
Front.Comput.Sci.
DOI

RESEARCH ARTICLE

VenomAttack: Automated and Adaptive Activity Hijacking
in Android

Pu Sun1#, Sen Chen2#, Lingling Fan3, Pengfei Gao1, Fu Song 1, Min Yang4

1School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
2College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China

3College of Cyber Science, Nankai University, Tianjin, 300350, China
4School of Computer Science, Fudan University, Shanghai, 200438, China

#Co-first Author

c© Higher Education Press 2021

Abstract Activity hijacking is one of the most powerful at-
tacks in Android. Though promising, all the prior activity hi-
jacking attacks suffer from some limitations and have limited
attack capabilities. They no longer pose security threats in re-
cent Android due to the presence of effective defense mecha-
nisms. In this work, we propose the first automated and adap-
tive activity hijacking attack, named VenomAttack, enabling
a spectrum of customized attacks (e.g., phishing, spoofing,
and DoS) on a large scale in recent Android, even the state-
of-the-art defense mechanisms are deployed. Specifically, we
propose to use hotpatch techniques to identify vulnerable de-
vices and update attack payload without re-installation and
re-distribution, hence bypassing offline detection. We present
a newly-discovered flaw in Android and a bug in derivatives
of Android, each of which allows us to check if a target app
is running in the background or not, by which we can deter-
mine the right attack timing via a designed transparent activ-
ity. We also propose an automated fake activity generation
approach, allowing large-scale attacks. Requiring only the
common permission INTERNET, we can hijack activities at
the right timing without destroying the GUI integrity of the
foreground app. We conduct proof-of-concept attacks, show-
ing that VenomAttack poses severe security risks on recent
Android versions. The user study demonstrates the effec-
tiveness of VenomAttack in real-world scenarios, achieving
a high success rate (95%) without users’ awareness. That

Received March, 2021; accepted July, 2021

E-mail: songfu@shanghaitech.edu.cn

would call more attention to the stakeholders like Google.

Keywords Android; Activity hijacking; Android security;
Mobile security

1 Introduction

Various hijacking attacks in Android have been proposed,
such as component hijacking [1], clicking hijacking [2] ac-
tivity hijacking [3, 4], and task hijacking [5, 6], where task
hijacking also can achieve activity hijacking. Among them,
activity hijacking which injects into the foreground a hijack-
ing activity, is one of the most powerful attacks. It can breach
the integrity or availability of the GUIs belonging to other
apps without user’s awareness, causing severe consequences
in practice.

Though promising, all the existing activity hijacking at-
tacks [3–9] suffer from one or more of the following limita-
tions. (1) It is assumed that a malware designed to hijack a
chosen app has been installed on the victim’s device, which
prevents the adversary from adaptively choosing target apps
and devices. (2) The problems of how to identify vulnera-
ble devices to attack are not considered. (3) The malware is
created manually for each chosen target app which works for
determined attacks but is not suitable for adaptive and large-
scale attacks. (4) Almost all the attacks either do not consider
the right attack timing or the way to determine the right attack
timing have been deprecated or restricted in recent Android
versions.(5) Prior attacks become ineffective due to effective

2

defense mechanisms [6, 8, 10–14] which detect attacks be-
fore app installation or at runtime. Thus, it is fair to say that
prior activity hijacking attacks no longer pose an effective and
powerful security threats in recent Android versions.

In this work, our goal is to investigate if it is possible to
overcome the above limitations via more advanced activity
hijacking attacks. Thus, the research in this article is moti-
vated by the following questions: (Q1) How to identify de-
vices which installed vulnerable apps and how to install mal-
ware on the chosen vulnerable devices, as not all the devices
are vulnerable and not all the vulnerable devices are worth to
attack. (Q2) How to determine the right attack timing, as it is
suspicious to abruptly inject a malicious activity into the fore-
ground. (Q3) Is it possible to mount automated large-scale
attacks in recent Android versions, by which the adversary
can gain more benefits with low attack cost. (Q4) Is it fea-
sible to bypass the state-of-the-art defense mechanisms that
were proposed to defeat activity hijacking attacks?

To address Q1, we propose to leverage hotpatch tech-
niques. Hotpatch techniques were proposed to fix bugs
and add new functionalities for installed apps, without re-
installation and re-distribution. An app with a hotpatch
framework but without any attack payloads could be dis-
tributed via app markets (e.g., Google Play Store). It can
be customized with useful and interesting functionalities to
attract users to install. When the app is installed, it can col-
lect information of the device and installed apps, and send
back to the adversary. This allows the adversary to identify
and choose vulnerable devices to attack. Then attack pay-
load can be created at the server-side and updated into the
app via the hotpatch framework, without re-installation and
re-distribution. Furthermore, the attack payload could be re-
moved later so that the app looks like benign after a success-
ful attack.

To address Q2, we present one new flaw in Android and
one new bug in derivatives of Android, each of which can be
used to determine a right attack timing. The flaw was orig-
inally designed to check whether an activity is the first one
or not in its task. The bug comes from a flag that indicates
if an app is in the force stopped state or not for controlling
broadcasts. We found that each of them can be used to infer
whether the target app is running in the background or not,
allowing us to determine the right attack timing.

We address Q3 by presenting an automated fake activity
generation approach for phishing attacks via activity hijack-
ing, one of the most important attack examples of activity hi-
jacking [3–6]. It is challenge to automatically and efficiently
generate fake activities as the source code of target apps/ac-

tivities are often unavailable. We propose an approach to au-
tomate fake activity generation. For each target app, it creates
a fake activity by launching the target app, taking a screenshot
of the login UI, extracting layout information from the login
UI, creating a layout file as the fake UI and adding source
code to implement the functionality. This leads to an auto-
mated, adaptive and large-scale activity hijacking attack.

For Q4, we first argue that an app with a hotpatch frame-
work is benign, thus, all the defense mechanisms that de-
tect activity hijacking attacks before app installation can be
bypassed. To justify this, we implemented a bait app with
a hotpatch framework, called EasyNote. It was labeled as
benign by all the 63 security engines in VirusTotal and was
also successfully submitted to Google Play Store by us. Fur-
thermore, we studied 250 popular apps from 5 app markets,
out of which 108 apps use hotpatch frameworks, indicating
that hotpatch cannot be used as a key indicator for identi-
fying our attack. Remark that activity hijacking apps with-
out using hotpatch techniques can be detected by existing
tools [6, 8, 10, 12, 13]. We also design an elegant transpar-
ent activity in our attack in order to insert a malicious activity
into the foreground at the right timing. It neither starts ac-
tivities in the background which is restricted in Android 10
nor destroys the GUI integrity of the foreground app which
could be intercepted by real-time defense mechanisms, e.g.,
WindowGuard [11].

