
Can Deep Learning Models Learn the Vulnerable
Patterns for Vulnerability Detection?

Guoqing Yan1, Sen Chen1∗, Yude Bai1, Xiaohong Li1∗
1College of Intelligence and Computing, Tianjin University, Tianjin, China

{guoqingyan, senchen, baiyude, xiaohongli}@tju.edu.cn

Abstract—Deep learning has been widely used for the security
issue of vulnerability prediction. However, it is confusing to
explain how a deep learning model makes decisions on the
prediction, although such a model achieves a good performance.
Meanwhile, it is also difficult to discover which part of the source
code is concentrated on by this black-box model. To this end, we
present an empirical evaluation to explore how the deep learning
model works on predicting vulnerability and whether it precisely
captures the critical code segments to represent the vulnerable
patterns. First of all, we build a new vulnerability dataset, called
Juliet+, in which vulnerability-related code lines of both positive
(bad) and negative (good) samples are labeled manually with
substantial efforts, based on the Juliet Test Suite. After that, four
deep learning models by leveraging attention mechanisms are
empirically implemented to detect vulnerability through mining
vulnerable patterns from the source code. We conduct extensive
experiments to evaluate the effectiveness of such four models
and to analyze the interpretability with evaluation metrics such
as Hit@k. The empirical experiment results reveal that the deep
learning models with attention, to some extent, can focus on
the vulnerability-related code segments that are profitable to
interpret the result of vulnerability detection, especially when we
adopt the graph neural network model. We further investigate
what factors affect the interpretability of models including the
class distribution, the number of samples, and the differences of
sample features. We find the graph neural network model per-
forms better on part of the dataset which contains balanced and
sufficient samples with obvious differences between vulnerable
and non-vulnerable patterns.

Index Terms—Vulnerability detection, Deep learning, Atten-
tion, Model interpretability

I. INTRODUCTION

As the popularity of deep learning (DL) in the fields of
computer vision and natural language processing (NLP), it has
also been adopted to automatically predict software vulnerabil-
ity. Many studies [1]–[7] verify the effectiveness when taking
Recurrent Neural Networks (RNNs), Graph Neural Networks
(GNNs), or Deep Belief Neural Networks (DBN) [8], to
recognize software vulnerability. However, all of them ignore
the interpretability due to the black-box property of the DL
models which lowers the reliability of the predicted results [9].
Moreover, Chakraborty et al. [5] claim that DL models learn
certain irrelevant features which are harmful to improve the
performance of vulnerability detection [1], [2]. To this end, it
is urgent to systematically investigate whether DL models can
distinguish and understand the differences between vulnerable
and non-vulnerable patterns from the source code.

∗Sen Chen and Xiaohong Li are the corresponding authors.

In this study, we employ the attention mechanisms [10],
which are advantageous for enhancing performance on tasks
such as text classification [11], [12] and machine translation
[13], to uncover and understand the predictions of the DL
models. By appending attention, we obtain the attention value
for code segments to represent which part of the code is
focused on by the DL models, instead of just using attention to
raise the detection accuracy [6], [14]. However, due to the lack
of vulnerability datasets in which vulnerability-related code
lines are first labeled, it is difficult to perform an attention-
value-based interpretability analysis of the models.

Generally, there are three types of vulnerability datasets [5]:
real-world, semi-synthetic, and synthetic. The real-world vul-
nerability dataset indicates the development of software while
there is no widely-used dataset. This mainly derives from that
security experts collect vulnerability datasets in different ways,
the granularity of vulnerability detection is various and the
public available real-world datasets are generally small in size
[15], [16]. Moreover, it is complex and time-consuming even
for security experts to mark the important vulnerability-related
code segments from real-world vulnerability datasets. Since
the semi-synthetic vulnerability datasets like Draper [17] are
still for real-world software, it is also difficult to label the
accurate vulnerability-related code lines. We finally choose
the synthetic vulnerability dataset Juliet Test Suite for Java
1.3 (Juliet1). The special kind of designs in Juliet is beneficial
for us to quickly and accurately find the vulnerability-related
code lines from the source code. We thus manually construct a
well-labeled vulnerability dataset Juliet+ depending on Juliet.

Two categories of DL models are applied for vulnerability
detection, the sequence-based models (e.g., Bidirectional Long
Short-Term Memory Networks (BLSTM) [1] and Bidirec-
tional Gated Recurrent Unit (BGRU) [2]) and the GNN-based
models [3]–[6]. The former models are similar to sequence
modeling in NLP and they take flat sequences of code as
input so that attention is easy to add into those models. The
latter ones consider the structural and logical information
of the source code. We finally implement four attention-
based models to demonstrate the interpretability of them by
considering the similarity of source code and natural language,
i.e., Hierarchical Attention Network (HAN) [12], Single At-
tention Network (SAN), Attention-based Bidirectional Long
Short-Term Memory Network (BLSTM-att) [11], and Relation

1Juliet Test Suite for Java 1.3, https://samate.nist.gov/SRD/testsuite.php.

https://samate.nist.gov/SRD/testsuite.php

Graph Convolution Network with attention (R-GCN-att) [6]
(see Section II-E for details). The first three models are the
sequence-based models that regard source code as the natural
language directly. The R-GCN-att, as a GNN-based model,
learns the information from the graph structure (nodes, edges,
etc.) of the source code before calculating the attention score
of each node in this graph.

Extensive experiments are conducted to investigate how the
attention-based DL models predict software vulnerability and
interpret the prediction results. We first compare the detection
results of vulnerability across such four DL models. They
all gain a high F1-score of more than 95% on Juliet+. This
leads to the followed evaluation about attention whether the
DL models have learned the vulnerable patterns or not. After
the analysis on the effects of attention (by attention score),
we observe that the GNN-based R-GCN-att outperforms other
models and can explain the results of vulnerability detection.
We further explore which factors affect the attention score
of R-GCN-att more. It is shown that the R-GCN-att will
achieve better performance when adopting the dataset that
contains more balanced and sufficient samples with obvious
differences between vulnerable and non-vulnerable patterns.
Note that all of the dataset, the source code of models, and
the experimental results are available at https://github.com/
Ng13oTy/Interpretability.

In summary, we make the following main contributions:
• To the best of our knowledge, this is the first work to

quantitatively and intuitively analyze the interpretability
of the DL models for vulnerability detection based on a
new dataset named Juliet+ that vulnerability-related code
lines of each sample are manually labeled.

• We implement four attention-based DL models, including
both the sequence-based models and the graph neural
network-based model, to validate the problem of inter-
pretability for software vulnerability detection.

• We define two metrics to evaluate the interpretability of
such four DL models. The empirical results reveal that
the GNN-based DL model R-GCN-att better interprets
the predictions of software vulnerability because it can
more precisely focus on the critical code segments that
represent the vulnerable patterns.

