we obtain a
list of caller activities as the candidates to launch actdes.
For example, in Fig. 3(a), the direct callers of the failed
activity (i.e., Caller Act a and Caller Act b) both failed to be
launched, we thus iteratively find the caller of the failed ones
and finally launched Callee Act. via launching Caller Act c.
Once the target activity (actdes) is directly launched by one of
the caller activities, we stop this process and employ the two
strategies above (i.e., state fuzzing and exhaustive exploration)
to explore this activity and the associated scenes. If all the
candidate caller activities fail to launch actdes indirectly, we
temporarily move it to the end of the exploration queue and
continue exploring other activities. For actdes, we update ATG
and launch it iteratively by traversing it.

Algorithm 1 depicts the whole process of smart dynamic
exploration, which employs the three strategies alternatively.
The input is all the activities with ICC messages for launching



Algorithm 1: Smart Dynamic Analysis
Input: actall: All activities with ICC messages in the

app; ATG: Activity transition graph.
Output: S: All scenes explored within the app

1 S ← ∅
2 foreach act, icc ∈ actall do
3 if Success(act, icc) then
4 ExploreAct(act)

5 else
// Failed to launch act.

6 actcaller = IndirectLaunch(act, ATG)
7 if actcaller ̸= Null then
8 ExploreAct(act)

9 else
// No such a caller act that can launch act,
then act is added to the queue for a second
launch

10 actall ← actall ∪ act

11 Function ExploreAct(act):
12 States← Fuzzing(act)
13 foreach st ∈ States do
14 S ← ExhaustiveExplore(st)

15 return S

(actall), and SceneDroid outputs the scenes (S) explored by
using the three strategies. Specifically, S is first initialized as
empty and will be gradually augmented during exploration.
For each activity act, we first try to directly launch act by
using the associated ICC message. If act is launched success-
fully, we continue to employ the fuzzing strategy and exhaus-
tive exploration on it by calling the method ExploreAct
(Lines 3-4). In the activity exploration process (Lines 11-
14), we first employ the fuzzing strategy to generate different
initial states (States) for act (Line 12), and for each state,
we start exhaustive exploration (Lines 13-14) and store the
explored scenes in S. However, if act fails to be launched,
we employ the indirect launch strategy to identify the caller
activity of act that can indirectly launch it based on the latest
ATG (Line 6). If there exists such a caller activity actcaller,
we utilize it to transit to act, and continue to employ the
fuzzing strategy and exhaustive exploration on it (Lines 7-
8). Otherwise, act is added to the exploration queue for a
second launch (Lines 9-10), because the ATG is dynamically
updated during exploration, the augmented ATG later may
be able to launch act. Therefore, we employ it to maximize
the possibility of launching each activity. If the ATG is not
augmented after an exploration round, we stop re-launching
the failed activities, and stop the whole process and return S
(Line 15).

2) Scene identification: Since the goal of SceneDroid is
to construct a relatively complete UI model consisting of dif-
ferent types of fine-grained UI states, i.e., scene, we proposed

        (a) UI Page 1 (b) UI Page 2

Fig. 4: Two UI pages in the app Simple Draw Pro.

a scene identification method, aiming to identify the unique
scenes by abstracting and modeling the UI pages in a fine and
suitable manner, so as to avoid keeping exploring duplicated
scenes. The scenes identified by SceneDroid include activity,
fragment, drawer (e.g., Top/Bottom/Side navigation drawer),
dialog, menu, checkbox, spinner, picker, floating action button,
etc., some are shown in Fig. 1.

Specifically, for each explored UI page, we aim to generate
a unique identifier based on the layout dumped dynamically as
an abstraction of the UI page. If the identifiers of two UI pages
are the same, we regard them as the same scene, otherwise,
two scenes are both recorded. To avoid maintaining a massive
number of scenes with subtle changes, and model the UI page
in a fine and proper grained, we consider abstracting a UI page
based on the hierarchy of components on it, the unique ID of
each component (i.e., resource-id in the layout file), the type
of the components (i.e., class), and the package it belongs
to (package). These attributes preserve the number and the
type of components, as well as their hierarchy, meanwhile
omitting the subtle changes (such as the text change and color
change) which would not cause layout changes but may lead
the exploration to a dead end. For example, in Fig. 4, this is
a simple drawing app that produces several UI changes when
the user selects different brush colors. Since no matter how the
values of these UIs change, it is just about the color selection
with different values and would not cause an impact on the
structure, we thus consider them as the same scene.