To demonstrate the effectiveness of VenomAttack, we first
evaluate its compatibility on 6 recent official and 5 commer-
cial Android versions, where the cumulative adoption of the
official versions is 82.91% reported by StatCounter on Feb.
2021. We show they are all vulnerable. We then evaluate the
efficacy of our fake activity generation by comparing the sim-
ilarity between fake and original UIs of 50 popular financial
and social apps from Google Play Store. The similarity is
close to 100% and the generation time is close to 3 seconds.
We also thoroughly investigate VenomAttack under the state-
of-the-art defense mechanisms that were proposed to defend
against activity hijacking attacks. VenomAttack is able to de-
feat all these mechanisms in principle, while no prior activity
hijacking attacks can. We further present proof-of-concept
(PoC) attack examples to demonstrate VenomAttack. Finally,
we conduct a user study using EasyNote and 10 randomly se-
lected target apps from the top 100 financial apps on Google
Play Store. It achieves 95% attack success rate and none of
the 20 participants perceive any abnormalities when conduct-
ing attacks.

In summary, our main contributions are:

3

• We present a novel attack, VenomAttack. It is more
practical and powerful than prior activity hijacking at-
tacks.

• We propose to use hotpatch techniques and present a
new flaw and a new bug, which would call more atten-
tions to the new security issues for different stakehold-
ers.

• We conduct extensive experiments and user study, which
demonstrate the effectiveness of VenomAttack which
successfully obtains the credentials from almost all the
victims in practice.

• We conduct a systematic study of existing activity hi-
jacking attacks under various defense mechanisms, re-
vealing their advantages and disadvantages which po-
tentially fosters further research.

2 Background

2.1 Android Application, Activity, and Task

An Android app consists of one or more components, each of
which is activity, service, content provider, or broadcast re-
ceiver. Basically, an app runs in its own limited-access sand-
box and communicates with others via intents. Android en-
forces a permission-based security policy, where an app can
use resources outside of its own sandbox when the declared
permissions are granted. While an activity of an app provides
a window in which the app draws its GUI, served as the entry
point for user interaction. An app can have several activities
for different interactions [15].

Android provides a multitasking mechanism to organize
running activities (i.e., activities that are launched, yet have
not been destroyed). A task, called back stack, is a collec-
tion of running activities. Android arranges multiple tasks
as a task stack: the foreground task that interacts with the
user, and the background tasks that organize paused activi-
ties. When a task comes to the foreground (e.g., by beginning
a new task or resuming an existing one), the top activity of the
foreground task is displayed on the screen. When the fore-
ground task finishes, it pops from the task stack, the Home
screen if the task stack becomes empty otherwise the recent
task, comes to the foreground. When an activity starts, there
are three basic attributes to determine the resulting task stack:
launch mode, task affinity, and intent flag. For instance, when
the current activity creates a new activity, the current activity
is stopped but remains intact in the task, and the new activity
is pushed onto the foreground task. If an activity is pushed

(a) The benign app
is opened by the user

(c) The adversary
controls the malware

(b) Instead of seeing the benign app,
the malware is displayed on the user’s screen

(c) The malware is controlled
by the adversary who can

steal the user’s information

Fig. 1 Attack scheme of activity hijacking

onto a newly created task stack, it becomes the root of the
task stack which the task affinity is the task affinity of the ac-
tivity. If the Back button is pressed, the current activity is
popped from the foreground task and the next activity in the
foreground task resumes. Details and formal definitions refer
to [6, 16].

2.2 Hotpatch in Android

Hotpatch is a technique for repairing bugs and adding new
functionalities of an installed app without re-distribution and
re-installation. Several hotpatch frameworks such as Tinker,
Sophix, Robust, and AndFix, varying in the underlying tech-
niques, have been developed. Among them, Tinker, Sophix,
and Robust are compatible with the recent Android versions.
Typically, to update a base app with a client-side hotpatch
framework, a patch file is created by the server-side hotpatch
framework from the base app and the updated app, and then
is sent to the base app installed on the devices. The client-
side hotpatch framework enforces that the updated app will
be started when the app is launched. All these steps can be
done automatically and stealthily.

In this work, we choose Tinker to demonstrate our attack.
Tinker uses the Android’s dex loading and Java reflection
mechanisms to achieve hotpatch. It supports the update of
methods, classes, .so library files and resource files without
requiring any additional permissions except for the INTER-
NET permission. We checked and confirmed that Robust can
be used for our attack as well, while Tinker supports more
features and is much easier to use. Moreover, the patch file
generated by Tinker is much smaller, hence causes less traf-
fic than that of Robust. Note that we did not check Sophix
and AndFix, as Sophix is not publicly available while And-
Fix has not been maintained for several years and replaced by
Sophix.

4

2.3 Activity Hijacking in Android

Figure 1 shows the overview of activity hijacking in An-
droid [3–5]. The goal is to hijack the user interaction of a
benign activity by injecting a malicious one. When a benign
app or its activity is launched or resumed by the user, instead
of seeing the GUI of the benign app/activity, the GUI of a
malicious activity is displayed on the user’s screen so that
the user will interact with the malicious one without user’s
awareness. Activity hijacking can implement various attacks
such as phishing, spoofing and DoS attacks.

3 Related Work

Hijacking attacks in Android have been extensively studied
such as component hijacking [1], clicking hijacking [2] ac-
tivity hijacking [3, 4] and task hijacking [5, 6]. Component
hijacking exploits vulnerable components in target apps to
carry out unauthorized read or write operations on sensitive
resources. Clicking hijacking tricks victims to click on the
elements in a different UI page that is only barely visible or
completely invisible. Intent hijacking aims to manipulate or
steal broadcast intents or certain activity-related intents. This
work focuses on activity hijacking, one of the most powerful
hijacking attacks, which can implement various attacks (e.g.,
phishing, spoofing, and DoS) by requiring only the common
permission INTERNET. We discuss existing activity hijack-
ing attacks below.

The first activity hijacking attack was proposed in
2013 [7]. It uses a background service to constantly
check if the target app is running via the API function
getRunningAppProcesses. It launches a malicious ac-
tivity and injects it into the foreground if the target app is
running.

In 2014, an alternative activity hijacking attack was pro-
posed [3]. This attack detects the event of the target activity
landing by leveraging side channel information (e.g., shared-
memory) so that hijacking occurs at the right timing. How-
ever, this attack requires a carefully designed timing so that
the malicious activity will not enter the foreground too early
or too late, and the detection of the target activity landing
event is less reliable than API functions [5]. A similar idea
was also used Yang et al. [9] to launch activity hijacking at-
tacks.