II. METHODOLOGY

In this section, we formulate the issue of vulnerability
detection in Section II-A and then introduce the proposed
framework in Section II-B that includes data preprocessing
(Section II-C), model training and testing (Section II-D).
Section II-E presents the four attention-based DL models.

A. The Definition of Vulnerability Detection

According to the definition of vulnerable function de-
tection in [3], we further formulate the issue of vulnera-
bility detection as follows. The dataset with label is de-
fined as {(c i, y i) |c i ∈ C, y i ∈Y }, i ∈ {1, 2, · · · , n}, where
C denotes the set of samples in the form of source code,
Y = {0, 1, type− 1} n refers to the label set with type as

the number of sample types, and n is the number of samples
in the dataset. The goal of vulnerability detection is to learn
a mapping from C to Y , i.e., Φ : C 7→ Y . This mapping Φ
represents the process that turns the source code from initial
(low-level) features to high-level features and finally obtain
the classification result via minimizing the loss function of
DL models below,

min

n∑
i=1

L(Φ(ll i, hl i, y i |c i)) + λω(f) , (1)

where L(·) means the cross entropy loss function, λω(f)
is regarded as the penalty parameter, ll i and hl i imply the
initial (low-level) and high-level features of the i-th sample
c i respectively.

B. Overview of the Framework

As shown in Fig. 1, the proposed framework contains
three phases to validate the interpretability of DL models for
vulnerability detection.

1) Data Preprocessing: In this step, we make an effort of
marking the vulnerability dataset Juliet+ collected from Juliet
at first. We not only label whether a sample in Juliet+ is vul-
nerable or not but also label the corresponding vulnerability-
related code lines of this sample. Then the well-labeled source
code is turned into a data dependency graph (DDG). We
choose DDG as the initial input due to two reasons. The
first one is that software vulnerabilities often happen to the
data flow when it is performed during vulnerability detection.
Secondly, DDG more precisely illuminates the information
about source code since it derives from the control flow graph
(CFG) describing all the possible execution paths of the source
code. DDG also removes much redundant information that is
irrelevant to the vulnerabilities. We show the specific sub-steps
(six sub-steps in total) of data preprocessing in Section II-C.

2) Model Training: We train the attention-based DL models
through learning the high-level features different from the ini-
tial features in this step. There are three sub-steps including the
graph node embedding, the generation of high-level features,
and classification. In the process of graph node embedding,
each node in a DDG is embedded after combining the text
information (semantic information) and type information of
such node. Four attention-based DL models learn knowledge
from the embedded node of DDG to generate its high-level
features. Then we conduct a binary classifier to discriminate
whether there is a vulnerability in the code via decoding the
high-level features given by the DDG.

3) Model Testing: With the well-trained DL models, the
DDG of a new sample is detected to determine whether it is
vulnerable or not. Moreover, we analyze the interpretability
of these models based on the attention score of each node in
the DDG of the source code. Since the attention effects of
the four models only need to be output during testing, only
the vulnerability-related code lines of the samples in the test
set are manually labeled. We customize two criteria Hit@k,
Hit@k% and several hit types to comprehensively evaluate the
interpretability of the models.

https://github.com/Ng13oTy/Interpretability
https://github.com/Ng13oTy/Interpretability

Step I.1: Sample collection

Juliet

Step I.3: CFG construction

{{f1,core, f1,1, …},
…

{fi,core, fi,1,…},
…

}

Step I.2: Sample labeling

Step I.4: Cross-method DDG
construction

Step I.6: Token normalization and
embedding

Fine tuned model

Training data

Step II.1: Graph node embedding

semantic semantictype type

Step II.2: High-level features generation

BLSTM-att

HAN

SAN

R-GCN-att

Step II.3: Classification

Linear layer

Sigmoid layer

Vulnerable?

Adjust
parameters

Step III.1: Graph node embedding

Step III.2: High-level features
generation

Step III.3: Classification

Step III.4: Evaluation

Prediction
results

Attention
score of
nodes

Phase I: Data preprocessing Phase II: Model training Phase III: Model testing

Step I.5: Node arrangement

a = 1
[VAR ,

= ,
1]

[[0.12, 0.05, …]],
[0.78, 0.96, …],
[0.01,0.28,…]

]

⋯

Testing data

{fi,core, fi,1,…} Vulnerable?

Key code lines in fi,m

fi,m

Fig. 1: The framework to validate the interpretability of DL models for vulnerability detection.

C. Data Preprocessing

We build the vulnerability dataset Juliet+ based on the initial
dataset Juliet, which comes from the Software Assurance
Metrics And Tool Evaluation [18] (SAMATE). According to
the official document [19], the mixed-type test cases which
constitute the vast majority of Juliet should contain one bad
execution and at least one relevant good execution. We thus
need to collect samples firstly by splitting the bad and good
executions. Besides, each test case should have a primary
file that contains a primary bad method and a primary good
method (see the test case 1285622 as an example). This
primary good method consists of one or more secondary
good methods which refer to the start of the good executions.
Furthermore, this primary bad method represents the start of
the bad execution directly. In addition, we adopt the concepts
of “source” and “sink” to express the data flow of the source
code [19]. The “source” means how to acquire the value of a
variable defined. The “sink” denotes how to use the variable
defined. We specifically describe the generation of the initial
features of the source code in the following six sub-steps.

1) Sub-step 1: Sample collection. Depending on the pow-
erful language analysis tool JavaParser [20], we firstly parse
the source code of the test cases in Juliet and then extract
both the methods and all of the related calling information in
each test case. The primary bad method and the secondary
good method are formed as the core method f i,core. Then a
sample c i of Juliet+, a collection of methods, is defined as
c i = {f i,core, f i,1, f i,2, · · · }, where f i,m, m ∈ {1, 2, · · · },
is a method that is called by f i,core directly or indirectly.
Fig. 2 implies the source code of three samples extracted from
the test case 128562 in Juliet.

2) Sub-step 2: Sample labeling. we describe how to label
a sample (such as the ones given in Fig. 2) as vulnerable or
not and how to mark the corresponding vulnerability-related
code lines in this sub-step.
① Labeling the sample. To the sample with a core method

2The test case 128562, https://samate.nist.gov/SRD/view testcase.php?tID=
128562.

f i,core, we label it as a positive or negative sample by the
method of the regular expression. If the name of f i,core

matches the pattern “ˆbad$”, the relevant sample is regarded
as a bad sample (vulnerable). On the contrary, if the name
of f i,core meets the pattern “ˆgood(\d+|G2B\d*|B2G\d*)$”,
this sample is a good one (non-vulnerable). In this way, the
test case in Fig. 2 is comprised of one bad sample (Fig. 2 (a))
and two good samples (Fig. 2 (b) and Fig. 2 (c)).
② Labeling the vulnerability-related code lines. Although
Juliet has already marked certain code lines that are related
to the vulnerabilities, we find that some of those lines are
mislabeled. Moreover, it does not provide the repaired code
lines about the good executions and the lines of vulnerable
codes which are not at the primary file. Therefore, it is
necessary to relabel the vulnerability-related code lines at first.