In detail, for each UI page, we first dump the layout file
which contains all the components and their attributes (e.g.,
resource-id, text, class, package, clickable), and each node
represents a component. We then record the hierarchy of all
the components and start a Breadth-First traversal to obtain
the component sequence as a list. Note that, since SceneDroid
dumps the layout structure directly from the UI page, which
may introduce the UI of other packages, such as the UI of
the status bar or the UI of the input method when it pops up.
The UI with these non-target packages will interfere with the
judgment of the current UI page, but directly ignoring them
may lead to missing new scenes. Therefore, we decided to
discard the non-target package UI in SceneDroid, and only
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Fig. 5: Example of a SceneTG constructed by SceneDroid.

considered the nodes that belong to this app by matching
the package names. For each component in this sequence, we
extract the value of three attributes as the unique identifier of
it, i.e., resource-id, class, package. We then concatenate these
three attribute values and use the MD5 hash algorithm [16] to
generate a hash value for the component. If the type of the
current node is an adapter view, we will use the information
of the view it is really bound to generate the identifier for it.
After obtaining the hashed values for all the components, we
concatenate them in sequence and use the same hash algorithm
to generate a unique identifier for the UI page.

Note that, since the detailed contents in adapter views
(e.g., ListView or RecyclerView) at runtime are unknown
and these adapter views are essentially just repetitive views
being populated according to the ListApdapter [17] . While
SceneDroid focuses on the structure of the views obtained
from the ListApdapter, it only needs to fetch the first view
in the adapter view to learn the structure of the other ones.
Only the first child view of adapter views counts for scene
identification.

C. SceneTG Construction

To reflect the overall UI states of an app in the runtime,
we construct the based on the identified scenes and their
transitions during dynamic exploration (as shown in Fig. 5).
We highlight that apart from the scene transitions, SceneDroid
also can provide the corresponding real UI page for each
identified scene. The SceneTG attached with real UI pages
indeed aids users in understanding the apps. SceneTG’s fine-
grained UI model can be used to contribute to improving the
performance of existing work including UI testing, regression
testing, competitive product analysis, etc.

IV. EFFECTIVENESS EVALUATION

To evaluate the effectiveness of SceneDroid, we aim to
conduct the experiments by answering the following research
questions.
• RQ1: Can SceneDroid accurately recognize new scenes that

contain different types of new UI views?
• RQ2: Can SceneDroid outperform existing UI exploration

tools in terms of transition relation extraction and scene
exploration?

TABLE I: Ten self-developed benchmark apps with different
features, activities, transition pairs, and scenes.

ID Feature #All Acts #Pairs #Scenes
1 Basic Act + Fragment +

Dialog + Switch Button
8 23 17

2 Basic Act + Menu 8 18 15
3 Navi. Drawer Act + Frag-

ment
9 24 22

4 Navi. Drawer Act + Frag-
ment + Menu

8 21 19

5 Bottom Navi. Act 8 13 13
6 Bottom Navi. Act + Menu 3 19 19
7 Bottom Navi. Act + Frag-

ment + EditText
3 15 14

8 Tabbed Act + Menu +
Spinner + Picker.

6 14 11

9 Tabbed Act + Bottom
Navi. Act + Menu + Float-
ing Action Button

3 16 11

10 Navi. Drawer Act + Frag-
ment

1 6 9

• RQ3: How much do the different strategies of SceneDroid
contribute to enhance UI exploration?

A. RQ1: Scene identification

1) Setup: To investigate whether SceneDroid can effec-
tively identify different types of scenes in the apps, we self-
developed 10 apps as our ground-truth benchmark, covering
different types of views for UI pages including Drawer, Menu,
Dialog, Spinner, Picker, etc. In order to make the benchmark
apps more representative of real-world apps, we also add
more features and complexity to them with different numbers
of activities. Since Android Studio provides numerous code
templates that follow the best practice of Android app design
and development, to develop apps that are compliant with the
latest Material Design principles and reflect the latest Android
app features, we utilize the templates provided by Android
Studio to create new application modules, various activities,
or other specific Android project components. Some templates
provide initial code for typical environments, such as drawer
navigation bars or login pages, which reflect the latest Android
app features. As shown in Table 1, the 10 apps we develop
consist of many features, varying the number of activities
with multiple types of scenes. Moreover, they are implemented
with different transitions from Activity to Activity, Activity to
Fragment, Fragment to Activity, and Fragment to Fragment,
as the rich transition logic that is inserted into the apps.

