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Abstract—Security databases such as Common Vulnerabilities
and Exposures (CVE), Common Weakness Enumeration (CWE),
and Common Attack Pattern Enumeration and Classification
(CAPEC) maintain diverse high-quality security concepts, which
are treated as security entities. Meanwhile, security entities are
documented with many potential relation types that profit for
security analysis and comprehension across these three popular
databases. To support reasoning security entity relationships,
translation-based knowledge graph representation learning treats
each triple independently for the entity prediction. However, it
neglects the important semantic information about the neighbor
entities around the triples. To address it, we propose a text-
enhanced graph attention network model (text-enhanced GAT).
This model highlights the importance of the knowledge in the
2−hop neighbors surrounding a triple, under the observation of
the diversity of each entity. Thus, we can capture more structural
and textual information from the knowledge graph about the se-
curity databases. Extensive experiments are designed to evaluate
the effectiveness of our proposed model on the prediction of
security entity relationships. Moreover, the experimental results
outperform the state-of-the-art by Mean Reciprocal Rank (MRR)
0.132 for detecting the missing relationships.

Index Terms—Security entity, Entity relation prediction, Secu-
rity database, Knowledge graph, Graph attention network

I. INTRODUCTION

Software with vulnerabilities and weaknesses when coding
or implementing are compromised more easily by attackers
through various attack patterns [1]–[4]. Security experts main-
tain a series of security databases to manage the document
of software vulnerabilities, weaknesses, and attack patterns,
in order to protect security and spread security knowledge.
Common Vulnerabilities and Exposures (CVE) [5] is a list
of publicly identified security vulnerabilities. For example,
CVE-2017-0327 is an elevation of privilege vulnerability in
the NVIDIA crypto driver. The Common Weakness Enu-
meration (CWE) [6] presents software weaknesses developed
by the security community such as CWE-120 is a classic
buffer overflow. Common Attack Pattern Enumeration and
Classification (CAPEC) [7] defines specific attack patterns and
relevant solutions to defense. The CAPEC-10 denotes its attack
pattern by “Buffer Overflow via Environment Variables” as an
example.

As entities in the three security databases, the CVEs, CWEs,
and CAPECs create a large number of relations (see in Fig. 1).
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Fig. 1. An illustration of security knowledge graph across CVEs, CWEs and
CAPECs.

For instance, the CVE-2018-15688 is a specific “Overflow”
vulnerability of CWE-119 via the relation BelongOf, and
the CAPEC-100 is the parent of CAPEC-10, which highly
summarize the attack pattern of buffer overflow. Obviously,
security entity relations give plenty of security information that
benefits experts for security analysis and further vulnerability
repair [8]. However, we observe the fact of missing relations,
such as the CAPEC-111 (JSON Hijacking (aka JavaScript
Hijacking)) is the “child” of the CAPEC-116 (Data Excavation
Attacks) that the relation ChildOf is appended until the CWE
database version 1.5. The literature [9] also clarifies the
importance of predicting the security entity relations.

Knowledge graph representation learning, which has been
widely used in text matching [10], path reasoning [11], and
question answering [12], is proved to effectively predict the
implicit security entity relations from the documentation of the
security databases [8], [13]. But the translational models in [8],
[9] learn structural and textual embeddings by using simple
operations and few parameters which are the low-quality em-
beddings. Furthermore, they consider the triple independently
so that the models cannot capture the potential relations in
the adjacent neighbors of each entity. Inspired by the graph
attention networks (GAT) [14] and the investigation of the di-
versity of entity relations (i.e., CWE-119 is TargetOf CAPEC-
10 while ChildOf CWE-118 in the graph.), we propose a text-
enhanced GAT model by representing each entity with the



latent knowledge from its 2−hop neighbors. In this model,
we firstly embed the graph structure through TransE [15] and
the entity descriptions via Word2Vec [16] and convolutional
neural network (CNN). After concatenating the knowledge
of structure-embeddings and description-embeddings from the
2−hop neighbors of a given entity, the attention layers are
followed to weigh different entities to guide the entity relations
prediction task.

Extensive experiments are conducted to investigate the
efficiency of our proposed text-enhanced GAT model. For the
newly downloaded CVE, CWE, and CAPEC entity relations
and relevant descriptions before July 20, 2020, we create
a security knowledge graph including 5, 416 entities (4, 003
CVEs, 891 CWEs, and 522 CAPECs) and 10, 502 relations (9
types). Our experimental results on this graph outperform the
state-of-the-art [9] by Mean Reciprocal Rank (MRR) 0.132 of
the overall performance when detecting the missing relation-
ships across existing entities. We then explore the effectiveness
of predict-head and predict-tail tasks for each relation type.
Additionally, the ablation study is further implemented to
inspect which part of the modules in our given model is the
most important one for the link prediction.

In summary, we make the following contributions:
• We design an advanced text-enhanced GAT model to

better represent and learn the structural and textual knowl-
edge from the security knowledge graph, which integrates
software vulnerabilities, weaknesses, and attack patterns.

• We consider the knowledge of 2−hop adjacent nodes as
the additional information to enrich the entity relation
features of a given security entity.

• We measure the performance of our proposed model
through extensive experiments and clarify the superiority
of the graph attention network for predicting relations of
security entities.