According to [19], a bad sample that has both “bad-
source” (a piece of code) and “badsink” (a piece of code)
contains at least one software vulnerability related to the
data flow. We thus relabel all bad samples with two prop-
erties, “bad source lines” (the code lines of “badsource”) and
“bad sink lines” (the code lines of “badsink”). For example,
as is shown in Fig. 2 (a), the code line 30 are labeled as the
“bad source lines” due to that the variable “data” gets the
maximum value, while the code line 33 is “bad sink lines”
because it leads to an overflow problem after adding one to
the “data” in this line. When the vulnerable code of the bad
sample is repaired, it changes into a good sample. Specifically,
two ways are given to remedy the vulnerable code. The one is
to give the variable a “goodsource” and the other is to use the
variable with a “goodsink”. We define the good samples with a
property of “fixed lines”. For instance, the vulnerable code of
a bad sample in Fig. 2 (a) becomes a good sample in Fig. 2 (b)
when the overflow problem is solved by setting “data” with a
constant value 2 (the way to give the variable a “goodsource”).
This bad sample is also turned into a good sample by using
the variable with a “goodsink”, which adds a check (the “if”
statement at line 69 in Fig. 2 (c)) to prevent the overflow. To
ensure the validity of the labeled code, we employ not only
the lines of code given by Juliet but also the comments in the

https://samate.nist.gov/SRD/view_testcase.php?tID=128562
https://samate.nist.gov/SRD/view_testcase.php?tID=128562

25 public void bad() throws Throwable
26 {
27 byte data;
28
29 /* POTENTIAL FLAW: Use the maximum
 size of the data type */
30 data = Byte.MAX_VALUE;
31
32 /* POTENTIAL FLAW: if data ==
 Byte.MAX_VALUE, this will overflow
 */
33 byte result = (byte)(data + 1);
34
35 IO.writeLine("result: " + result);
36
37 }

45 /* goodG2B() - use goodsource and badsink */
46 private void goodG2B() throws Throwable
47 {
48 byte data;
49
50 /* FIX: Use a hardcoded number that won't cause
 underflow, overflow, divide by zero, or loss-of-
 precision issues */
51 data = 2;
52
53 /* POTENTIAL FLAW: if data == Byte.MAX_VALUE, this
 will overflow */
54 byte result = (byte)(data + 1);
55
56 IO.writeLine("result: " + result);
57
58 }

badsource

badsink

fixed

(a) A bad sample with badsource and
badsink

(b) A good sample with goodsource and
badsink

60 /* goodB2G() - use badsource and goodsink */
61 private void goodB2G() throws Throwable
62 {
63 byte data;
64
65 /* POTENTIAL FLAW: Use the maximum size of the data type */
66 data = Byte.MAX_VALUE;
67
68 /* FIX: Add a check to prevent an overflow from occurring */
69 if (data < Byte.MAX_VALUE)
70 {
71 byte result = (byte)(data + 1);
72 IO.writeLine("result: " + result);
73 }
74 else
75 {
76 IO.writeLine("data value is too large to perform addition.");
77 }
78
79 }

(c) A good sample with badsource and goodsink

fixed

Fig. 2: The source code of samples extracted from the test
case 128562 in Juliet.

source code, such as “/POTENTIAL FLAW:...” and “/FIX:...”
shown in Fig. 2.

3) Sub-step 3: CFG construction. After labeling the sample
c i, we utilize JavaParser to parse the source code and create
the abstract syntax tree (AST) for each method in sample c i.
Then, based on this AST, we build a corresponding control
flow graph (CFG) with the variable information. Fig. 3 (a)
illuminates the relevant CFG of the sample in Fig. 2 (c).

4) Sub-step 4: Cross-method DDG construction. Each CFG
is transformed into a DDG according to the given algorithms
in [21]. It then becomes a cross-method DDG depending
on the calling relationship across the methods in c i. This
constructed cross-method DDG contains not only all nodes
with variable information but also all nodes of CFG with
calling information, which ensures the integrity of the cross-
function vulnerable patterns. As is shown in Fig. 3 (b), the
sample in Fig. 2 (c) turns into a DDG with three nodes. More
details about how to build a DDG are available on our website
https://github.com/Ng13oTy/Interpretability.

5) Sub-step 5: Node arrangement. After getting the cross-
method DDG of c i, we need to arrange the nodes in DDG as a
sequence to satisfy the sequence-based models. Similar to [2],
we sort the nodes in the same method according to the order of
code lines. For the nodes among different methods, we arrange
them based on the order of depth and breadth of the calling
relations. The depth refers to the order in which methods are
run in the calling method. The breath indicates what level the
methods called by f i,core are at (e.g., the methods called by
f i

core are at level 0 and the methods called by the methods of
level 0 are at level 1). Fig. 3 (c) presents the nodes arranged
from the cross-method DDG in Fig. 3 (b).

6) Sub-step 6: Token normalization and embedding. Be-
cause the corpus of source code is much larger than that
of natural language [22], we flatten the source code of the

61
63 66

69

72 76

71

66

69

71

data

data

66 data = Byte.MAX_VALUE;
69 if (data <Byte.MAX_VALUE)
71 byte result = (byte)(data + 1);

(a) CFG of sample in Fig. 2(c) (b) DDG of sample in Fig. 2(c)

 (c) Arranged nodes of DDG

66 VAR0 = Byte.MAX_VALUE;
69 if (VAR0 <Byte.MAX_VALUE)
71 byte VAR1 = (byte)(VAR0 + 1);

 (d) Normalized nodes of DDG

Fig. 3: Example of a workflow from Step I.3 to Step I.6.

arranged nodes and normalize it by using the method proposed
in [1], [2]. Fig. 3 (d) shows the result of normalization for the
arranged nodes in Fig. 3 (c). Since the DL models can not
process the normalized source code directly, we have to embed
it. We embed each of the normalized nodes by Word2vec [23]
to a 50-dimension neural vector. In this way, we acquire the
initial features ll i of the sample c i.

D. Model Training and Testing

As shown in Fig. 1, the model training step contains three
sub-steps, i.e., graph node embedding, high-level features
generation, and classification.