In 2015, a spectrum of task hijacking attacks was pro-
posed [5], which can achieve activity hijacking. They pre-
sented two attack types: malware⇒target where the mali-

cious activity gets pushed onto the target app’s task, and
target⇒malware where the activity of the target app is tricked
by the malware and pushed onto the malware’s task. Note
that the attack of [7] belongs to malware⇒target. To be less
suspicious, target⇒malware has to detect the target activity
landing event, while malware⇒target has to detect if the tar-
get app is running. It was shown in 2019 that task hijacking
attacks exist in real-world malware (36 malcious apps) and
all of the top 500 most popular apps are at risk.

In 2016, a malware⇒target attack was proposed [4]
which uses the API function getRunningTasks to check
if the target app is running. Though the API function
getRunningTasks has been restricted later for direct us-
age, it still works in 2017 if the malware and the target app
are in the same task [8]. All possible combinations of the
task related attributes are identified for malware⇒target at-
tacks by exploring the formal semantics of Android’s activity
activation mechanism [6]. Recenty, StrandHogg 2.0 was pro-
posed which is executed through Java reflection, allowing the
malware to freely assume the identity of target apps.

As mentioned in Section 1, prior activity hijacking attacks
suffer from one or more limitations, hence no longer pose an
effective and powerful security threats in recent Android ver-
sions. Our attack is designed to overcome these limitations.
It also features both malware⇒target and target⇒malware
attacks, and enables a spectrum of customized, large-scale
attacks without user’s awareness.

Fortunately, various defense mechanisms have been pro-
posed to defend against activity hijacking attacks. Static anal-
ysis and/or dynamic analysis methods [6, 8, 10, 12, 13] can
check if an app contains any activity hijacking attacks that
leverage task related attributes. All the API functions used
by the existing attacks have been effectively restricted in re-
cent versions of Android. Real-time detection methods also
have been proposed [11,14,17] to intercept activity hijacking
attacks at runtime. An in-depth analysis of prior activity hi-
jacking attacks against these defense mechanisms is given in
Section 5.

Our attack is also closely related to piggybacked apps and
direct inter-app code invocation (DICI). Piggybacked apps,
obtained by repackaging malicious payloads with popular
(benign) apps, provide another way to spread to a large user
base [18]. Piggybacked apps contain malicious payloads
when distributed via app markets, whereas our attack con-
tains a client hotpatch framework instead of a malicious pay-
load. Inspired from piggybacked apps, the adversary could
also piggyback a client hotpatch framework into some popu-
lar (benign) apps instead of using our bait app and then up-

5

Distribute bait
apps to markets

App markets

……

……

Download and install the bait apps

Collect information from the chosen devices

Update the bait apps for the chosen devices

Fig. 2 VenomAttack scheme

date malicious payloads later. This could enable the resulting
apps to be spreaded to a large user base. DICI, proposed by
Gao et al. [19], allows apps to access and invoke functional-
ities implemented in other apps using official Android APIs.
Thus, it is possible to quickly develop a customized hotpatch
framework by leveraging DICI, where the bait app downloads
a malicious payload as a new app and executes the payload
via the DICI mechanism. We leave them as future work.

4 Our Attack: VenomAttack

In this section, we first present the scheme and workflow of
VenomAttack and then provide the details of VenomAttack.

4.1 Threat Model and Attack Scheme

The attack scheme of VenomAttack is depicted in Figure 2.
The adversary develops some bait apps with different inter-
esting and/or useful functionalities to attract more users and
distributes them via app markets (e.g., Google Play Store).
In contrast to prior attacks such as [3–6, 8], which assume
that the bait app is a malware and contains an attack payload,
our bait app (before loading the patch file) does not contain
any attack payloads except for its normal functionalities and
a hotpatch technique. We also assume that the bait app re-
quires the INTERNET permission and declares the required
task affinities of target apps in the manifest file, both of which
are widely-required in existing attacks [3, 5, 6, 20].

An app with a hotpatch technique is arguably harmless. To
justify this, we implemented a bait app with a hotpatch frame-
work, called EasyNote. The bait app was checked by a holis-
tic malware hunting platform VirusTotal which consists of 63
app scan engines. No engines classified the bait app as a ma-
licious one. We also examined several app markets including
Google Play Store, Xiaomi App Store, Ali App Distribution
Platform, Huawei App Gallery, and Apkpure. We found only

the Google Play Store declared in its Developer Program Pol-
icy that all apps are not allowed to be modified, replaced, or
updated by themselves in any way other than Google Play’s
update mechanism while others did not declare. However,
the bait app was successfully released on the Google Play
Store on September 25, 2020 after approximately 5 days of
submission, and successfully updated by removing some use-
less permissions on March 17, 2021 after approximately 20
minutes of submission. This means that Google either does
not check whether apps have hotpatch techniques or fails to
detect the presence of the hotpatch technique in our app. Fur-
thermore, we investigated 250 popular apps from 5 app mar-
kets, out of which 108 apps use hotpatch frameworks. This
indicates that hotpatch frameworks are widely used by be-
nign apps and cannot be used as a key indicator for identi-
fying our attack. We emphasis that without using hotpatch
techniques, apps with activity hijacking payloads would be
detected by existing detection tools before being installed by
users [6, 8, 10, 12, 13].

All the devices installed the bait app and any target apps
could be the victims of VenomAttack. Once the bait app gets
started on a device, it can collect various information such
as IP address via the class InetAddress, device brand via
the class Build in android.os, resolution of the screen
via the class DisplayMetrics, and the list of installed
apps with their versions. By leveraging these information,
the adversary can identify vulnerable devices and dynami-
cally choose one or more devices and apps to attack. For
instance, the adversary can choose specific devices to attack,
e.g., devices from some specific countries by designated IP
address ranges, devices produced by some specific compa-
nies. Furthermore, by leveraging hotpatch techniques, Veno-
mAttack can carry out a spectrum of customized attacks on
a large scale by updating attack payload into the bait apps,
without re-installation and re-distribution. Although the bait
app contains the attack payload after hotpatching, it cannot
be detected by the existing tools [6, 8, 10, 12, 13], as it has al-
ready been installed on the devices. The attack payload could
be removed over a prolonged time period, e.g., a successful
attack, making the attack less suspicious.

We explore how to launch activity hijacking attacks in An-
droid using the proposed attack scheme, as activity hijacking
is one of the most powerful attacks and can be used to im-
plement various attacks. Furthermore, most popular apps by
default are vulnerable to activity hijacking attacks.

6

Send
to server

Get the list of all
the installed apps

Send
to client

Send the patch

Server

Client

Attack at the right timing

Load the patch and
launch the payload

Target
identification

Patch generation1. Check running status
2. Start the follow-up

attack steps.