II. BACKGROUND

This section describes three security databases, i.e., Com-
mon Vulnerabilities and Exposures (CVE) [5], Common
Weakness Enumeration (CWE) [6], and Common Attack Pat-
tern Enumeration and Classification (CAPEC) [7]. All of them
have internal dependency relations and external dependencies
between each other, as shown in Fig. 1. Then we will also
explain the necessary part related to knowledge graph repre-
sentation learning.

A. Common Vulnerabilities and Exposures
As a well-known security vulnerability records, Common

Vulnerabilities and Exposures database [5] provides a unique
identification number (i.e., CVE-2009-2550 in Fig. 1) for each
public security vulnerability or exposure. Besides, one CVE
in the database has a standard textual description and at
least one public reference. It is beneficial for understanding
security vulnerability and evaluating relevant services, tools,
and databases [17] under such a dictionary structure, so that
a more understandable CVE-related database with abundant
semantic security knowledge needs to be established.

Fig. 2. An example of the vulnerability CVE-2019-14816 report

National Vulnerability Database (NVD) [18], the U.S. gov-
ernment repository of standards-based vulnerability manage-
ment data, supplements an additional analysis of the vulner-
ability, security databases, and a fine-grained search engine
for the CVE database. Specifically, it includes databases of
security checklist references, security software vulnerabilities,
software configuration errors, product names, and impact
metrics. The NVD also helps to automatically manage vulnera-
bility, update security metrics (all updates to the CVE database
appear immediately on the NVD database).

We collect and summary all information of CVEs from a
well-maintained website CVE details [19] that integrates the
CVE vulnerability data taken from the CVE database and
the NVD database. This website also combines the relevant
security modules of Exploit [20]. Thus we extract the CVE
vulnerability information from the CVE details and aim to dig
out more comprehensive security knowledge for assistants. For
each vulnerability, we crawl the CVE-ID, textual description,
and corresponding CWE-ID of this vulnerability, based on the
given web interface for vulnerability reports in the webpage.
Specifically, we regard that the CVE is associated with one
CWE as BelongOf, such as the CVE-2019-14816 is BelongOf
CWE-120 (see in Fig. 2).

B. Common Weakness Enumeration
Common Weakness Enumeration (CWE) is a list of soft-

ware and hardware weakness types developed by the security
community. The weakness defined by the CWE database
contains vulnerabilities, bugs, flaws, faults, and other errors
when developers design, code, or implement the software and
hardware. The network and even the whole system with those
weaknesses could be under attack [7]. The CWE database
provides abundant security knowledge relevant to those weak-
nesses, such as measuring sticks for security tools, services
for inspecting source code, and effective advice for designing
safe software architecture [6].

Under the guidance of the CWE database, we obtain secu-
rity recommendations on “Software Development”, “Hardware
Design”, and “Research Concepts”. We focus on the “Re-



TABLE I
DISTRIBUTION STATISTICS OF CWE RELATIONSHIP

Type BelongOf AttackOf ChildOf ParentOf CanPrecede CanFollow PeerOf Semantic

Number 4,003 1,067 1,084 1,084 129 129 113 713

search Concepts”, which includes both software and hardware
concepts and is the most critical issue. It gives the relations
between CWEs, such as CWE-59 is ChildOf CWE-706 (see in
Table I), which help security researchers to find the potential
knowledge of different CWEs.

We crawl 891 CWEs from the CWE database based on the
Research Concepts (Version 4.2). Each CWE has its CWE-ID,
textual description, relations of other CWEs, and related attack
patterns (i.e., the specific attack methods pointed at this CWE).
As is shown in Table I, we define 8 relations about the CWE
databases, which the BelongOf is the relation between CWE
and CVE, the AttackOf refers to the relation between CWE
and CAPEC, the ChildOf, ParentOf, CanPrecede, CanFollow
and PeerOf denote the relations between two CWEs, and the
Semantic shows the relation between one CWE and another
webpage hyperlink CWE in its weakness report.

C. Common Attack Pattern Enumeration and Classification
Common Attack Pattern Enumeration and Classification

database [7] provides a comprehensive dictionary of known
attack patterns (CAPEC) that are employed by attackers to ex-
ploit the software or hardware weaknesses in the applications
and systems. It helps analysts and developers to understand
how to operate attack patterns and how to advance cyberse-
curity. In the CAPEC database, an attack pattern includes the
common attributes and approaches taken by attackers. It also
presents the challenges to exploit the known weaknesses and
solve the potential risk. For example, CAPEC-34 means the
attack pattern “HTTP Response Splitting”, CAPEC-66 refers
to SQL Injection, and CAPEC-100 denotes Buffer Overflow.

For each CAPEC in the CAPEC database, we consider the
description of the attack pattern, relations, and the relevant
weaknesses as the critical features in the experiments. Fur-
thermore, the relation types of CAPEC are set as ChildOf,
ParentOf, CanPrecede, CanFollow, and PeerOf that all of
those present the relation between two CAPECs. And we
regard the relation between CAPEC and its related weakness
(CWE) as TatgetOf. Table II gives the detailed distribution.
Note that the number of TatgetOf in Table II is 1, 067 which
is equal to the number of AttackOf in Table I. Because they are
just different aspects to explain the relation between weakness
(CWE) and attack pattern (CAPEC).