1) Sub-step 1: Graph node embedding. Actually, this sub-
step aims to get a node vector through the node’s semantic
and type information. Given the j-th node of ll i with token
vector w i,j,t, t ∈ [1, T], where T is the number of tokens,
its embedding vector s i,j equals [se s i,j , ty s i,j] where
se s i,j is the semantic information extracted from its code,
ty s i,j denotes the type information in the form of one-hot,
and [·] refers to the concatenating operation. We design two
methods to get the se s i,j as follows.
① M1. This method produces the se s i,j via a convolutional
layer, i.e.,

se s i,j = Conv
({

w i,j,t

}
T
t=1

)
, (2)

where {w i,j,t} Tt=1 is the matrix of token representation.
② M2. This method uses a word attention [12] to get the
se s i,j . First of all, we adopt a BGRU network to obtain
the hidden state h i,j,t of w i,j,t, i.e., h i,j,t =

[−→
h i,j,t,

←−
h i,j,t

]
,

where
−→
h i,j,t and

←−
h i,j,t mean the forward and backward

hidden information of w i,j,t respectively.
Then, due to the different contributions of each word to

se s i,j , we carry out the following approach [12], i.e.,

u i,j,t = tanh (W w h i,j,t +bw) ,

score i,j,t =
exp

(
u⊤

i,j,t uw

)∑
t exp

(
u⊤

i,j,t uw

) ,
se s i,j =

∑
t

score i,j,t h i,j,t.

(3)

Specifically, we apply a one-layer MLP to transform h i,j,t into
u i,j,t, then count the attention score of words by calculating

https://github.com/Ng13oTy/Interpretability

the similarity of u i,j,t with a word level context vector
uw, and normalize it through a softmax function. Finally,
we compute the se s i,j as a weighted sum of the hidden
representation of words.

2) Sub-step 2: High-level features generation. We adopt
four attention-based DL models (i.e., HAN, SAN, BLSTM-
att, and R-GCN-att) to generate the high-level features hl i of
c i, depending on the node embedding matrix {s i,j} Lj=1 where
L is the number of nodes in ll i. Section II-E illustrates those
four attention-based DL models in detail.

3) Sub-step 3: Classification. With the high-level features
hl i, we conduct the operation function for classification as,

∼
y i = Sigmoid (W c hl i +b c) , (4)

where W c means the weight matrix, b c implies the bias and
∼
y is the final predict result of c i. We train the model by
minimizing the loss function defined in Equation (1).

Additionally, based on the fine-tuned model after training,
the step of model testing intends to evaluate the samples in the
test dataset and generate the related prediction and attention
results for analysis.

E. The Four Attention-based DL Models

HAN. It is a model for document classification which confirms
that different words and sentences result in diverse contri-
butions to the semantic information of a sentence and the
representation of the document respectively [12]. In this study,
the DDG is regarded as a document and each node in this
DDG denotes a sentence that consists of various tokens. We
clarify that such tokens have different effects on the semantic
representation of the correlate node. Meanwhile, different
nodes in a DDG influence the result of vulnerability detection
with different weights. Based on HAN, we get the semantic
representation se s i,j of a node by the method M2 and
then calculate the representation vector hl i of the sample c i.
In other words, we use another BGRU to create the hidden
representation h i,j of the j-th node’s embedding vector s i,j ,
i.e., h i,j =

[−→
h i,j ,

←−
h i,j

]
, where

−→
h i,j and

←−
h i,j mean the

forward and backward hidden information of s i,j respectively.
Besides, we utilize a sentence attention to compute hl i, i.e.,

u i,j = tanh (W s h i,j +b s) ,

score i,j =
exp

(
u⊤

i,j u s

)∑
j exp

(
u⊤

i,j u s

) ,
hl i =

∑
j

score i,j h i,j ,

(5)

where u s is a sentence-level context vector which to measure
the importance of sentences.
SAN. It takes the same way used by HAN to generate the high-
level representation hl i of the i-th sample c i, but it adopts
the method M1 to acquire the semantic information se s i,j

instead of the method M2 in HAN.
BLSTM-att. It aims to capture the most important semantic
information in a sentence for relation classification [11]. We

treat each node in a DDG as a word and such DDG as a
sentence respectively. BLSTM-att firstly exploits M1 to get
se s i,j . Then, it uses a BLSTM rather than a BGRU to
obtain the hidden state h i,j which equals to

−→
h i,j ⊕

←−
h i,j ,

where ⊕ refers to the sum of element-wise. Furthermore, there
is also a node-level context vector u s in the BLSTM-att which
is made to gain the attention score of each node. The process
of getting the final hl i is described below,

u i,j = tanh (h i,j) ,

score i,j =
exp

(
u⊤

i,j u s

)∑
j exp

(
u⊤

i,j u s

) ,
temp i =

∑
j

score i,j h i,j ,

hl i = tanh (temp i) .

(6)

Note that there are certain differences between BLSTM-att
and SAN, such as how to concatenate

−→
h i,j and

←−
h i,j , and

whether to adopt a MLP to deal with the h i,j or not.
R-GCN-att. The study in [6] propose an improved relation
graph convolutional network (R-GCN) [24] with a triple
attention mechanism to learn the vulnerability-related features.
Inspired by it, we also adopt the R-GCN with a node-
level attention to generate hl i. Specifically, we apply M1 to
compute se s i,j and use R-GCN to calculate s i,j to produce
the hidden state h i,j by the formula,

h
(l+1)
i,j = σ

∑
r∈R

∑
d∈N r

j

e d,j W
(l)
r h

(l)
i,d +W

(l)
0 h

(l)
i,j

 , (7)

where h
(l)
i,j is the hidden state of the j-th node of ll i at the l-th

layer, R means the set of edge types, and d ∈ N r
j implies that

the d-th node is one of the members of N r
j (i.e., the neighbor

set of node j with respect to relation r). Both W
(l)
r and W

(l)
0

denote weight matrices, where the former is related to the
dependency r and the latter is the self-loop weight. The e d,j

refers to the normalizer and the σ is defined as the activation
function. In addition, the initial hidden state is set as s i,j , i.e.,
h

(0)
i,j = s i,j .
With the information aggregated by R-GCN, we employ the

attention method given by [25] to calculate the attention score
at the node-level [6]. It is formulated as,

α i,j = σ (R−GCN(X,A)) ,

score i,j =
exp (α i,j)∑
j exp (α i,j)

,

hl i =
∑
j

score i,j h
(l num)
i,j ,

(8)

where X is the node feature matrix
{
h

(l num)
i,j

}
L
j=1 that

represents the feature information, A denotes the adjacency
matrix which describes the topology information, h (l num)

i,j

is considered as the final hidden state of node j and l num
means the number of layers. We add another R-GCN to obtain
the attention weights by working on both the features of the

nodes themselves and the topology of the graph. At last,
we implement softmax function to normalize the attention
weights and get the high-level feature hl i through summing
the weighted over X .