Based on the dataset above, we conducted the experiment
to evaluate the effectiveness of SceneDroid in scene identifi-
cation. To validate the accuracy of SceneDroid, we need to
determine the number of activities, scenarios, and transition
relations for each program. We use the number of activities
declared in the AndroidManifest.xml file as the basis and
manually validate the number of scenes and transition pairs
identified by SceneDroid for each app. We set a timeout of 15
minutes for the analysis phase and 30 minutes for the dynamic
analysis for each app in the dataset.



2) Result: The result indicates that SceneDroid can ex-
tract all the activities, scenes, and transition pairs in the 10
benchmark apps, shown in Table I. SceneDroid performed
well not only on simple apps composed of activities and
fragments but also on complex apps, as displayed in app
4 and app 9. These complex combinations of features are
frequently used in industrial environments. In the following
RQ2, we will show in detail the strengths and weaknesses
of SceneDroid compared to others, especially in apps with
complex components. The reason for achieving such excellent
results is that SceneDroid leveraged a combination of three
smart strategies. These strategies are not used in isolation or
stacked repeatedly; rather, the organic combination achieves
good results. In the following RQ3, we will conduct an
ablation study to comprehensively evaluate the impact of each
strategy on the tool’s exploration capability. The SceneTG
constructed by SceneDroid can indeed build a more fine-
grained UI model. We also manually verified the reachability
of all the paths explored by SceneDroid, and all of them are
feasible in the 10 benchmark apps.

Answer to RQ1: The experimental results show that
SceneDroid can extract all activities, scenarios, and tran-
sition pairs in the 10 ground-truth benchmark apps. Scene-
Droid can accurately recognize new scenes that contain
different types of new UI views.

B. RQ2: Scene exploration

1) Setup: To evaluate the capability of SceneDroid in
scene exploration, we randomly downloaded 50 closed-source
apps from Google Play Store [18] and 50 open-source apps
from F-Droid [19] as the evaluation subject to investigate the
effectiveness of SceneDroid in real-world apps. Based on the
dataset, we compared SceneDroid with four state-of-the-art UI
modeling tools: GoalExplorer [4], Gator [20], StoryDistiller
[5], and ICCBot [15]. We chose them as the baseline tools
because they either have similar goals (StoryDistiller) to
SceneDroid or have similar transition results (GoalExplorer,
Gator, ICCBot). Specifically, StoryDistiller utilizes a combi-
nation of dynamic and static methods to build the UI model of
the app, which is with a similar goal to ours but with coarse-
grained modeling. The other three tools are state-of-the-art
tools that generate transition graphs. GoalExplorer proposes a
static parsing approach to build the Screen Transition Graph
(STG). Note that, in the experiment, we used the latest released
version of GoalExplorer [21] since the initial open-source
version on Github is unavailable to compile and use due to
missing essential dependencies. Gator is also a mature static
analysis suite for Android apps that can be used to build the
Window Transition Graph (WTG). ICCBot is demonstrated as
the state-of-the-art ICC resolution tool [8].

We separately run these tools on the 100 apps and set a
timeout of 15 minutes for each app in the static analysis
phase, because, for some closed-source applications, some
static analysis tools can be time-consuming due to internal
errors. For the evaluation metrics, we use the number of
explored activities, the number of explored scenes, and the
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We separately run these tools on the 100 apps and set a timeout of 15 minutes for each app in the static
analysis phase because, for some closed-source applications, some static analysis methods can be time-
consuming due to internal errors. For the evaluation metrics, we use the number of explored activities,
the number of explored scenes, and the number of UI transition pairs to evaluate the performance of
each tool. Note that since ICCBot [23] generates ICC relation of the four major components of Android
(i.e., Activity, Service, Content Provider, and Broadcast Receiver), while we focus on the UI model
construction, we thus only consider the components related to UIs from the result file, i.e., activity and
fragment. Specifically, we consider the four transition relations from Activity to Activity, Activity to
Fragment, Fragment to Activity, and Fragment to Fragment, to compute the number of transitions of
ICCBot [23].

4.3.2 Result

The comparison result of these tools is shown in Figure 6. We can see SceneDroid outperforms other
four tools in all metrics. On average, SceneDroid extracts 30.25 transition pairs (0.81 in GoalExplorer [4],
13.52 in ICCBot [23], 12.03 in StoryDistiller, 18.68 in Gator, respectively), and in terms of the identified
scenes, SceneDroid achieves 22.93, which is twice of most other tools (1.63 in GoalExplorer [4], 9.53 in
ICCBot [23], 13.83 in StoryDistiller, 9.95 in Gator [26], respectively).