D. Knowledge Graph Representation Learning
The knowledge graph representation learning attempts to

represent entity and relation into a low-dimensional dense
vector. Then the training model based on representation learn-
ing continuously optimize the hyperparameters in the function
f(h, r, t) and predict the missing element in the given triple

TABLE II
DISTRIBUTION STATISTICS OF CAPEC RELATIONSHIP

Type ChildOf ParentOf CanPrecede CanFollow PeerOf TargetOf

Number 495 495 77 33 13 1,067

〈h, r, t〉 (see the specific definition in Section III-A). For
instance, given any two elements of the triples <CAPEC-
54 (Query System for Information), ChildOf, CAPEC-116
(Excavation)>, we can infer the other one by the training
neural network model. We adopt TransE [15] to initialize
neural vectors of the entity-relation structure, and adopt graph
attention neural network [14], [21] to concatenate the structure
information and textual information for later prediction.

III. APPROACH

In this section, we present the overview of our approach as
shown in Fig. 3. This encoder-decoder model architecture aims
to predict entity relations in the generated security knowledge
graph, based on the proposed text-enhanced graph attention
neural network.

A. Security Knowledge Graph Generation
We first construct a security knowledge graph as shown

in Fig. 3 a), based on all the security knowledge of the
CVE, CWE, and CAPEC databases. We formulate this security
knowledge graph as G = (E,R, S), where E, R, and S rep-
resent the set of all entities, relations, and triples respectively.
Each triple S is defined as S = 〈h, r, t〉, where h, r, and t
denote the head entity, relation, and tail entity, respectively.
For instance, in the triple <CVE-2010-5321, BelongOf, CWE-
190> in Fig. 1, the node CVE-2010-5321 is the head entity,
the node CWE-190 is the tail entity, and the edge BelongOf
is the relation between them. This graph consists of 4, 003
CVEs, 891 CWEs and 522 CAPECs. As is shown in Table III,
the CVE, CWE, and CAPEC databases have 9 categories
of relations. We regard 6 out of 9 categories are internal
relations in which both head entity and tail entity belong
to the same database (i.e., CWE or CAPEC database). The
other 3 categories are external relations that the head entity
and tail entity come from different databases. Note that the
external relation contains abundant semantic knowledge from
the textual description. Fig. 4 shows an example <CWE-120,
TargetOf, CAPEC-10> with an external relation TargetOf.
We observe that it specifically explains the reason why the
program with weaknesses may lead to a vulnerability and how
the attacker exploits such vulnerability with an attack pattern.
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Fig. 3. Overview of our approach. KG refers to the knowledge graph.

                       head entity           relation           tail entity

Triplre        :           <     CWE-120 ,    TargetOf ,    CAPEC-10     >

Description :  
The program copies an input 

buffer to an output buffer 
without verifying that the size 
of the input buffer is less than 
the size of the output buffer, ...

This attack pattern involves 
causing a buffer overflow 
through manipulation of 

environment variables. Once 
the attacker finds that ...

Fig. 4. A triplet example in the knowledge graph

B. Structure-Embedding and Description-Embedding Gen-
eration

Two strategies to embed the created security knowledge
graph in Section III-A are shown as follows.
Structure-Embedding Generation. Given the structure in-
formation of entities and relations in the security knowledge
graph, as shown in Fig. 3 b, we adopt TransE [15] to train
such triples as the initial structure embedding. Thus we avoid
the negative influence of the structure information ignored by
random initialization, and efficiently obtain relational knowl-
edge across the three security databases. We set this structure-
embedding vector with a dimension of 100.
Description-Embedding Generation. As is shown in Fig. 3
c), this section aims at representing the textual description
of each CVE, CWE, and CAPEC, and extracting as many
semantic knowledge features as possible.

We firstly tokenize the textual sentences, remove stop
words, and stem those sentences by using NLTK (a python
NLP toolkit). The tokens (words) are sent into a word2vec
model [16] that has been widely used in [8], [22], [23]. Each
word x is transformed into a vector with the dimension of 100.
We concatenate all word vectors in every entity description so
that a sentence vector is produced by using the formulation
Dn = x1 ⊕ x2 ⊕ ... ⊕ xn, where ⊕ means the connection
operation and xi ∈ X (X is the word dictionary of all
databases). Note that we set the sentence length as 375 (the
max sentence length). If the length of one entity description
is less than 375, we append 0 as substitution until its length

is as long as 375. And we initialize the relevant vector as 0
with the dimension of 100 as well.

Those 375× 100 sentence vectors are fed into a two-layer
convolutional neural network (CNN). We set the width of the
kernel as 100 to scan the convolutional feature space and
apply the ReLU for activation operation. The first CNN layer
is followed by a k-max (k = 20) pooling layer. We adopt
k-max pooling instead of max pooling because the former
better represents the frequent features and obtains the position
information in the feature space. Then the convolutional neural
feature is sent into the second CNN layer. After activated by
ReLU, we use an average pooling layer to squeeze such neural
features and gain its global average feature.

Finally, those structural feature vectors produced by TransE
(100 dimension) and textual feature vectors produced by CNN
(100 dimension) are concatenated into a feature vector with
the dimension of 200.