III. EXPERIMENTS

A. Evaluation Setup

1) Juliet+: Juliet contains 112 Common Weakness Enu-
meration (CWE) [26] entries. As only the part of CWEs are
vulnerability-related and contain vulnerable data dependence
flow, we choose 70 CWEs by checking manually at first.
We also perform a deduplication operation for the normalized
corpus to avoid the problem of data duplication [5]. Thus, we
get 93,689 samples which include 27,813 bad samples and
65,876 good samples before normalization. After normaliza-
tion, we preserve 29,990 samples of which 16,051 samples are
vulnerable and 13,939 samples are non-vulnerable. Note that
they are only non-repeating in sequence (see examples on our
website). We randomly shuffle these deduplicated samples and
select 75% of them as the training set and the rest as the test
set while keeping the rate of vulnerable samples versus non-
vulnerable samples in every CWE entry. The specific processes
of data collection and labeling are presented in Section II-C.

2) Evaluation configuration: We use Pytorch and Deep
Graph Library [27] to implement the four DL models. The
dimension of embedding vector for each tokens is set as 50.
Since there are 7 types of nodes and the size of semantic
information se se i,j is 100, we adopt 107 as the size of
the node embedding vector s i,j . The length of the high-level
features hl i for all models is 200, except the BLSTM-att with
length of 100. Meanwhile, the values of uw and u s are defined
as 50 and 100 respectively. We train all four models by using
an Adam optimizer [28] with a learning rate of 0.001. Early
stopping is also applied to prevent overfitting and decrease the
training time. Additionally, for the sequence-based models, we
choose 100 as the patience of epoch that is different from
the 200 in R-GCN-att in order to save training time. All
experiments run on a machine with an Intel Core 3.6 GHz
CPU and an NVIDIA GeForce RTX-2060 GPU.

3) Evaluation metrics: First of all, the prediction perfor-
mance represents whether a model can predict a sample is
vulnerable or not accurately. Therefore, we employ six widely-
used metrics [29] to evaluate the prediction performance of DL
models, i.e., accuracy (A), precision (P), recall (R), F1-score
(F1), false positive rate (FPR), false negative rate (FNR).
Meanwhile, the attention effects represent the interpretability
of DL models. Triggered by the metrics used for link pre-
diction in knowledge graphs [30], we use Hit@k, Hit@k%
to evaluate the attention effects. Hit@k denotes whether the
attention score rankings of the vulnerability-related nodes in
all nodes of ll i are in the top-k nodes. But it cannot adapt
to samples with different numbers of nodes. To make up for
this deficiency, we also adopt Hit@k%, which is rougher
than Hit@k, to indicate the vulnerability-related nodes that
are ranked in the top-k% of all nodes of ll i.

TABLE I: The selected CWE entries with class distribution in
the test set.

CWE #Samples #Vul Samples #Non-Vul Samples #Vul : #Non-Vul

CWE22 166 138 28 5
CWE79 263 227 36 6
CWE89 629 315 314 1

CWE190 1,364 606 758 0.8
CWE191 1,088 483 605 0.8

4) Hit type: Corresponding to the strategies of labeling
the vulnerability-related code lines, there are three types of
vulnerability-related nodes, i.e., “bad source” and “bad sink”
for the bad samples, and “fixed” for the good ones. Note
that there is one vulnerability-related node in the average 8
nodes for bad samples while 16 nodes for good samples.
Besides, for almost every sample in Juliet+, there are only one
“bad source” node and one “bad sink” node for a bad sample,
and only one “fixed” node for a good sample. We further
design five hit types to represent the attention performances
of DL models in different vulnerability-related node types. To
be specific, “fixed”, “bad source”, and “bad sink” denote that
the correlated vulnerability-related nodes are hit respectively.
Moreover, the hit type “fixed” also represents the ability of a
model to learn non-vulnerable patterns (distinguish vulnerable
patterns from non-vulnerable patterns). Additionally, for a
bad sample, “bad either” means either “bad source” nodes
or “bad sink” nodes are hit representing the ability to capture
the vulnerable patterns, while “bad avg” implies the average
rank of them which reveals the ability of a model to obtain
the context-dependency of software vulnerability.

B. Experiments and Discussions

We conduct three research questions (RQs) to analyze the
prediction results (RQ1) and interpretability (RQ2, RQ3) of
different attention-based DL models. Moreover, RQ2 discusses
the detailed attention performance and RQ3 investigates the
factors that affect the attention effects of the GNN-based
DL model R-GCN-att which achieves the best interpretability.
Note that we train each DL model ten times and calculate the
average results as a measure to reduce the deviation.

1) RQ 1: How do the prediction performances of the
proposed four DL models for software vulnerability?

Motivation. Similar to the studies [1], [2], [6] that have
achieved high prediction results on the synthetic vulnerability
dataset of C or C++, we aim at exploring the prediction
performance of DL models with the manually created synthetic
vulnerability dataset Juliet+ (Java) in this study. We clarify that
it is the first step to achieve high prediction results before we
further evaluate the interpretability of such DL models.

Result. Table II presents the prediction results of the four
DL models. All of them obtain a high performance reaching
larger than 95% on the accuracy, precision, recall, and F1-
score. The relevant values of false positive rate and false neg-
ative rate are low as well. We also notice that the differences of
all prediction evaluation metrics are marginal (e.g., the changes
of accuracy, precision, recall, and F1-score are about 2.5%).

TABLE II: The prediction results of the four models.

Model A(%) P(%) R(%) F1(%) FPR(%) FNR(%)

HAN 98.18 98.37 98.22 98.29 0.02 0.02
SAN 97.51 97.81 97.54 97.67 0.03 0.02

BLSTM-att 96.67 97.35 96.40 96.87 0.03 0.04
R-GCN-att 95.71 95.44 96.80 95.11 0.06 0.04

The reason is that the vulnerabilities in Juliet+ are far less
complicated than the real-world vulnerabilities.

Among the three sequence-based models, HAN gets the
best performance because it inspects the tokens (at the token
level) and distinguishes the most critical ones related to the
semantics of the nodes. The result of SAN outperforms that
of BLSTM-att because they have different ways to generate
high-level features. SAN uses BGRU and a MLP layer to
obtain better high-level features than BLSTM-att to represent
the vulnerability patterns.

The R-GCN-att, which adopts the graph structures of the
source code as input containing more logical and structural
information instead of the sequenced-based input, obtains
a lower result (95.71% accuracy). This refers to that there
are still a small number of duplicated samples in the graph
structures and their labels with conflicts may mislead the
R-GCN-att, although the dataset obtained by operation of
deduplication is no longer repeated in the sequence based on
the corpus after normalization. In this study, we ignore the
effects of these conflicted samples because our critical target
is to explore the interpretability of DL models rather than to
compare the prediction results of such models. Meanwhile, we
find that only a few samples conflict in the graph structures
so that it does not fundamentally affect the conclusions.

Answer to RQ1: All the four attention-based DL models
achieve high performance (more than 95% on accuracy,
precision, recall, and F1-score) when predicting the soft-
ware vulnerability of the samples in the test dataset of
Juliet+.