The reason for SceneDroid’s superior results is that SceneDroid introduces smart exploration, which is
used to obtain the scenes during dynamic exploration, thus enabling the launch of activities even without
using ICC messages. It alleviates the limitations of existing tools that rely on the accuracy of ICC message
extraction, effectively enhancing the activity coverage of SceneDroid during the dynamic process. Smart
Exploration also introduces the indirect launching phase for failure activities, which helps SceneDroid to
explore as many different scenes on an activity as possible. Moreover, fuzzing for EditText, CheckBox,
Switch Button, etc., is an exclusive feature that enables SceneDroid to interact with more components
than other tools.

While StoryDistiller also adopted the idea of combining static and dynamic exploration to build UI
models with UI screenshots, it does not perform well because (1) StoryDistiller works with activity
as a granularity. While it also tries to trigger each interactive component presented in the activity,

6) ReSeSS. 2022. Github GoalExplorer. https://github.com/resess/GoalExplorer.
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number of UI transition pairs to evaluate the performance of
each tool. Since ICCBot generates ICC relation of the four
major components of Android (i.e., Activity, Service, Content
Provider, and Broadcast Receiver), while SceneDroid focuses
on the UI model construction. To make a fair comparison, we
thus only consider the components related to UIs from the
result file, i.e., activity and fragment. As for the number of
transitions of ICCBot, we focus on four types of transitions:
Activity to Activity, Activity to Fragment, Fragment to Activ-
ity, and Fragment to Fragment.

2) Result: The comparison result of these tools is shown
in Fig. 6. We can see SceneDroid outperforms the other four
tools in all metrics. On average, SceneDroid extracts 30.25
transition pairs (0.81 in GoalExplorer, 13.52 in ICCBot, 12.03
in StoryDistiller, 18.68 in Gator, respectively), and in terms
of the identified scenes, SceneDroid achieves 22.93, which
is twice of most other tools (1.63 in GoalExplorer, 9.53 in
ICCBot, 13.83 in StoryDistiller, 9.95 in Gator, respectively).

The reason for SceneDroid’s superior results is that
SceneDroid introduces smart exploration, which is used to

obtain the scenes during dynamic exploration, thus enabling
the launch of activities even without using ICC messages.
It alleviates the limitations of existing tools that rely on the
accuracy of ICC message extraction, effectively enhancing the
activity coverage of SceneDroid during the dynamic process.
Smart Exploration also introduces the indirect launching phase
for failure activities, which helps SceneDroid to explore as
many different scenes on an activity as possible. Moreover,
fuzzing for EditText, CheckBox, Switch Button, etc., is an
exclusive feature that enables SceneDroid to interact with more
components than other tools.

While StoryDistiller also adopted the idea of combining
static and dynamic exploration to build UI models with UI
screenshots, it does not perform well because (1) StoryDistiller
works with activity as a granularity. While it also tries to
trigger each interactive component presented in the activity,
it will only go to explore the ones that start the initial activity.
Besides, it ignores the possibility of triggering components
that will access a scene such as Fragment or Menu, where
the newly emerging interactive components may trigger new
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scenes and new transition relations. (2) StoryDistiller relies
on ICC messages to launch the activity and cannot be as-
sisted through the transition pairs obtained by the dynamic
exploration process; (3) StoryDistiller does not use fuzzing to
increase interactions.

As the static analysis methods ignore many of the transition
relations brought about by the presence of special components
in the new view during analysis. Some components that can
trigger the new scene exist in some new views (e.g., Nav-
igation, Snackbar, and BubbleMetaData), while these static
methods do not resolve the views, preventing them from
triggering the new scene. For example, none of the existing
tools properly handle the transition pairs initiated by the
Navigation components or navigated using Tabbed Navigation
UIs, as shown in Fig. 7. Another example is in Fig. 5, they
fail to properly analyze the transition pairs from the Naviga-
tion Drawer to the GallerFragment, SlideshowFragment, and
Fragment2. Navigation is the interaction that allows users to
navigate across, into, or back out from different content blocks
in an app [17], which is introduced in Android 3.3.