C. Knowledge Graph Attention Layer
We have extracted features based on two different dimen-

sions of structural and textual description through concate-
nation operation and multi-layer perceptron, and obtained a
vector expression that combines two vector representations.

In our proposed security knowledge graph, we observe
that the same entity plays different roles via the relations
they are linked with. For example, CAPEC-10 is ChildOf
CAPEC-100 in the graph. At the same time, it is PeerOf
CAPEC-13. This inspires us to devote to the 2−hop neighbors
around all entities, and the reason why we use 2−hop is
that 2−hop between entities account for the vast majority.
Therefore, one entity acquires additional entity and relation
knowledge from its 2−hop neighbors. In this path of 2−hop
neighbors, the embedding values of relations are summed up
which is considered as an expended relation embedding value.
Meanwhile, the embedding values of entities are normalized
after each graph attention layer (see in Fig. 3 d)) in order to
prevent the issue of the state explosion.

In detail, we propose a multi-head attention neural network
layer to extract those extending 2−hop entity and relation
features for generating a concatenated vector ρ(h,r,t), as shown
in Fig. 3 d). Then a single-layer feedforward neural network



is followed with the inspiration of attention mechanism. We
adopt the activation function LeakyReLU to calculate the
attention weight α(h,r,t) of each neighbor node of the entity
h in a triple before it is normalized (Equation 1),

α(h,r,t) = LeakyReLU(Wρ(h,r,t)). (1)

W is the linear transformation matrix. To get the normalized
attention value, a softmax layer is applied to update the
attention coefficient is β(h,r,t) through

β(h,r,t) =
exp (α(h,r,t))∑

n∈Nh

∑
r′∈Rhn

expα(h,r′,n)
, (2)

whereNh denotes a set of neighbor nodes of entity h, andRhn

is a set of relations between entity h and its neighbor node n.
So the new embedding value of this entity is updated with the
sum of all neighbor node attention values after normalization
operation in Equation 2. In the next step, we perform a
linear transformation on this updated embedding value of the
entity. The initial embedding value of this entity is added
into its linear transformed embedding value which is to avoid
losing its initial embedding information during the process of
learning. With such multi-head attention neural network, we
learn the deeper neural features of the entity and relations.

D. Model Training
We apply hinge-loss as the loss function to optimize our

proposed model, which is shown in Equation (3),

L =
∑

(h,r,t)∈S

∑
(h,r,t)′∈S′

max{f(h,r,t) − f(h′,r,t′) + γ, 0}, (3)

where (h, r, t) represents a valid triple in the set of valid triples
S and (h, r, t)′ refers to an invalid triple with the head entity
or tail entity randomly replaced in the set of invalid triples S′.
Besides, S′ is given formally as

S′ = {(h′, r, t)|h′ ∈ E \ h} ∪ {(h, r, t′)|t′ ∈ E \ t}. (4)

The f(h,r,t) in Equation 3 defines the L2-norm dissimilarity
measure f(h,r,t) = ‖h+ r − t‖21

2
to be minimized for opti-

mization. The hyperparameter γ is a margin hyper-parameter
to determine the boundary of the correct and wrong triples,
which is set larger than 0.

E. Decoder Design
Given the encoded entity and relation feature vector of one

triple <h, r, t>, we apply ConvKB [24] to decode such feature
vector. The convolutional layer in ConvKB is beneficial for
analyzing the global embedding values of the triple when
traversing each feature dimension. It also generates a transla-
tion characteristic. We use ReLU to activate the output value of
the convolutional layer. Then the score function is formulated
as,

F = concat
(
ReLU

( [
~h,~r,~t

]
∗ Ω
))

W, (5)

where Ω denotes the convolutional filter,
[
~h,~r,~t

]
is the vector

representation of the entity and relation vector after the con-
catenation operation, and ∗ means the convolutional operation
between them. After activated by ReLU, we concatenate
multiple feature maps of the same dimension by the function of
concat(), then we multiply them with a linear transformation
matrix W ∈ Rnk×1 to produce the final score of the triple
<h, r, t>. Different from the encoder model, we adopt the
soft-margin loss as the loss function shown in Equation (6),

L =
∑

(h,r,t)∈{S∪S′}

log(1 + exp (l(h, r, t) · F)) +
λ

2
‖ W ‖22,

(6)
where l(h, r, t) is defined as Equation (7),

l(h, r, t) =

{
1 for(h, r, t) ∈ S
−1 for(h, r, t) ∈ S′ . (7)

In addition, we employ the batch gradient descent method
to update all hyperparameters based on the adam algorithm,
which helps to decrease the training time and search the global
optimum value.

IV. EXPERIMENT

In this section, extensive experiments are conducted to
evaluate and discuss the effectiveness of our text-enhanced
GAT approach compared with the baselines, followed by three
Research Questions (RQ):
• RQ1: How effective is our text-enhanced GAT approach

in security entity relationship predictions, compared with
the baseline method?

• RQ2: Can our approach predict well in each type of
security entity relationship?

• RQ3: How sensitive can our approach learn from the
complexity of structural and textual embedding compared
with the ablation studies?