Device

Fig. 3 Workflow of VenomAttack

4.2 Workflow of VenomAttack

In this subsection, we explore how to launch VenomAttack.
Figure 3 depicts the workflow of conducting such an attack,
including three main phases: (1) Target identification, which
identifies and selects vulnerable devices to attack after ob-
taining the installed apps via the bait app; (2) Patch genera-
tion, which creates a patch file including the attack payload
for each target app and device; and (3) Attack at the right
timing, which checks if the target app is running and then
hijacks the user interaction at the right timing.

VenomAttack works as follows. When the bait app is
launched by the user, it first collects the list of apps installed
on the device and sends the list to the adversary-chosen
server. The adversary then can choose any vulnerable target
(i.e., app and device) from the list where the task affinity has
been declared in the bait app. For each selected target app,
the server creates a patch file from the original bait app and a
new bait app updated with an attack payload. Later, the patch
file is sent back to the victim. When the bait app is launched
again by the user, it checks the existence of the patch file. If it
has received a patch file, the bait app automatically loads the
patch file to enable the attack mechanism. Then, the bait app
has the ability to attack the target app and starts the follow-up
attack steps. The entire process of VenomAttack is automated
and stealthy to the user, while the adversary only needs to se-
lect vulnerable apps and devices to attack.

4.3 Illustrating Example

We illustrate the workflow of VenomAttack with a phishing
attack in Figure 4, where the subfigures (a–d) show the GUIs
of the running apps, and the subfigures (1–4) show the status
of the task stack. The goal is to conduct a phishing attack
against an Anonymous financial app. We now assume that the
patch file has been loaded by the bait app.

When the bait app starts, it checks if the target app is run-

ning in the background or not. If the target app is running,
as shown in Figure 4(a) and Figure 4(1), it launches a de-
signed transparent activity with the same affinity as the target
and the singleTask launch mode, by which the transpar-
ent activity will be pushed onto the target app’s task in the
foreground.

To be less suspicious, the foreground activity should not
change the user interaction from the perspective of the user.
Thus, the lifecycle of the transparent activity is carefully
manipulated as shown in Figure 5 such that the transparent
activity immediately moves back into the background at its
first creation. We found that the API functions onCreate,
onStart and OnResume are successively invoked at the
first creation of an activity. Thus, we can invoke the API
function moveTaskToBack in any of them, by which the
transparent activity is moved back into the background (i.e.,
on the pause state first, then entering the stop state). This
ensure that the user interaction is not changed from the per-
spective of the user, but in fact, the top of the target app’s
task in the background becomes the transparent activity as
shown in Figure 4(b) and Figure 4(2). Remark that onStart
and OnResume are also invoked when an activity resumes.
Therefore, moveTaskToBack is only invoked in onStart
or OnResume at the first creation.

When the user backs to the target app, the transparent ac-
tivity resumes and comes to the foreground, i.e., moving from
the stop state to the running state, as shown in Figure 4(c)
and Figure 4(3). The real GUI layout of the foreground task
is shown in Figure 6. Our goal is to hijack the user in-
teraction of the target app by a malicious activity when the
user backs to the target app, which is the right attack timing.
We found that the API functions onRestart, onStart
and OnResume are successively invoked when an activity
resumes. To achieve our goal, when the transparent activ-
ity resumes, we can immediately destroy the transparent ac-
tivity and launch the fake login activity in onRestart or
onStart or OnResume. From the user’s point of view, this
fake login interface is invoked by his/her own behavior, as
illustrated in Figure 4(d) and Figure 4(4). We argue that the
user likely believes that the target app is designed in this way
as it is a common phenomenon that many login-required apps
would require users to re-login again if the session is expired
(cf. [21]). Thus, the user will “normally” enter his/her ac-
count and password in the fake login interface, which will
be stolen and sent back to the server by the bait app. From
the user’s perspective, he/she just performed a normal login
operation. Remark that onStart and OnResume are also
invoked at the first creation of an activity, thus, we can only

7

Malware
activity

Foreground

Victim
activity

Malware
Task

Victim
Task

Malware
activity

Foreground

Victim
activity

Malware
Task

Victim
Task

activity
Transparent

(a) (b)

(1) (2)

Victim
activity

Foreground

Malware
activity

Victim
Task

Malware
Task

Victim
activity

Malware
activity

Victim
Task

Malware
Task

(c) (d)

activity
Transparent

activity
Fake login

(3) (4)

Start transparent
activity

User back to victim
application Start fake activity

Foreground

Fig. 4 Illustrating example of VenomAttack. (a), (b), (c), (d) show the GUIs from the user’s perspective, where the top GUI is in the foreground and the rest
are in the background. (1), (2), (3), (4) show the status of the corresponding task stacks.

Transparent activity
launchedonCreate()

onStop()onRestart()onStart()

onResume()

onDestory()

onPause()Move task to back

The transparent activity is no longer visible

Finish or user kill target app
Back to target app

Transparent activity
running

Fig. 5 Lifecycle of the transparent activity

destroy the transparent activity and launch the fake login ac-
tivity when the transparent activity resumes.

4.4 Target Identification

Existing activity hijacking attacks usually plan out their at-
tack strategies against specific devices that have installed
the malicious app and target app, and hence do not have
the chance to dynamically choose target apps and de-
vices. To make the attack more powerful and practical,
our attack can dynamically choose one or more vulnera-
ble devices, according to the devices and installed apps
therein. To achieve this, the bait app is implemented to
obtain the installed apps in each device via either the API
function getInstalledPackages or the API function
getInstalledApplications, and the resolution of
the victim. The resolution is critical to generate a malicious
activity so that its GUI matches the resolution of the victim.
The list of installed apps and the resolution are sent back to
the adversary-chosen server. All these steps only require the
INTERNET permission on Android 10 or earlier, which is
widely used in normal apps and is granted automatically at
install time. To further reduce network traffic, the bait app

Foreground Task

Transparent
activity

Victim activity

(a) (b)

Top

Bottom
activity

activity

Fig. 6 Layout of GUIs. (a) is the interface seen by the user and (b) is layout
of GUIs.

can filter out of non-interesting apps, e.g., system apps, be-
fore sending the list back to the server. After that, the adver-
sary can choose attack target (i.e., app and device).