For StoryDistiller, it is based on the grain of activity,
and discovering scenes containing Navigation components is
beyond the capability of StoryDistiller. For ICCBot (which
claims to be able to model Fragments) and GoalExplorer
(which is optimized explicitly for Drawer) also fail to correctly
discover the transition pairs generated by the Navigation com-
ponent. This is because the API modeling of these tools failed
to keep pace with Android evolution, and neither of them
correctly modeled Navigation’s API introduced in Android 3.3.
Specifically, in the Fragment-Aware Transition and Extraction
phases, both of ICCBot and GoalExplorer only captured the
APIs commonly used by FragmentManager. For example,
when identifying the addition of a fragment, the APIs such
as add(Fragment, String) are captured, while Goal-
Explorer only models the DrawerLayout.openDrawer
API when dealing with the component Drawer. However, the
APIs used for jumping between fragments in the Navigation
component are Navigation.navigate(actionID) and
Navigation.navigateUp(). Therefore, they both fail to
handle scenes and transition pairs based on the Navigation
component properly.
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We separately run these tools on the 100 apps and set a timeout of 15 minutes for each app in the static
analysis phase because, for some closed-source applications, some static analysis methods can be time-
consuming due to internal errors. For the evaluation metrics, we use the number of explored activities,
the number of explored scenes, and the number of UI transition pairs to evaluate the performance of
each tool. Note that since ICCBot [23] generates ICC relation of the four major components of Android
(i.e., Activity, Service, Content Provider, and Broadcast Receiver), while we focus on the UI model
construction, we thus only consider the components related to UIs from the result file, i.e., activity and
fragment. Specifically, we consider the four transition relations from Activity to Activity, Activity to
Fragment, Fragment to Activity, and Fragment to Fragment, to compute the number of transitions of
ICCBot [23].

4.3.2 Result

The comparison result of these tools is shown in Figure 6. We can see SceneDroid outperforms other
four tools in all metrics. On average, SceneDroid extracts 30.25 transition pairs (0.81 in GoalExplorer [4],
13.52 in ICCBot [23], 12.03 in StoryDistiller, 18.68 in Gator, respectively), and in terms of the identified
scenes, SceneDroid achieves 22.93, which is twice of most other tools (1.63 in GoalExplorer [4], 9.53 in
ICCBot [23], 13.83 in StoryDistiller, 9.95 in Gator [26], respectively).

The reason for SceneDroid’s superior results is that SceneDroid introduces smart exploration, which is
used to obtain the scenes during dynamic exploration, thus enabling the launch of activities even without
using ICC messages. It alleviates the limitations of existing tools that rely on the accuracy of ICC message
extraction, effectively enhancing the activity coverage of SceneDroid during the dynamic process. Smart
Exploration also introduces the indirect launching phase for failure activities, which helps SceneDroid to
explore as many different scenes on an activity as possible. Moreover, fuzzing for EditText, CheckBox,
Switch Button, etc., is an exclusive feature that enables SceneDroid to interact with more components
than other tools.

While StoryDistiller also adopted the idea of combining static and dynamic exploration to build UI
models with UI screenshots, it does not perform well because (1) StoryDistiller works with activity
as a granularity. While it also tries to trigger each interactive component presented in the activity,
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Answer to RQ2: SceneDroid extracts 30.25 transition
pairs and 22.93 scenes on average, which significantly
outperforms the existing tools (i.e., 1.63 in GoalExplorer,
9.53 in ICCBot, 13.83 in StoryDistiller, and 9.95 in Gator)
in terms of scene exploration on our collected 100 apps.

C. RQ3: Ablation study on different strategies

1) Setup: To evaluate the contribution of different strategies
(i.e., State Fuzzing, Scene Identification, and Indirect Launch
strategy) in SceneDroid for improving UI exploration, in this
RQ, we conducted an ablation study. Specifically, we tested
with a modified SceneDroid based on the dataset in RQ2,
which can disable a particular strategy alone and we can
separately evaluate the three strategies. We ran SceneDroid
with different strategies disabled for each of the 100 apps and
set a 15-minute runtime limit for each app during the analysis
phase, the same setup as that in RQ2. Given that it may get into
a duplicate state when some strategies are disabled, leading to
extra time consumption, we also set a time limit of 30 minutes
during the dynamic run phase. We evaluate the effectiveness
of each strategy based on the number of explored activities,
scenes, and UI transition pairs.

2) Result: The results of the ablation study are displayed
in Fig. 8. The Indirect Launching strategy has the most impact
on the test results of the tool, followed by the Scene Identi-
fication strategy. Specifically, in terms of activity exploration
capability: the Indirect Launching strategy achieved an average
improvement of 15.59% vs. 7.70% in the Scene Identification
strategy and 4.76% in the State Fuzzing. Regarding the ability
to explore Scenes, the Indirect Launching strategy provides an
average 47.02% improvement vs. 21.72% in the Scene Identi-
fication strategy and 3,43% in the State Fuzzing. The Indirect
Launching strategy provided an average 35.08% increase in
the extraction of transition pairs. In comparison, the Scene
Identification strategy provided an average of 19.86% increase,
and State Fuzzing provided an average of 7.89% increase.