A. Experiment Setup
1) Dataset: We use BeautifulSoup1 to crawl and parse

webpages of the CVE, CWE, and CAPEC databases. For the
webpages of each CVE, we collect its textual descriptions
and corresponding CWE-ID. And we get CWE descriptions
of each CWE and 8 relations of them such as ChildOf,
ParentOf, etc. The textual descriptions of the CVE database
and the CWE database only contain the systems such as
Debian Linux, Linux Kernel, and Ubuntu Linux, before July
20, 2020. As attack patterns are more important in the CAPEC
databases, we mainly use the information textual descriptions
of each CAPEC and 6 relations of them such as CanPrecede,
CanFollow, etc. We collect the newest CWE-CAPEC relations
and relevant descriptions based on the CWE database with
Version 4.2 and the CAPEC database with Version 3.3. To
sum up, we create a security knowledge graph including 5416
entities (i.e., 4, 003 CVEs, 891 CWEs and 522 CAPECs), 9
relationship types (the distribution of relations are shown in

1BeautifulSoup, https://beautifulsoup.readthedocs.io/zh CN/v4.4.0/.



TABLE III
DISTRIBUTION OF RELATIONS IN THE SECURITY KNOWLEDGE GRAPH

Type Internal relation External relation
ChildOf ParentOf CanPrecede CanFollow PeerOf Semantic BelongOf AttackOf TargetOf

Number 1,579 1,579 206 162 126 713 4,003 1,067 1,067

TABLE IV
OVERALL PERFORMANCE OF LINK PREDICTION COMPARED WITH THE BASELINE

MR MR MRR MRR Hits@N

Prediction Model (Filtered) (Raw) (Filtered) (Raw) @5(Filtered) @5(Raw) @10(Filtered) @10(Raw)

Head entity TransH combined text model1 197 338 0.536 0.214 0.526 0.327 0.599 0.371
〈?, r, t〉 Text-Enhanced GAT 158 285 0.667 0.254 0.723 0.342 0.745 0.440

Tail entity TransH combined text model 40 44 0.582 0.401 0.597 0.536 0.648 0.575
〈h, r, ?〉 Text-Enhanced GAT 33 36 0.714 0.490 0.756 0.600 0.795 0.703

Average TransH combined text model 119 191 0.559 0.308 0.562 0.432 0.624 0.473
result Text-Enhanced GAT 96 161 0.691 0.372 0.740 0.471 0.770 0.577

1TransH combined text model is the baseline model.

Table III), and 10502 triples as our dataset. We randomly pick
out 85% triples (8, 923) as the training set, 5% triples (519)
as the verification set, and the rest 10% triples (1, 060) as the
test set.

2) Hyperparameters: We implement the proposed text-
enhanced graph attention network model with PyTorch. In
detail, the weight attenuation coefficient of the GAT model
is set to 5e−6, and the weight attenuation coefficient of the
convolutional layer is set to 1e−5. We update the parameters of
the network with a learning rate 1e−3. For each convolutional
layer, the dropout rate is defined as 0.3 to relieve the issue of
over-fitting [25]. We perform batch training on all training data
each time, i.e., the batch size is 8923 during training in order to
discover the optimal value. We choose Adam algorithm [26] as
optimization function with its recommended hyperparameter.
All experiments are run on an NVIDIA Tesla M40 GPU server.

3) Evaluation Metrics: For each triple, we aim at predicting
the missing element based on the other two elements and
provide a list of candidates in order for such a missing element.
We adopt Hits@1, Hits@3, Hits@5, Hits@10 to evaluate the
performance of the prediction [8], [21], [27]. We also use
Mean Rank (MR) and Mean Reciprocal Rank (MRR) as the
evaluation metrics. The MR evaluates the average position
(in the candidate order) of the correct prediction for the test
dataset [8], [27]. And the MRR represents the average value
of the reciprocal rank of the correct entity for each prediction
task [27].

B. RQ1: How effective is our text-enhanced GAT approach
in security entity relationship predictions, compared with the
baseline method?

Setup. In this RQ, we investigate the prediction performance
of our proposed approach based on the constructed security
knowledge graph. In the given test set with 10% (1, 060)
triples, we simulate the missing relational facts by randomly
removing the head or tail entity of each test triple to generate

a predict-head (or tail) task — 〈?, r, t〉 or 〈h, r, ?〉. The real
head entity h or tail entity t in the tripe 〈h, r, t〉 is regarded as
the correct one to be predicted. We evaluate all experimental
settings in both Filter and Raw [9], [27]. For the type of Filter,
we delete the corrupt triples that have been in the test set,
while such corrupt triples are retained for later prediction in
the type of Raw. In general, Filter has a lower MR value
and a larger Hits@10 value [27]. Compared with the baseline
(i.e., the TransH combined text model) in [9], we calculate the
evaluation metrics in Section IV-A for link prediction tasks,
which includes both predict-head and predict-tail tasks with
overall performance.
Results. Overall Performance. Table IV presents the over-
all performance of the link prediction task compared with
the baseline TransH combined text model [9], by using the
same dataset listed in Section IV-A. We concentrate on the
experimental results with the type of Filter. Because they
have the same conclusions on the experiments to evaluate the
improvement of the proposed model compared with baseline.
As is shown in Table IV, the difference between Filter and
Raw are just the former has lower MR value, larger MRR
value and larger Hits@N value (N is 5 or 10). So all of the
followed experiments are conducted with the Filter type.