4.5 Patch Generation

For each target app, the adversary has to create a patch file
to mount an attack. However, it is non-trivial to automati-
cally and efficiently generate a fake activity for patching as
its source code is often unavailable and their binary code is
usually obfuscated to protect IPR, while patches can be cre-
ated from scratch for other attacks. Therefore, we present
an automated fake activity generation approach to carry out

8

Patch Generation

Background image
generation Background Image

Layout file

Fake UI

Back-end source
code generation

…
Button = findViewById(R.id.xx);
Button.setOnClickListener (new View
.OnClickListener(){

@Override
public void onClick(View v) {

send_info_to_server();
finish();

}
});

…

Layout file generation

Fake UI generation

the app package name
the app version

Input:

Updated app

Previous app Patch
Output:

Transparent activity
launched

onCreate()

onStart()

onResume()

onPause()

onStop()

onDestory()

onRestart()

Transparent activity
running

Move task to back

Finish or user kill target app

Back to target app

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:
Patch generation

Apps’ diff
calculation

the target device resolution

Fig. 7 Workflow of automated fake activity generation

large-scale phishing attacks in practice. Given the name and
version of the target app and the resolution of the device (ob-
tained via the bait app), our approach works as follows (cf.
Figure 7).

Step 1, we launch the same app on a simulator with the
same resolution. Then, we take a screenshot of the login UI
of the target app, which is used as the background image of
the fake UI, i.e., the upper-right image in Figure 7.

Step 2, we use UIAutomator to extract the number, length,
width, and coordinate information of the interactive widgets
(e.g., EditText and Button) in the login UI of the target app.
After obtaining the detailed layout information, we create a
layout file with the extracted widgets and add necessary file
headers and file tails to ensure its usability. The UI looks like
the upper-left image in Figure 7.

Step 3, we create the fake UI by putting the widgets onto
the background image, resulting in the lower-right image in
Figure 7, where the interactive widgets are highlighted with
blue boxes. Note that the blue boxes are only used for illus-
tration, they do not appear in real-attack scenarios.

Step 4, we create the back-end source code to handle
the interactive widgets in the fake UI so as to obtain the
user information after they input their credentials. For each
EditText, the input text is saved when an input is detected.
For each Button (e.g.,“Login”), we add a listener to check
whether it is clicked and whether there is valid text in the as-
sociated EditText. After the user clicks the Button, the saved
input text will be automatically sent back to the adversary-
chosen server. All the widgets and back-end source code are

connected via widget IDs defined in the generated layout file.
We only create the source code for the relevant interactive
widgets (e.g., Button, EditText) since they are the key and
actionable widgets to obtain data from user input.

Step 5, we create an app from the base app, the fake activ-
ity and other attack code, resulting in an updated app. Then,
we use the server-side hotpatch framework to automatically
generate a patch file from the updated and base apps. The
patch file will be sent to the bait app installed on the victim
and automatically loaded once the bait app is launched. The
underlying techniques used for hotpatching vary in hotpatch
frameworks, which is beyond the scope of this work.

4.6 Attack at the Right Timing

Since it is suspicious to abruptly inject a malicious activity
into the foreground without user interaction. However, it is
non-trivial to determine a right attack timing, as third-party
apps have been restricted from obtaining real-time system in-
formation via officially reserved APIs.To solve this problem,
we present a new flaw in Android and a new bug in Android
derivative systems (i.e., EMUI, MIUI, and Magic UI), identi-
fied through our systematical investigation. Each of them can
be used to infer if a target app is running in the background
or not, by which we can determine the right attack timing via
the transparent activity as described in Section 3.

The flaw comes from the public API function
isTaskRoot which returns whether the activity is the
root of its task. isTaskRoot is often used to prevent multi-
ple instances of an activity when it is launched with different
intents. However, we found that it can be used to infer if
the target app is running or not by invoking isTaskRoot

after the creation of the malicious activity. If isTaskRoot
returns true, there is only the malicious activity in the task,
by which we can deduce that the target app is not running.
Otherwise, it is running. We have reported the flaw to the
Android Security Team of Google which is currently under
processing.

The bug comes from the ApplicationInfo class. An
ApplicationInfo instance has a public int type mem-
ber variable, called flags, which provides some useful
information such as category and stopped state. For ex-
ample, flags&FLAG_SYSTEM indicates if the app is a
system or third-party app, and flags&FLAG_STOPPED
indicates if the app is in the force stopped state.
flags&FLAG_STOPPED is cleared once the user starts
the app after the app’s initial installation (i.e., the default
value is true after installation) and can be reset through the

9

“Force Stop" option in the Settings app. It is originally used
to indicate if the app should receive broadcasts. However,
after an in-depth investigation, we found that the value of
flags&FLAG_STOPPED in these Android derivative sys-
tems is also affected by other actions (e.g., kill an app via the
back stack, or start an app by clicking the icon). This means
that flags&FLAG_STOPPED actually indicates whether an
app is running or not. However, in official Android, the value
of flags&FLAG_STOPPED is not affected by such actions.
We have reported the bug to Huawei Bug Bounty Program
and Xiaomi Security Center. The bug reported to Xiaomi Se-
curity Center has been confirmed, while the another one is
still being processed. We suspect that this bug is introduced
due to misunderstanding the semantics of FLAG_STOPPED
literally when customizing the Android systems.

5 Evaluation

In this section, we first analyze the popularity of hotpatch
frameworks in apps in the wild, then we evaluate VenomAt-
tack from the following five aspects: compatibility of the hot-
patch framework, effectiveness of running status checking via
the newly-discovered flaw and bug, efficacy of our automated
fake activity generation, ability to bypass the state-of-the-art
defense mechanisms that were proposed to defend against ac-
tivity hijacking attacks, and proof-of-concept attack exam-
ples. We used a PC machine with 64-bit Windows 10, Intel
Core i5-8400, 2.8GHz and 32GB RAM as the server in our
experiments.

5.1 Popularity of Hotpatch Frameworks

We selected top 10 apps in 5 different app categories listed
in Table 1 from 5 Android app markets including the of-
ficial market (i.e., Google Play Store) and four main third-
parties (i.e., Apkpure, Xiaomi App Store, Ali App Distribu-
tion Platform, and Huawei App Gallery) as our analysis sub-
jects. Therefore, there are 250 apps. Note that, the top 10
apps of each app category may be different due to the differ-
ent ranking criteria between markets, but most of them are
repetitive. We do not remove repetitive apps, as it is interest-
ing to understand the difference of the same apps in different
markets.

Due to the complexity and diversity of hotpatch tech-
niques, it is non-trivial to check if these 250 apps use some
hotpatch frameworks. Therefore, we use Androguard to an-
alyze these 250 apps and check if each app uses some hot-

patch framework by leveraging the keyword features of dif-
ferent hotpatch frameworks such as the name of the frame-
works and specific API functions. When it finds that an app
potentially uses a hotpatch framework, we manually analyze
the app for further confirmation. Therefore, the number of
apps that actually use hotpatch techniques may be far larger
than our statistical study. In this study, the hotpatch frame-
works we considered are shown in Table 1.