From the results, we can see that the Indirect Launching
strategy contributes the most to the exploration capability of
SceneDroid. The possible reason is that, since Activity is the
carrier for all scenes and transition pairs, once SceneDroid is
able to explore a new Activity that cannot be directly launched
before, it would also explore a lot of new scenes and transition
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relations. It would be a practical strategy when the current
static analysis techniques cannot fully construct the required
context for launching activities correctly.

For the Scene Identification strategy, it brings a relative
improvement to the scene exploration capability, proving that
introducing the Scene Identification strategy is a justified
choice. During the experiments, we found that disabling the
Scene Identification strategy made it susceptible to repetitive
scene exploration, which resulted in insufficient data. Once
the tool gets stuck in repeated scene exploration, it is unable
to exit automatically and thus fails to explore the whole
application in a limited time. As in the case of the Scene
Identification strategy described in the Approach section, apps
like Simple Draw Pro get stuck because they cannot identify
subtle scene differences. From the experimental results, with
the Scene Identification strategy disabled, the tool was able to
explore only seven different scenes. It was stuck in a repetitive
exploration of the palette scenes. The introduction of the Scene
Identification strategy proved to be feasible.

As for the State Fuzzing strategy, the boost is primarily
because many apps contain UI components that users can
interact with but do not directly cause scene transitions,
including EditText, CheckBox, Switch Button, etc. However,
these types of components can change the execution path
of the application, making it possible to explore more new
states and scenarios. In particular, many apps have scenes that
require account passwords or search boxes, which may limit
the exploration of scenes if not populated with appropriate data
in the EditText component. Although the current State Fuzzing
strategy improves the whole exploration, the improvement is
relatively small, because some apps require legitimate input
(e.g., specific account numbers and passwords) to be provided.

Answer to RQ3: The Indirect Launching strategy has
made the most significant contribution, with an average
improvement of 15.59%, 47.02%, and 35.08% in terms
of activity exploration, scene exploration, and transition
pairs extraction, respectively. The improvement is at least
twice as effective as the Scene Identification strategy (7.7%,
21.72%, 19.86%) and State Fuzzing strategy (4.76%,
3.43%, 7.89%).

V. FUTURE APPLICATIONS AND DISCUSSION

A. Future Applications

In this paper, we conduct fundamental work in UI explo-
ration and fine-grained scene modeling, which can facilitate
several follow-up research such as regression testing, and GUI
testing for Android apps.

1) Regression testing: One of the meaningful areas of
Android app testing is regression testing, as regression testing
aids agile development in building quality apps. Moreover,
related work shows that reusing test samples contribute to the
efficiency of Android regression testing [22]–[24]. Through
experiments, we have demonstrated that SceneDroid bene-
fits from the high-precision UI model it builds and enables
effective detection of modification scenes and components
occurring in different app versions. By leveraging SceneDroid,
developers can focus more on testing the changed or added
components or scenes, avoiding keeping testing on the previ-
ous functions. Besides, with the help of SceneDroid, develop-
ers can write targeted test cases manually or using automated
tools depending on the testing report. Goal-driven test case
writing reduces the redundancy of testing and significantly
saves the time required for testing.

We also conducted a pilot study to investigate whether
SceneDroid is capable of identifying fine-grained UI changes
between different versions of the same app. Specifically,
we randomly selected 30 apps in the dataset of RQ2 and
collected the three latest minor versions [25] of each app as
the evaluation subject. As for UI changes (i.e., updates), we
abstract the following two cases as updates: one is adding
or deleting scenes, and the other is modifying components
within the scene. We identify the UI changes by comparing
the component tree of the two scenes (with the same execution
path) of the two versions, SceneDroid checks layer by layer
whether any nodes have been added or deleted or the properties
of the old nodes have been changed. Based on the dataset
and the update localization method, we aim to investigate the
number of scenes and transitions updated in the newer versions
that are identified by SceneDroid.