2) RQ 2: Can the DL models learn the vulnerable
patterns? How do they perform in terms of attention
effects?

Motivation. As the main target in this study is to verify
the interpretability of DL models for vulnerability detection
based on the attention effects of the proposed four models, we
investigate how the attention effects of the four DL models
perform in terms of different hit types. Moreover, we want
to know whether the GNN-based R-GCN-att outperforms the
other sequence-based models in this RQ.

Result. Table III depicts the attention effects of the four
DL models. HAN achieves the best performance among the
three sequence-based models, while BLSTM-att is the worst.
This is consistent with the prediction performance of the three
sequence-based models in RQ1. Specifically, on the hit type
of “fixed”, BLSTM-att only acquires 27.2%, 9.47%, 40.51%,
and 25.02% on Hit@3, Hit@1, Hit@50%, and Hit@30%
respectively which are obviously lower than the relevant values

of HAN (e.g., 32.80% lower on Hit@50%). This denotes
that BLSTM-att cannot understand the differences between
vulnerable and non-vulnerable patterns although it results in
a high prediction result on Juliet+ (see in Table II). However,
on the hit type “bad either”, the differences in the attention
results of the three sequence-based models are relatively small
(e.g., the biggest gap is 7.60% on Hit@50%). This denotes
that all three of them have a similar ability to learn vulnerable
patterns.

On the other hand, R-GCN-att obtains the best attention ef-
fects which are contrary to its prediction performance. Specif-
ically, on the hit type of “fixed”, R-GCN-att reaches 86.27%
at Hit@50% and 76.73% at Hit@30%, which are 27.54%
and 34.3% higher than the other three models on average.
This illuminates that R-GCN-att discriminates the differences
between vulnerable and non-vulnerable patterns more clearly.
In addition, on the hit type of “bad avg”, R-GCN-att gives
53.65% at Hit@50% and 18.44% at Hit@30% respectively
which are 15.38% and 13.15% higher than BLSTM-att. This
also uncovers that R-GCN-att better captures the context-
dependency of the vulnerable patterns.

Additionally, for the hit types of “bad either”, such four DL
models of vulnerability detection yield 82.76% and 58.65% on
average at the metric Hit@50% and Hit30%, which implies
that, to some extent, those DL models can learn the vulnerable
patterns of the dataset Juliet+ on the whole.

Answer to RQ2: The DL models can learn vulnerable
patterns to a certain extent for interpretation on Juliet+.
However, there are definitely differences across the four
attention-based DL models. The GNN-based DL model
R-GCN-att obtains the best attention effects while the DL
model BLSTM-att cannot learn the differences between
vulnerable and non-vulnerable patterns well, although
they have similar results for predicting the software
vulnerability.

3) RQ3: How effective are the attention effects of R-
GCN-att in different CWEs?

Motivation. The answer to RQ2 tells us that the character-
istics of the models can affect their interpretability. In RQ3,
we want to validate how the DL model R-GCN-att which has
the best interpretability performs on the attention effects of
different CWEs. Moreover, we want to estimate what other
facts affect the interpretability of R-GCN-att according to the
characteristics of those CWEs. Only part of CWEs are picked
out to be analyzed due to two reasons. First, according to
the popularity of vulnerabilities existing in the Java program,
we choose CWE89, the vulnerability of SQL Injection, along
with CWE22 about Path Traversal (including CWE23 and
CWE36) and CWE79 about Cross-Site Scripting (including
CWE80, CWE81, and CWE83) [31]. Second, based on the
distribution of the sample number, we select the two most
numerous CWEs, i.e., CWE190 about Integer Overflow and
CWE191 about Integer Underflow. Table I lists the statistics
of such five CWEs in the test set after normalization.

TABLE III: The attention effects of the four models.

Metric Hit@3(%) Hit@1(%) Hit@50%(%) Hit@30%(%)

Hit type fixed bad either fixed bad either fixed bad avg bad either fixed bad avg bad either

HAN 52.29 51.81 18.21 24.14 73.31 46.36 87.26 55.72 10.21 61.40

SAN 47.53 51.90 19.98 28.43 62.37 39.93 81.36 46.55 5.89 55.99

BLSTM-att 27.20 46.01 9.47 17.79 40.51 38.27 79.66 25.02 5.29 53.97

R-GCN-att 77.14 58.42 56.56 29.00 86.27 53.65 82.74 76.73 18.44 63.22

Result. Fig. 4 shows the attention effects of R-GCN-att
on the five CWEs. For the attention effects on the type
of “fixed”, the model performs the best on CWE190 and
CWE191 obviously and the worst on CWE89. Furthermore,
Table I confirms that CWE190 and CWE191 contain the
most sample, so R-GCN-att is well-trained to learn the non-
vulnerable patterns. However, it is difficult for R-GCN-att to
gain a high result on CWE89, although it has more samples
than CWE22 and CWE79. We further observe that there is
only one way to repair the software vulnerability for CWE22
and CWE79 by using “goodsource”. However, CWE89 uses
“good source” or “good sink” to repair itself which makes it
harder to learn the repair patterns.

For the attention effects on “bad avg” which represents
the ability of one model to capture the context of vulnerable
patterns, R-GCN-att reaches its best performance on CWE89
because it not only maintains a balanced class distribution but
also contains a great number of vulnerable samples.

We also observe that the attention effects of R-GCN-att on
“bad source” are larger than those on “bad sink” for all of
the five CWEs. This illuminates that the model puts more
emphasis on the “bad source” nodes instead of the “bad sink”
nodes of the bad samples in Juliet+. Moreover, we discover
that it needs to change more lines of codes when repairing
“badsource” than that of repairing “badsink” which provides
more contrast features.

Finally, for the attention effects on “bad either”, R-GCN-att
does not perform well on CWE190 and CWE191 where the
vulnerable samples are less than non-vulnerable samples.

Answer to RQ3: The attention effects of R-GCN-att on
different CWEs are affected by various aspects such as
the number of samples, the class distribution, and the
differences of sample features. We propose to train the R-
GCN-att model to fulfill the goal of better interpretability
by a dataset that has balanced and sufficient samples
with obvious differences between vulnerable and non-
vulnerable patterns.

IV. THREATS TO VALIDITY

The presented framework in this paper is subject to some
limitations that could potentially threaten our experimental
results and relevant findings.

An external threat is the quality and representativeness of
the dataset Juliet+ created based on Juliet. Juliet has also been
used in existing studies about vulnerabilities analysis [4], [31].

We thus believe the Juliet+ should be representative and its
quality should be good as well. Although there are limitations
about Juliet+ such as the synthetic characteristics, we can still
observe how the attention-based DL model focuses on the
key vulnerable patterns and explain the classification result of
software vulnerability prediction. Furthermore, we can further
confirm our findings on a real-world software vulnerability
dataset when it becomes available.