The results are reported in Table 1 for each market and
each app category. Note that the order of apps in each app
category may not reflect the exact order of apps in the cor-
responding market, as we manage to put the same apps from
different markets in the same rows for ease of reference.

From Table 1, we find that 108 apps out of 250 apps are
using hotpatch frameworks, resulting in a 43.2% usage rate.
This indicates that the number of apps that are using hotpatch
frameworks is very large in the wild, which makes it impos-
sible to determine if an app is a malicious app by identify-
ing hotpatch frameworks. In detail, 60% of apps from each
market of Xiaomi App Store, Ali App Distribution Platform,
and Huawei App Gallery are using hotpatch frameworks, and
26% of apps from the market Apkpure are using hotpatch
frameworks. From Google Play Store, there are 5 apps out
of 50 apps are using hotpatch frameworks, resulting in 10%.
This indicates that some app developers obey the Developer
Program Policy of Google. However, the successful release
of EasyNote reveals that Google Play Store does not have a
systematical approach to limit hotpatch frameworks used in
real Android apps.

Besides the above results, we can also observe some in-
sightful and interesting phenomenons from Table 1. Firstly,
the same app may use different hotpatch frameworks or have
different usage strategies for different app markets. For ex-
ample, the app named Momo from Apkpure (in the social
category) does not use any hotpatch frameworks, while the
hotpatch framework Tinker is used in the apps with the same
name from the three markets Xiaomi App Store, Ali App Dis-
tribution Platform and Huawei App Gallery. Actually, these
apps are released by the same company. Similarly, the app
named Tantan from Google Play Store (in the social cate-
gory) does not use any hotpatch frameworks, while the apps
with the same name from the other four third-party app mar-
kets use Tinker. Similar phenomenons can also be observed
on the apps named by

• Toutiao, Weico, and Xiaohongshu (in the social cate-
gory);

• iQIYI, Tiktok, Bilibili, and Youku (in the audio and video

10

Table 1 Hotpatch frameworks in apps in 5 Android app markets
App

Category Apkpure Hotpatch
Framework

Xiaomi App
Store

Hotpatch
Framework

Ali App Distribution
Platform

Hotpatch
Framework

Huawei App
Gallery

Hotpatch
Framework Google Play Hotpatch

Framework

Social

Wechat Tinker Wechat Tinker Wechat Tinker Wechat Tinker Josh -
Momo - Momo Tinker Momo Tinker Momo Tinker Investing -
Tantan Tinker Tantan Tinker Tantan Tinker Tantan Tinker Tantan -
Weico Robust Weico Robust Weico Robust Weico Robust Weico -

Amazon Alexa - QQ - QQ - QQ - QQ -
Facebook - Zhihu Tinker Zhihu Tinker Zhihu Tinker Tinder -
LINELite - Soul - momobeidanci - Soul - Soul -

Xiaohongshu Tinker KFC - Voov Meeting Tinker Xiaohongshu Tinker Xiaohongshu -
YouTube - Game Helper Tinker Zhenai - Zhenai - YouTube -
Netflix - Baidu Tieba - Toutiao Robust Toutiao - Toutiao -

Audio
and

Video

iQIYI Dexposed iQIYI Tinker iQIYI Tinker iQIYI Tinker iQIYI -
TinkerLite - Youku Nuwa Youku Nuwa Youku Nuwa Youku -

Tiktok Dexposed Tiktok Robust Tiktok Robust Tiktok Robust Gmail -
WeTV - QQLive - QQLive - QQLive - DiDi -

Instagram - QQMusic Tinker QQMusic Tinker QQMusic Tinker Instagram -
Yahoo Weather - Bilibili Tinker Bilibili Tinker Bilibili Tinker Bilibili -

WhatsApp Messenger - Kwai Extreme Tinker Watermelonvideo Dexposed Watermelonvideo Dexposed WhatsApp Messenger -
Weread Hotfix NeteaseCloudMusic Tinker NeteaseCloudMusic Tinke Douyu - Twitch -
Ctrip Hotfix Kugou Music Tinker Noad - Ctrip Hotfix Moj -

Twitter - Kwai Tinker Jianying Robust Kwai Tinker Twitter -

Tools

Dianping Robust Dianping Robust Dianping Robust Dianping Robust Dianping Robust
Amap - Dingdong - Amap - Amap - Amap -

MiHome Tinker Mi Home Tinker QQ Browser Tinker QQ Browser Tinker U-Mobile -
Urban Company - Anjuke Tinker UC Browser Tinker UC Browser Tinker UC Browser -

Baidu Map - Lianjia Robust Wesing Tinker Oasis - Uber -
McDonald - Meituan Robust Thuner - Thuner - Meituan Robust

FamilyMart - Meituan Takeout Robust Meituan Takeout Robust HMS Core - Zoom -
Pinterest - Eleme Hotfix Eleme Hotfix Dragonfly FM Tinker Pinterest -
QQMail - 58.com Hotfix Traffic Control12123 - 58.com Hotfix QQMail -

Google Map - Douban - Homework Group - Yidui Tinker Douban -

Financial

Alipay Andfix Alipay Andfix Alipay Andfix Alipay Andfix Alipay -
Open Point - Jingdong Finance Tinker Jingdong Finance Tinker Jingdong Finance Tinker PhonePe -
Investing - BOC - BOC - BOC - Paytm -

HuobiGlobal Tinker CMBC - Ding Talk - CMBC - HuobiGlobal Tinker
Yahoo Finance - UnionPay Tinker UnionPay Tinker WPS - UnionPay -

Qunar Hotfix PSBC - PSBC - Qunar Hotfix Qunar -
Amazon Shopping - ICBC - Baidu - Baidu - eBay -

Google Pay - ABC - Himalaya Tinker Himalaya Tinker YONO SBI -
MoneyBack - CCB - Huya Tinker Tiantian Fund - Mercado Libre -

PayPal - Wopay - Baidu Map - Douyin Robust Baidu Map -

Shopping

Taobao - Taobao - Taobao - Taobao - Taobao -
Jingdong - Jingdong Tinker Jingdong Tinker Jingdong Tinker Jingdong Hotfix

Tmall - Tmall - Tmall - Tmall - Tmall -
Pixiv - Pinduoduo Tinker Pinduoduo Tinker Pinduoduo Tinker Pinduoduo Tinker

MangoMall - Alibaba - Alibaba - Pingan Securities - Alibaba -
Fliggy - Zhuanzhuan Tinker Baihe - Fliggy - Fliggy -

HKTVmall - Dewu Robust Suning Robust Suning Robust Wish -
HongKongMovies - CR Vanguard - Dangdang Robust Dangdang Robust SHEIN -

YuuReward - VIPshop Holdings - Amazon Shopping - VIPshop Holdings - Flipkart -
ViuTV - Idlefish - Idlefish - BoCom Dexposed Lazada -

Note 1: We consider 5 categories in each app market, where the top 10 apps of each category may be different due to the different ranking criteria between markets.
Note 2: The hotpatch frameworks include Tinker, Robust, Andfix, Nuwa, Hotfix, and Dexposed.

category);
• UC Browser (in the tools category);
• Alipay, UnionPay, and Qunar (in the financial cate-

gory);
• Jingdong (in the shopping category).