As a result, SceneDroid found 135 updates of scenes and
284 updates of transition pairs in 60 adjacent version itera-
tions of 30 apps. On average, each version update introduces
1.50 scene variations and 3.20 variations of transition pairs,



indicating that scene updates are relatively frequent during
app evolution. Take the app V2Ray [26] as an example,
which is a Material-Design-compliant web proxy application.
We first discover an update of the NavigationV iew on the
DrawerLayout. As shown in Fig. 9, from version 1.4.0 to
1.5.0 of the app, V2Ray was updated to support the custom
functional modules (i.e., Geoip and Geosite). This feature up-
date visually reflects the difference in scene, with a new entry
for “Geo asset files” in NavigationV iew. The identifier of
this scene is also changed from “ae96...7e50” to “dcb1...26ec“,
which can also be found visually in the SceneTG (Fig. 9(a)).
SceneDroid then applies the location algorithm mentioned
above to find an additional node in the tree with a resource-id
of “com.v2ray.ang:id/user asset setting”, thus pinpointing the
range affected by the update.

In addition to the updated case of NavigationView on
DrawerLayout, we also found an updated case on Spinner in
V2Ray. As shown in Fig. 9(b), the new version of V2Ray adds
support for various forms of encryption, including “chacha20”
and “aes-256-gcm”, an update option that would be ignored if
it were a traditional ATG or STG constructed by GoalExplorer.
On the other hand, the SceneTG defined by SceneDroid detects
this granularity update very well. SceneDroid can also find the
updated scene on Menu. This Menu update case is unusual
because it happens on a nested Menu (as shown in Fig.
9(c)). Version 1.3 added support for the VLESS protocol
compared to version 1.2, so there is a new entry point on
the Menu imported by the protocol. SceneDroid observes the
scene update on this first Menu; however, it can be seen that
there is also a custom configuration option. Clicking on this
custom configuration option, SceneDroid finds a second Menu,
adding in version 1.3 the ability to restart all services, which
needs to be triggered in the second nested Menu. This UI
update could not be found if only the general activity or
activity to Menu level granularity was created. Due to the fine
granularity of the scene and the exhaustive exploration strategy
introduced by SceneDroid, UI updates in the nested Menu can
be discovered accurately. SceneDroid can identify the fine-
grained UI changes based on graphs of SceneTG between
multiple versions of the same app.

2) Android UI testing: Prior research has shown that even
with the current state-of-the-art Android GUI testing kits,
the activity coverage is still not high [9]–[11], [27]–[29].
We believe SceneDroid primarily contributes to improving
the existing Android GUI testing efforts in the following
two aspects. (1) The indirect launch strategy for activities
proposed by SceneDroid could help the existing tools no
longer rely solely on the correctness of the constructed context
for activity launching, especially for activities that fail to be
launched with the current context information. It facilitates
the existing testing tools to launch more activities and may
finally achieve improvement in the coverage criterion (e.g.,
activity/method/code coverage). (2) Existing Android GUI
test suites usually apply random or modeled strategies. The
success of AFL [30] in the binary domain has shown that
coverage-based evolutionary algorithms have great potential.

Note that activity-based coverage metrics are too coarse from
some specific perspectives, for example, there are many scenes
that are bound to a single activity, covering the activity does
not mean covering all the functionalities in the activity. The
fine-grained UI model generated by SceneDroid is helpful in
building a scene-based coverage metric. In that case, this more
refined metric may motivate the usage and improvement of
evolutionary algorithms in Android GUI testing.

B. Limitations

Limitations of SceneDroid come from two aspects. (1) Fail-
ure in launching some activities. Despite our proposed smart
exploration strategy, some activities still fail to be launched
for various reasons, such as the presence of some activities
that require authentication (e.g., login), inconsistent activity
declarations between the AndroidManifest.xml file and the
implementation code, and limited interaction types. We con-
sider SceneDroid could be improved by upgrading the types of
components that can be interacted with and by injecting some
random system-level events. For indirect launching failure,
which may be due to the change of component information
during testing, we can design a more reasonable way to record
the path of indirect launching for SceneDroid. (2) Poor support
for non-Native apps. Currently, SceneDroid and most Android
GUI testing tools are still for Android native apps [31]–
[33]; however, HTML5 technology [34] and cross-platform
development framework have become mainstream in industry
[34]–[36], such as React Native [37], Weex [38], Kotlin Native
[39], Flutter [40], etc., among which Flutter is a cross-platform
mobile UI framework strongly supported by Google. In the
future, we could work on improving SceneDroid’s support for
non-native apps.

VI. RELATED WORK

A. GUI exploration

GUI exploration is an important way of app abstraction
and GUI modeling [1]–[5]. In general, existing work can be
divided into two categories according to different goals of GUI
exploration.