An internal threat is experimental settings that we compute
the average results via multiple same experiments. We train
each DL model ten times to generate the average result of
every metric, which is sufficient to qualitatively observe the
overall performance of all models and keep the result as stable
as possible. In addition, we record the attention effect and
use it to explain the interpretability of the DL models only
when the models reach the highest F1-score. This setting may
affect some experiment results because the attention effects
may change when the prediction effects on other prediction
metrics (e.g., accuracy) still increase. However, it should not
fundamentally affect our conclusions, especially those for the
interpretability of the DL models.

Another internal threat comes from the attention mechanism
used to explain the result of software vulnerability detec-
tion. Actually, there are still many discussions on whether
we should choose attention mechanism as an interpretation
method to analyze and understand the behaviors (or results) of
DL models [32]–[34]. However, Wiegreffe et al. [35] suggest
that the attention mechanism is meaningful especially when it
works in coordination with the entire DL model. Meanwhile,
triggered by the effectiveness of attention for interpretation in
Xmal [36], we also implement the attention into all of the four
DL models in our experiments and clarify the interpretability
of such attention-based DL models on the issue of software
vulnerability detection.

V. RELATED WORK

Vulnerability detection. In existing studies on vulnerability
detection, most efforts are devoted to designing rules [37],
[38], machine learning [39] or deep learning [1]–[7] to learn
the vulnerable patterns. Engler et al. [37] summarized six
template checkers such as “<a> must be paired with ”.
Shin et al. [39] made an effort to use code complexity metrics
when using conventional machine learning to detect software
vulnerability. Deep learning methods like LSTM [40], GRU
[41] and GGNN [42] are also adopted to detection because
they automatically extract vulnerability features to reduce

0

20

40

60

80

100 CWE22

0

20

40

60

80

100 CWE79

0

20

40

60

80

100 CWE89

0

20

40

60

80

100 CWE190

0

20

40

60

80

100 CWE191

Hit@3(%) Hit@1(%)

Hit@50%(%) Hit@30%(%)

Fig. 4: The attention effects of R-GCN-att on CWE22,
CWE79, CWE89, CWE190, and CWE191.

the efforts of security experts [1], [3]. However, most DL
methods neglect the interpretability of predicted results which
is important to understand vulnerable patterns of the source
code [9].
Model interpretation. Although model interpretation has
been spread to many security-related fields such as mal-
ware detection [36], [43] and security applications [44], [45],
there are few studies [46]–[48] devoted to the interpretation
of vulnerability detection. Zou et al. [46] adopt a custom
heuristic search to get the important tokens that are used to
generate some vulnerability rules and use fidelity to evalu-
ate the interpretability. Ganz et al. [47] used nine common
graph-agnostic and three graph-specific explanation methods
to explain graph neural networks for vulnerability detection
with some self-defined criteria. However, neither of them
intuitively demonstrates interpretability by comparing human
annotation results with model results. The study in [48] is
the most similar one with us where it also uses attention

to evaluate the interpretability by comparing the code lines
labeled automatically and the most relevant code lines to the
prediction given by the model. Different from such three jobs
above, we not only manually mark the vulnerability-related
lines of code for samples in Juliet+, but also divide them into
more detailed types. Moreover, our evaluation is also more
intuitive by observing the vulnerability-related codes being hit.

VI. CONCLUSION

In this study, we propose a framework to investigate the
interpretability of attention-based DL models for the problem
of software vulnerability detection. Based on a manually
created dataset Juliet+ under a great effort on labeling the
vulnerability-related code lines, we design four models to
explore their performance of detection and to understand
which model better recognizes the critical code lines to
represent vulnerable patterns of the source code. The em-
pirical results show that all of the four models maintain a
high detection performance that is more than 95% F1-score.
However, only the GNN-based DL model R-GCN-att gains an
acceptable result (86.27% on the hit type of “fixed” with metric
Hit@50%) when interpreting the prediction of vulnerability.
This validates that the R-GCN-att has learned the critical
knowledge to distinguish the vulnerable patterns from the
graph structure of source code. Additionally, we analyze the
facts that may influence the attention effects of DL models. It
is confirmed that the R-GCN-att model achieves the better
attention effects (interpretability) of vulnerability detection
when the dataset constructed consists of more balanced and
sufficient samples with distinct differences between vulnerable
and non-vulnerable patterns.

ACKNOWLEDGMENTS

This work has partially been sponsored by the National
Natural Science Foundation of China (Grant No. 62102284
and No. 61872262).

REFERENCES

[1] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang,
Zhijun Deng, and Yuyi Zhong. Vuldeepecker: A deep learning-based
system for vulnerability detection. arXiv preprint arXiv:1801.01681,
2018.

[2] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan
Chen. Sysevr: A framework for using deep learning to detect software
vulnerabilities. IEEE Transactions on Dependable and Secure Comput-
ing (TDSC), 2021.

[3] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang
Liu. Devign: Effective vulnerability identification by learning compre-
hensive program semantics via graph neural networks. arXiv preprint
arXiv:1909.03496, 2019.

[4] Huanting Wang, Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang
Huang, Dingyi Fang, Yansong Feng, Lizhong Bian, and Zheng Wang.
Combining graph-based learning with automated data collection for code
vulnerability detection. IEEE Transactions on Information Forensics and
Security (TIFS), 16:1943–1958, 2020.

[5] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray.
Deep learning based vulnerability detection: Are we there yet. IEEE
Transactions on Software Engineering (TSE), 2021.

[6] Weining Zheng, Yuan Jiang, and Xiaohong Su. Vulspg: Vulnerability
detection based on slice property graph representation learning. arXiv
preprint arXiv:2109.02527, 2021.

[7] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning semantic
features for defect prediction. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pages 297–308. IEEE,
2016.

[8] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural computation, 18(7):1527–1554,
2006.

[9] Guanjun Lin, Sheng Wen, Qing-Long Han, Jun Zhang, and Yang Xiang.
Software vulnerability detection using deep neural networks: A survey.
Proceedings of the IEEE (Proc.IEEE), 108(10):1825–1848, 2020.

[10] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

[11] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei
Hao, and Bo Xu. Attention-based bidirectional long short-term memory
networks for relation classification. In Proceedings of the 54th annual
meeting of the association for computational linguistics (volume 2: Short
papers), pages 207–212, 2016.

[12] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Ed-
uard Hovy. Hierarchical attention networks for document classification.
In Proceedings of the 2016 conference of the North American chapter
of the association for computational linguistics: human language tech-
nologies, pages 1480–1489, 2016.

[13] Thomas Zenkel, Joern Wuebker, and John DeNero. Adding interpretable
attention to neural translation models improves word alignment. arXiv
preprint arXiv:1901.11359, 2019.