We first analyze the average results on four metrics MR,
MRR, Hits@5, and Hits@10 in Table IV. Our text-enhanced
GAT model finds the correct entity to be predicted more early
than the baseline, which is decreased from 119 to 96 under
the setting of Filter. It also rises 0.132 MRR value from 0.559
to 0.691. From the aspect of Hits@N , we observe that the
result of Hits@5 and Hits@10 increase 0.178 (from 0.562
to 0.740), 0.146 (from 0.624 to 0.770), respectively, when
taking the Filter setting. This infers that the text-enhanced
GAT model can not only represent the textual description of
an entity but also extract more advantageous relations from
the 2−hop neighbors. Similarly, the predict-head and predict-



tail tasks also benefit from the proposed model. The value of
MRR, Hits@5, and Hits@10 are improved by 0.131, 0.197,
and 0.146 when predicting the missing head entity. And for
the task of predict-tail task, MRR, Hits@5, and Hits@10 grow
by 0.132, 0.159, and 0.147 respectively. Therefore, compared
with baseline, our model promotes the prediction results of
predict-head and predict-tail tasks with similar improvement.

The text-enhanced GAT model outperforms the state-
of-the-art [9] on the overall performance for both the
predict-head task and the predict-tail task.

C. RQ2: Can our approach predict well in each type of
security entity relationship?

Setup. We further explore the model performance of link pre-
diction tasks for each defined relation type listed in Table III
with the metrics Hits@N values.
Results. Performance of Link Prediction for Each Relation
Type. As is shown in Table V, the performance of our method
varies across different relation types and across different
prediction tasks. Table III presents 5 types of relations which
have more than 1, 000 relations (i.e., ChildOf, ParentOf, At-
tackOf, TargetOf, BelongOf ). 4 types out of them achieve
high Hits@N values for both predict-head task (0.766-0.953)
and predict-tail task (0.627-0.953) except BelongOf with the
most relations 4, 003. For the BelongOf, it gains high Hits@N
values larger than 0.621 for the predict-tail task, while it can
hardly predict the correct head entity with Hits@N values
even lower than 0.214. The rest four relations types Can-
Precede, CanFollow, PeerOf and Semantic have few relations
lower than 1, 000. The CanPrecede and CanFollow also get
high (larger than 0.625) Hits@N for both prediction tasks.
However, the results of PeerOf and Semantic are different
with different N in the Hits@N . For example, although the
prediction performance of Hits@10 values is more than 0.645,
the Hits@1 values are below-0.5 (even only 0.125 for the
PeerOf on the predict-head task).

Three factors are discussed below that make effects on the
prediction results of Table V. Firstly, more triples trained for
one relation type will provide more entity relation knowledge
which then improves the results. Thus, the relation types with
sufficient data (i.e., ChildOf, ParentOf, AttackOf, TargetOf )
gives better Hits@N values, while the PeerOf relation is
relatively low. However, due to the diversity of mapping
between the CVE (head) and CWE (tail) entity (“many-
to-one” for “CVE-to-CWE)” in the relation type BelongOf,
it is difficult to find the correct CVE (head) entity based
on the knowledge from only one CWE (tail) entity. So the
Hits@N values for the combination of BelongOf and predict-
head task are very low. On the opposite, the predict-tail
task gives high Hits@N values because more CVE (head)
entities produce ample structural and semantic information
to search for the correct CWE (tail) entity. For the types
CanPrecede and CanFollow with few triples 206 and 162
respectively, they also has high Hits@N values. The reason

may be the stability of both textual description and relevant
structure of such types. The CanPrecede always denotes
the triples with preceding relation. For instance, CWE-1260
precedes CWE-119 under the description “The product allows
address regions to overlap, which can result in the bypassing
of intended memory protection”. The CanFollow means the
following relation, such as CAPEC-491 follows CAPEC-228
with the description “An adversary exploits a few properties of
XML(substitution entities and inline DTDs) to cause a denial
of service situation”.

For the constructed 9 types of relations, it is better to
collect more relations to generate a well-predicted model.
Meanwhile, the diversity of triples also affects the result
of link prediction, such as the relation type BelongOf with
very low Hit@N values although it has the most training
relations.

D. RQ3: How sensitive can our approach learn from the
complexity of structural and textual embedding compared with
the ablation studies?

Setup. We conduct an ablation study to further investigate the
impact of our approach after omitting the part of CNN layers,
TransE initialization, and attention layers. Then 3 revised
models (i.e., M-1, M-2, M-3 for the mentioned three revisions
respectively) are created to test the link prediction perfor-
mance with metrics MR, MRR, Hits@1, Hits@3, Hits@5, and
Hits@10.
Results. Table VI shows the results of 3 revised models (i.e.,
M-1, M-2, and M-3) compared with our source model. We
identify that removing CNN layers, the M-1 model, suffers the
least negative influence. It rises 56 MR to 152, decreases 0.068
MRR to 0.623, and the Hits@N values go down 0.06 ∼ 0.073.
Then, the model with the second negative influence is M-2 to
remove TransE. M-2 turns MR up to 239 and the MRR value
down to 0.526. The Hits@N values of M-2 are affected by
the drop of 0.073 ∼ 0.207 on the basis of the source model.
The attention layers are obviously the most important part of
the text-enhanced GAT model. When omitting the attention
layers, the M-3 model only achieves MRR 0.482 with the
most decreasing of 0.209 for the source model. It also gives the
largest MR 264 and the least Hits@N values in 0.401 ∼ 0.583.