1) GUI exploration for UI modeling: As Android apps are
event-driven and composed of activities for user interaction,
Activity Transition Graph (ATG) [2] or Window Transition
Graph (WTG) [3] is typically used to model the user interface
for Android apps. Note that, the extraction has been investi-
gated by both static and dynamic methods. For example, Yang
et al. [3] proposed Gator for extracting WTG based on the
stack of currently-active windows. The results include the pos-
sible GUI window sequences and their associated events and
callbacks. Chen et al. [1] introduced StoryDroid for statically
generating storyboards for Android apps by extracting ATGs
along with statically rendered UI pages. StoryDroid combines
the results provided by IC3 [41] and ATGs extracted with
Fragment and inner class features.

The most related works are GoalExplorer [4] and Sto-
ryDistiller [5]. Specifically, Lai et al. [4] proposed Goal-
Explorer, which statically models the UI screens and their



transitions between these screens. Apart from the original ATG
and WTG, GoalExplorer further extends the static model by
adding fragments, drawers, service, and broadcast receivers.
Different from this tool, we handle more features of the UI
screen through a smart dynamic exploration instead of a static
method. StoryDistiller [5] is an extension of StoryDroid [1],
which optimizes the original tool on ATG construction and
UI page rendering by combining the original static method
and novel dynamic exploration. The strategy of their dynamic
exploration is to traverse all clickable components of each UI
page that can be launched directly. The goal of dynamic explo-
ration is to obtain new activity transitions that are not parsed in
the static method. Compared with StoryDistiller, SceneDroid
aims to explore more scenes and scene transitions to construct
SceneTG by handling more features such as fragment, drawer,
menu, and dialog instead of ATG construction, which is more
fine-grained for app UI modeling.

2) GUI exploration for app testing: In the past decade,
Android app GUI testing approaches have evolved rapidly,
and many testing tools such as Monkey [42], Dynodroid [43],
Ripper [44], A3E [2], Sapienz [45], Droidbot [46], Stoat [47],
APEChecker [7], Ape [48], Humanoid [49], Fax [14], and
PSDroid [50] have been proposed to explore apps and detect
bugs or security bugs ( [51]–[53]). Since the goal of these tools
is to detect more bugs when dynamically testing the apps, the
UI transitions are usually incomplete due to the limitation of
low activity coverage and test case generation [1], [5].

There are two strategies used in app testing that are related
to our work. On the one hand, some of them first generated
the ATG statically and then conducted dynamic testing based
on it. For example, A3E [2] constructed the ATG by static
analysis and leveraged it to guide the dynamic test input
generation for app testing. However, many existing works
unveiled the statically constructed ATG neglects many activity
transitions due to the limitations of static program analysis
techniques [1], [15]. On the other hand, some work focused
on dynamic exploration for app testing and after testing,
they also provided the UI transition based on the dynamic
exploration. For example, Li et al. [46] proposed DroidBot,
a lightweight UI-guided Android test input generator. Apart
from the testing results such as test input and identified bugs,
DroidBot also generates ATGs for users. Pure dynamic testing
has limited activity coverage, significantly restricting ATG
completeness. Moreover, the adopted content-based compar-
ison method could produce redundant and duplicate states.

B. ICC resolution

Researchers have proposed a large number of tools for ICC
resolution such as Epicc [54], IC3 [41], IC3DIALDroid [55],
RAICC [56], ICCBot [15]. Many works that apply the ICC
results have been exhibited for various purposes. In fact, the
ICC results also can be used to improve the capability of UI
modeling. Yan et al. [15] conducted a comprehensive study
to evaluate the ICC resolution techniques. According to the
results in this paper, we choose ICCBot as a comparison
subject to demonstrate the effectiveness of SceneDroid. Com-

pared with the existing ICC resolution, (1) SceneDroid can
generate a more complete ATG and SceneTG through both
static and dynamic methods. (2) The corresponding UI page
of each scene is also provided for users instead of only a graph
structure of the UI transitions.

VII. CONCLUSION

In this paper, we proposed SceneDroid, which extracts GUI
scenes dynamically by combining three strategies. We present
the GUI scenes as a scene transition graph (SceneTG) to
model the GUI of Android apps with high transition coverage
and fine-grained granularity. Our empirical evaluation has
proved the effectiveness and usefulness of SceneDroid. The
constructed high-precision model can effectively identify UI
updates between different app versions and facilitate devel-
opers to design automated regression testing tools and help
develop future UI fuzzing testing tools, providing them with
effective coverage information.
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