[14] Guisheng Fan, Xuyang Diao, Huiqun Yu, Kang Yang, and Liqiong Chen.
Software defect prediction via attention-based recurrent neural network.
Scientific Programming (SP), 2019, 2019.

[15] Guanjun Lin, Wei Xiao, Jun Zhang, and Yang Xiang. Deep learning-
based vulnerable function detection: A benchmark. In International
Conference on Information and Communications Security (ICICS), pages
219–232. Springer, 2019.

[16] René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database
of existing faults to enable controlled testing studies for java programs.
In Proceedings of the 2014 International Symposium on Software Testing
and Analysis, pages 437–440, 2014.

[17] Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob
Harer, Onur Ozdemir, Paul Ellingwood, and Marc McConley. Automated
vulnerability detection in source code using deep representation learning.
In 2018 17th IEEE international conference on machine learning and
applications (ICMLA), pages 757–762. IEEE, 2018.

[18] Paul E Black et al. Samate’s contribution to information assurance. NIST
Special Publication, 500(264):2, 2006.

[19] Juliet test suite v1.2 for java user guide. https://samate.nist.gov/SRD/
resources/Juliet Test Suite v1.2 for Java - User Guide.pdf, 2012.

[20] Nicholas Smith, Danny Van Bruggen, and Federico Tomassetti. Java-
parser: visited. Leanpub, oct. de, 2017.

[21] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program
dependence graph and its use in optimization. ACM Transactions on
Programming Languages and Systems (TOPLAS), 9(3):319–349, 1987.

[22] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sut-
ton, and Andrea Janes. Big code!= big vocabulary: Open-vocabulary
models for source code. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE), pages 1073–1085. IEEE,
2020.

[23] word2vec. http://radimrehurek.com/gensim/models/word2vec.html,
2021.

[24] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van
Den Berg, Ivan Titov, and Max Welling. Modeling relational data with
graph convolutional networks. In European semantic web conference,
pages 593–607. Springer, 2018.

[25] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph
pooling. In International Conference on Machine Learning (ICML),
pages 3734–3743. PMLR, 2019.

[26] Common weakness enumeration. https://samate.nist.gov/SRD/index.
php, 2021.

[27] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye,
Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma, et al. Deep graph library:
Towards efficient and scalable deep learning on graphs. 2019.

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[29] Marcus Pendleton, Richard Garcia-Lebron, Jin-Hee Cho, and Shouhuai
Xu. A survey on systems security metrics. ACM Computing Surveys
(CSUR), 49(4):1–35, 2016.

[30] Yongqi Zhang, Quanming Yao, Yingxia Shao, and Lei Chen. Nscaching:
simple and efficient negative sampling for knowledge graph embedding.
In 2019 IEEE 35th International Conference on Data Engineering
(ICDE), pages 614–625. IEEE, 2019.

[31] Jiayi Hua and Haoyu Wang. On the effectiveness of deep vulnerability
detectors to simple stupid bug detection. In 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR), pages
530–534. IEEE, 2021.

[32] Sarthak Jain and Byron C Wallace. Attention is not explanation. arXiv
preprint arXiv:1902.10186, 2019.

[33] Sofia Serrano and Noah A Smith. Is attention interpretable? arXiv
preprint arXiv:1906.03731, 2019.

[34] Jasmijn Bastings and Katja Filippova. The elephant in the interpretability
room: Why use attention as explanation when we have saliency meth-
ods? arXiv preprint arXiv:2010.05607, 2020.

[35] Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation.
arXiv preprint arXiv:1908.04626, 2019.

[36] Bozhi Wu, Sen Chen, Cuiyun Gao, Lingling Fan, Yang Liu, Weiping
Wen, and Michael Lyu. Why an android app is classified as mal-
ware? towards malware classification interpretation. In CoRR, volume
abs/2004.11516, 2020.

[37] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Ben-
jamin Chelf. Bugs as deviant behavior: A general approach to inferring
errors in systems code. ACM SIGOPS Operating Systems Review,
35(5):57–72, 2001.

[38] Flawfinder. https://dwheeler.com/flawfinder/, 2013.
[39] Yonghee Shin and Laurie Williams. An empirical model to predict

security vulnerabilities using code complexity metrics. In Proceedings of
the Second ACM-IEEE international symposium on Empirical software
engineering and measurement, pages 315–317, 2008.

[40] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[41] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[42] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493,
2015.

[43] Ming Fan, Wenying Wei, Xiaofei Xie, Yang Liu, Xiaohong Guan, and
Ting Liu. Can we trust your explanations? sanity checks for interpreters
in android malware analysis. IEEE Transactions on Information Foren-
sics and Security (TIFS), 16:838–853, 2020.

[44] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should
i trust you?” explaining the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 1135–1144, 2016.

[45] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu
Xing. Lemna: Explaining deep learning based security applications. In
proceedings of the 2018 ACM SIGSAC conference on computer and
communications security, pages 364–379, 2018.

[46] Deqing Zou, Yawei Zhu, Shouhuai Xu, Zhen Li, Hai Jin, and Hengkai
Ye. Interpreting deep learning-based vulnerability detector predictions
based on heuristic searching. ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), 30(2):1–31, 2021.

[47] Tom Ganz, Martin Härterich, Alexander Warnecke, and Konrad Rieck.
Explaining graph neural networks for vulnerability discovery. In
Proceedings of the 14th ACM Workshop on Artificial Intelligence and
Security, pages 145–156, 2021.

[48] Zhen Li, Deqing Zou, Shouhuai Xu, Zhaoxuan Chen, Yawei Zhu, and
Hai Jin. Vuldeelocator: a deep learning-based fine-grained vulnerability
detector. IEEE Transactions on Dependable and Secure Computing
(TDSC), 2021.

https://samate.nist.gov/SRD/resources/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf
https://samate.nist.gov/SRD/resources/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf
http://radimrehurek.com/gensim/models/word2vec.html
https://samate.nist.gov/SRD/index.php
https://samate.nist.gov/SRD/index.php
https://dwheeler.com/flawfinder/

	Introduction
	Methodology
	The Definition of Vulnerability Detection
	Overview of the Framework
	Data Preprocessing
	Model Training
	Model Testing

	Data Preprocessing
	Sub-step 1
	Sub-step 2
	Sub-step 3
	Sub-step 4
	Sub-step 5
	Sub-step 6

	Model Training and Testing
	Sub-step 1
	Sub-step 2
	Sub-step 3

	The Four Attention-based DL Models

	Experiments
	Evaluation Setup
	Juliet+
	Evaluation configuration
	Evaluation metrics
	Hit type

	Experiments and Discussions
	RQ 1
	RQ 2
	RQ3

	Threats to Validity
	Related Work
	Conclusion
	References