In the proposed text-enhanced GAT model, the part of
the attention layer greatly affects the prediction perfor-
mance, by embedding the information of 2−hop neighbor
nodes into one entity to extract more textual description
knowledge from the graph. The initialization of TransE
also provides critical structural knowledge of this security
graph.

E. Discussion
In this section, we present a case study of the proposed

security knowledge graph, which predicts the related CWE



TABLE V
PERFORMANCE OF LINK PREDICTION FOR EACH RELATION TYPE

Hits@N BelongOf AttackOf TargetOf ChildOf ParentOf CanPrecede CanFollow PeerOf Semantic

@1 0.164 0.862 0.913 0.766 0.861 0.750 0.750 0.125 0.338
Head entity @3 0.186 0.895 0.917 0.810 0.873 0.792 0.781 0.167 0.606
〈?, r, t〉 @5 0.203 0.925 0.936 0.867 0.905 0.843 0.813 0.333 0.634

@10 0.214 0.944 0.953 0.892 0.911 0.850 0.875 0.667 0.732

@1 0.621 0.874 0.913 0.791 0.627 0.650 0.625 0.189 0.452
Tail entity @3 0.630 0.889 0.935 0.867 0.791 0.800 0.688 0.214 0.563
〈h, r, ?〉 @5 0.701 0.925 0.944 0.892 0.886 0.884 0.750 0.346 0.592

@10 0.764 0.944 0.953 0.899 0.911 0.900 0.813 0.645 0.746

TABLE VI
PERFORMANCE OF DIFFERENT REVISED MODELS (THE BOLD IS THE BEST)

Model Explanation MR MRR Hits@1 Hits@3 Hits@5 Hits@10

M-1 Remove CNN layers 152 0.623 0.570 0.650 0.670 0.710
M-2 Remove TransE 239 0.526 0.431 0.588 0.644 0.697
M-3 Remove attention layers 264 0.482 0.401 0.496 0.527 0.583

Our Approach Text-Enhanced GAT 96 0.691 0.638 0.723 0.740 0.770

based on a given CVE.
As is shown in Section IV-A, we obtain 4, 003 CVEs and

98 CWEs that refers to the Linux system, by July 20, 2020.
Those CVEs and CWEs build 4, 003 triples with relation
BelongOf. The head entity is CVE and the tail entity is
CWE. In general, when a new software vulnerability (CVE) is
reported, the security experts can not determine what weakness
(CWE) leads to such vulnerability before much complex and
time-consuming analysis on this vulnerability. However, if the
weakness of this vulnerability is identified in time, experts can
work out a complete solution to repair it more quickly [28]. For
example, in the triple <CVE-2019-14970, BelongOf, CWE-
119>, the CVE-2019-149702 allows attackers to trigger a
heap-based buffer overflow by a crafted “.mkv” file, and the
relevant CWE-1193 points out the buffer overflow weakness
comes from the operation to read from or write to a memory
location outside of the intended boundary of the buffer. After
connecting the CVE-2019-14970 and the CWE-119 with a
relation BelongOf, we can acquire more detailed information
about what the “.mkv” file executes to result in the buffer
overflow. Then security experts take advantage of such security
knowledge to take a series of measures to promptly repair the
software vulnerability.

Based on the constructed security knowledge graph, our
experiments in Section IV-B stimulate the missing weakness
(CWE) of the given vulnerability (CVE) on the 15% triples in
the test set. The text-enhanced GAT model trained by 80%
triples in the training set achieves high Hits@N values in
0.621 ∼ 0.764 for the task to predict the tail entity CWE (see

2CVE-2019-14970, https://www.cvedetails.com/cve/CVE-2019-14970/.
3CWE-119, https://cwe.mitre.org/data/definitions/119.html.

in Table V). This implies the security knowledge graph yields
a large number of constructively structure and representation
knowledge to label the vulnerability (CVE) with a relevant
weakness (CWE). It narrows the time window to find the
unknown weakness of a newly reported software vulnerability,
which effectively accelerates the analysis of this vulnerability
and profit for the construction of the relevant patch.

V. RELATED WORK

A. Security Database-based Research
Due to the security databases (see in Section II) con-

taining a large number of security knowledge of software
vulnerabilities, weaknesses and attack patterns, many studies
in recent years have concentrated on how to dig out such
security knowledge for assisting security analysis and soft-
ware protection. [29]–[33] focused on exploring the CVE
database and predicting software vulnerability severity. Based
on the description of the vulnerability report and many other
functions (e.g., CVSS score, confidentiality impact), Bozorgi
et al. [29] trained an ML classifier to predict whether the
vulnerability can be exploited and when it will be exploited. Li
et al. [30] designed a mining approach to analyze and obtain
the critical software vulnerability characteristics according to
three repositories (i.e., CVE, CWE, and NVD databases). To
predict the vulnerability severity, [31] and [32] used deep
learning to train a multi-classifier only depending on the CVE
textual description. Guo et al. [13], [33] observed that CVE
description can be divided into 6 aspects and many CVE
descriptions are incomplete. They adopted the Bi-directional
LSTM network and attention mechanism to predict the missing
aspects for each CVE.