The difference of hotpatch frameworks for the same app
may be due to the fact that app markets adopt different poli-
cies. As mentioned in Section 4, there is no restriction
on self-updating of an app released on Apkpure, Xiaomi
App Store, Ali App Distribution Platform, and Huawei App
Gallery. In contrary, Google Play Store disallows third party
apps to be modified, replaced or updated by themselves. Ac-

tually, the developers of hotpatch frameworks are also aware
of app markets’ policies. For instance, the instruction docu-
ment of Tencent Bugly, an exception reporting and statistics
platform released by Tencent, states that due to Google Play’s
policy restrictions, an app using the Tinker framework may be
detected as a violation and hence removed or even be banned.
Therefore, the same app may adopt different usage strategies
and different hotpatch frameworks to circumvent the review
process of different app markets in real-world scenarios.

Secondly, Tinker is the most frequently used hotpatch
framework in these 250 apps, while Robust the second most
frequently used one. This is consistent with our previous sur-
vey results which are mentioned in Section 2, namely, Tin-

11

Table 2 Results of compatibility and running status collection
Android
Device

Android
Version

API
Level

Result of
Compatibility

Result
of Flaw

Result
of Bug

Google Pixel 2 Android 7 24 Succeeded Succeeded Failed
Google Pixel 2 Android 7.1 25 Succeeded Succeeded Failed
Google Pixel 2 Android 8 26 Succeeded Succeeded Failed
Google Pixel 2 Android 8.1 27 Succeeded Succeeded Failed
Google Pixel 2 Android 9 28 Succeeded Succeeded Failed
Google Pixel 2 Android 10 29 Succeeded Succeeded Failed

HUAWEI Nova5 Pro EMUI 9.1.1 28 Succeeded Succeeded Succeeded
HUAWEI Nova5 Pro EMUI 10.1.0 29 Succeeded Succeeded Succeeded

HUAWEI HONOR 30S Magic UI 3.1.1 29 Succeeded Succeeded Succeeded
Xiaomi Redmi10X Pro MIUI 11.0.5 29 Succeeded Succeeded Succeeded

Xiaomi Redmi K30 MIUI 11.0.15 29 Succeeded Succeeded Succeeded

ker and Robust have the best compatibility and are both open
sourced. Furthermore, we also find that although some hot-
patch frameworks (such as Andfix, Hotfix, and Dexposed) are
no longer updated, they are still used in some apps, meaning
that the developers of these apps are still maintaining these
frameworks to be compatible with the recent versions of An-
droid.

5.2 Compatibility Evaluation

As bait apps play the most important role in VenomAttack,
we evaluate the compatibility of VenomAttack by deploying
the bait app EasyNote on the recent Android versions.

Setup. We use the recent 6 official and 5 recent commer-
cial versions of Android as shown in Table 2. As reported
by StatCounter, the cumulative adoption of the 6 official ver-
sions is 82.91% on Feb. 2021. For each official version of
Android, we create an emulator using Google Pixel 2. The
5 commercial versions are Android mobile devices. We in-
stall EasyNote on the emulators and devices, and send patch
files containing new classes, methods, and resource files to
EasyNote to investigate if the hotpatch can succeed.

Results. The results are reported in Table 2, where Suc-
ceeded means that hotpatch was succeeded in our experi-
ments, otherwise Failed. We can see from the fourth col-
umn that EasyNote can successfully load all the patch files
including the one that contains Java classes, methods, .so li-
brary files, and resource files at the same time, on all the An-
droid devices. This demonstrates that bait apps could be up-
dated by leveraging hotpatch techniques in recent official ver-
sions and commercial versions of Android in real-world sce-
narios. Therefore, hotpatch techniques can be used in Veno-
mAttack.

5.3 Evaluation of Running Status Identification

For activity hijacking attacks, it is important to determine
a right attack timing [3]. We present a flaw and a bug for
checking the running status of the target app by which we
can determine a right attack timing. Thus, we evaluate the
effectiveness of the flaw and the bug, respectively.

Setup. We consider all the versions of Android as in Sec-
tion 2 and installed 2 third-party apps in each emulator while
each real Android mobile device has installed more than 10
third-party apps. We examine whether our bait app EasyN-
ote can successfully infer the running status of these apps on
all the Android versions.

Results. The results are reported in the last two columns in
Table 2. We can observe from the column Result of Flaw
that EasyNote successfully identified the running status of
all the apps on all the Android versions by leveraging the
flaw (i.e., API function isTaskRoot), without requiring
any permissions. By exploiting the bug (i.e., the flag in the
ApplicationInfo class), we successfully identified the
running status of all the apps on all the derivatives of An-
droid, while failed on all the official Android versions (cf. the
last column in Table 2). This means that EasyNote can suc-
cessfully infer whether the target apps are running or not on
all these Android derivative systems. Although the bug does
not affect the official Android versions, the use of Android
derivative systems in the world has reached 48.52% on April
2021, the impact of the bug is still significant. To attack de-
vices with official Android, the adversary has to leverage the
flaw, while the adversary can use the flaw and/or the bug to
attack devices with these Android derivative systems.

The breakthrough in the sandbox model of Android will
bring severe security risks. For example, in VenomAttack,
it can be used to determine a right attack timing. The bait
app EasyNote can also check whether some security defense

12

apps are running so that it can bypass them, thereby broadens
the attack capability of VenomAttack. We highlight that, both
the flaw and the bug can be used by other activity hijacking
attacks.

5.4 Evaluation of Fake Activity Generation

We highlight that VenomAttack is fully automated including
the fake activity generation for phishing attacks. The key
to success of a phishing attack is the high visual similarity
between the fake and original UIs [22, 23]. Therefore, we
evaluate the effectiveness and efficiency of fake UI genera-
tion through visual similarity comparison and the generation
time.