Besides, many works [8], [9] have been concerned with the
CWE and CAPEC databases. By using the knowledge graph
embedding method, Han et al. [8] applied TransE to perform
reasoning tasks via embedding common software weaknesses
and their relationships into a neural vector. Xiao et al. [9] con-
structed a software security heterogeneous knowledge graph
with the CVE, CWE, and CAPEC databases. They adopted
TransH [34] to transform the knowledge graph as a continuous
vector space and complete the link prediction task between
heterogeneous knowledge graphs.

Different from the literature above, we not only explore all
those security databases, but also concentrate on the additional
knowledge coming from the 2−hop neighbor nodes in the
graph, instead of only 1−hop in the built triple. Therefore, we
relieve the negative effect of the independence of each triple
and gain more CVE, CWE, and CAPEC security knowledge.

B. Knowledge Graph Representation Learning
Given such security databases, it is necessary to construct

a more effective and complete field-specific knowledge graph
on the basis of the literature [8], [9]. This security knowl-
edge graph not only provides plenty of software vulnerability
knowledge but also prompt the analysis of software weak-
ness, because many well-established field-specific knowledge
graphs (i.e., Freebase [35], DBpedia [36], YAGO [37], and
YAGO 4 [38]) have been successfully applied to many prac-
tical applications. During the implementation of those knowl-
edge graphs, how to choose an efficient knowledge graph
representation learning is a critical step, followed by a series
of researches such as semantic analysis, named entity dis-
ambiguation, information extraction, and question answering.
There are four categories of knowledge graph representation
learning: translation distance model [15], [34], [39], seman-
tic matching model [40]–[43], convolutional neural network
model [24], [44], and graph neural network model [14], [21],
[45]–[47].

The translation distance model uses a distance-based scoring
function to measure the rationality by the distance of two
entities. As a representative model, TransE [15] significantly
reduced computational complexity with fewer parameters,
while it cannot handle complex relationships. TransH [34]
remedied this flaw and designed a relationship-specific hyper-
plane so that each entity node conducted specific characteris-
tics in specific relationships. Taken a step further, TransR [39]
continuously improved the hyperplane and gave different re-
lationships with a relevant semantic space, which contained
the mapped entities and generated the translation relationship
from the head entity to the tail entity.

Compared with the translation distance model, the se-
mantic matching model applies the similarity-based scoring
function through matching the semantics knowledge of enti-
ties and the relationships in the vector space. For example,
RESCAL [40] captured potential semantic interactions by
using tensor products, but it cost too much effort to build
and optimize a relationship model with huge parameters. The
DISTMULT [41], an improved version of RESCAL, adopted

the weighted element-wise dot products to represent entity
relations (only the symmetric relations). Nickel et al. [42]
proposed the HolE that created a more efficient composite
representation approach via computing the circular correlation
of entity embeddings. And Trouillon et al. [43] designed
the ComplEx with complex-valued embeddings to decreases
model parameters when calculating asymmetric relationships.

In recent years, convolutional neural network and graph
neural network [45] have blossomed into knowledge graph
representation learning such as ConvE [44] and ConvKB [24].
ConvE model used 2D convolution to reshape the head entity
and relation into a 2−dimensional matrix, without considering
the tail entity, and captures the characteristics of the local
relationship. ConvKB directly concatenated the embedding
representation of the head and tail entities and relationships,
and then used CNN with stronger feature learning capabilities
to capture global features while maintaining a certain transla-
tional characteristic, thus achieving better experimental results.
[46], [47] adapted the graph convolutional neural network in
the field of computer vision and applied it into representation
learning by stacking the convolutional layer. Velickovic et
al. [14] built the graph attention neural network (GAT) based
on the self-attention mechanism. GAT sets different weights
to different neighboring nodes and only focuses on the most
relevant parts.

Considering the effective information representation and
better prediction performance, we use the text-enhanced graph
attention method based on the graph attention network. Fur-
thermore, our proposed approach extracts the 2−hop neighbor
nodes from the graph and implement relevant feature embed-
ding methods (see in Section III) which can better predict the
relations among security entities by 77.0%.

VI. CONCLUSION

Based on the constructed security knowledge graph of the
CVE, CWE, and CAPEC datasets, we further propose a text-
enhanced GAT model to predict security entity relations.
This model adopts 2-hop neighbor nodes as the additional
knowledge of one entity and the graph attention network to
represent the structural information and the textual information
of the graph. It outperforms the state-of-the-art by 0.132 (up
to 0.691) with the metric MRR for the overall performance
of link prediction. We also identify the advantages of more
triples and the disadvantage of more diversity in the predict-
head and predict-tail tasks for each type of defined relation.
Furthermore, we clarify the importance of the attention layer
in our model which is of great benefit to obtain the critical
features for prediction. In the future, we will further explore
the fine-grained semantic relations of the CWE database and
expand more security databases such as the OVAL database
and the Exploit database, in order to build a more complete
security knowledge graph for assisting the security analysis.
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