Setup. We collect 50 popular apps from Google Play Store as
our subjects in financial and social categories, as apps in these
categories are usually security-/privacy-critical and contain
login interfaces [22, 24]. The 25 financial apps are randomly
selected from the top 100 financial apps with more than 1
million downloads, while the 25 social apps are randomly se-
lected from the top 100 social apps with more than 10 million
downloads. We evaluate using Xiaomi Redmi K30.

For each app, we create one fake login UI. To evaluate
the effectiveness of our fake activity generation, we compare
the visual similarity for each pair of the generated fake UI
and the original UI, using two widely-used image similar-
ity comparison algorithms: Cosine similarity and Structural
similarity. The former one represents each picture as a vector
and characterizes the similarity of two pictures by calculat-
ing the cosine distance between two vectors. The latter one
is a full-reference image quality evaluation index that mea-
sures image similarity from three aspects: brightness, con-
trast, and structure. The values of both similarity comparison
algorithms range from 0 to 1, where the larger the value, the
more similar the UI pages. To evaluate the efficiency of our
fake activity generation, we measure the execution time for
each selected app, demonstrating the ability of VenomAttack
to quickly deploy large-scale phishing attacks.

Results. The results are reported in Table 3. We can observe
that the cosine similarity is: 1 for 45 apps out of 50 apps and
very close to 1 for the other 5 apps. The structural similarity
is: over 99% for 44 apps and very close to 99% for the other
6 apps. Figure 8 presents 6 randomly chosen pairs of the fake
UIs and the original UIs, where the corresponding apps are:
Bendigo Bank app, CNBC app, Nexo Wallet app, Transfer-
Wise app, Roposo app and WhosHere app. One can observe
that it is very difficult to distinguish them visually.

The high similarity indicates that the fake UIs are similar

Table 3 Results of fake UI generation

No. App Name Cosine
Similarity

Structural
Similarity

Generation
Time (sec)

1 Alipay 1.0000 0.9950 2.56
2 AASTOCKS 1.0000 0.9984 2.76
3 AvaTradeGO 0.9989 0.9925 3.07
4 Bank of China 1.0000 0.9922 2.55
5 Bendigo Bank 1.0000 0.9995 2.56
6 BoC Pay 1.0000 0.9935 2.78
7 CMC Markets 0.9941 0.9889 3.05
8 CNBC 1.0000 0.9886 2.58
9 CommSec 0.9999 0.9907 2.54
10 Crypto 1.0000 0.9949 2.56
11 FCMB 1.0000 0.9946 2.59
12 HANGSENG BANK 1.0000 0.9998 2.58
13 HMRC 1.0000 0.9974 2.72
14 WireBarley 1.0000 0.9934 2.58
15 Inversting 1.0000 0.9949 2.54
16 Nexo Wallet 1.0000 0.9983 2.62
17 Plus500 1.0000 0.9969 2.62
18 Remitly 1.0000 0.9926 2.67
19 ShopBack 1.0000 0.9947 2.57
20 StockMarkets 1.0000 0.9922 2.60
21 Tiger Trade 0.9998 0.9889 2.60
22 TradingView 1.0000 0.9898 2.60
23 TransferWise 1.0000 0.9929 2.68
24 Wallet 1.0000 0.9912 2.59
25 REMIT 1.0000 0.9934 2.65
26 Facebook 1.0000 0.9909 2.72
27 Hago 1.0000 0.9969 2.56
28 Hello Yo 1.0000 0.9958 2.59
29 Houseparty 1.0000 0.9905 2.56
30 Jaumo 1.0000 0.9990 2.54
31 Josh 1.0000 0.9996 2.66
32 LivU 1.0000 0.9971 2.55
33 MeetMe 1.0000 0.9933 2.66
34 Mico 1.0000 0.9982 2.56
35 QQ 1.0000 0.9933 2.59
36 Roposo 1.0000 0.9955 3.28
37 SKOUT 1.0000 0.9975 2.91
38 Tagged 1.0000 0.9943 2.59
39 TANTAN 1.0000 0.9947 2.57
40 Telegram X 0.9999 0.9962 2.54
41 TikTok 1.0000 0.9928 2.61
42 Tumblr 1.0000 0.9965 2.91
43 Twitter 1.0000 0.9959 2.57
44 Viber 1.0000 0.9959 2.63
45 VidStatus 1.0000 0.9960 2.58
46 WeChat 1.0000 0.9869 2.58
47 Weico 1.0000 0.9865 2.62
48 WhatsApp 1.0000 0.9979 2.56
49 WhosHere 1.0000 0.9994 2.55
50 Xiaohongshu 1.0000 0.9909 2.61

enough to masquerade as the original ones, thus, difficult to
be distinguished from the original UIs by users. In addition,
the execution time of fake activity generation is close to 3
seconds, indicating that VenomAttack has ability to generate
a large number of fake activities for real-world attacks in a
very short time. This cannot be done manually.

There are few apps on which the similarity of the fake UI
and the original UI is relatively smaller. To understand the

13

bendigobank

(a) Original

Fake bendigobank

(b) Fake

cnbc

(c) Original

Fake cnbc

(d) Fake

nexowallet

(e) Original

Fake nexowallet

(f) Fake

transferwise

(g) Original

Fake transferwise

(h) Fake

roposo

(i) Original

Fake roposo

(j) Fake

Whoshere

(k) Original

Fake whoshers

(l) Fake

Fig. 8 Comparison of original UIs and fake UIs

reason, we conduct case studies by manually checking these
UIs. We found that the font setting of hints in some input
widgets such as EditText cannot be correctly extracted, caus-
ing slight differences between the generated fake UIs and the
original UIs. However, such slight differences do not affect
VenomAttack in practice according to the results of our user
study (cf. Section 6). Furthermore, this issue could be re-
solved by providing correct fonts only once for a target app.

5.5 Bypassing Defense Mechanisms

We choose the most representative and state-of-the-art de-
fense mechanisms that were proposed to defend against activ-
ity hijacking attacks, to examine the other activity hijacking
attacks mentioned in Section 3 as well as ours. The defense
mechanisms have different strategies, including 1) offline
analysis [6, 8, 10, 12, 13], 2) real-time detection [11, 14, 17],

and 3) various Android design restrictions. The results are
summarized in Table 4.

Offline analysis. We examine 5 state-of-the-art offline analy-
sis methods against activity hijacking attacks [6,8,10,12,13].
Lee et al. [6] developed an analyzer which statically ana-
lyzes launch modes, task affinities and intent flow, to detect
activity hijacking attacks (only malware⇒target) according
to the rules in the operational semantics. Xiao et al. [8]
developed an app, named TICK, to detect malware⇒target
and target⇒malware attacks by checking a set of speci-
fied attack conditions. Luo et al. [10] designed a sym-
bolic execution system, called Centaur, to check if there is
a feasible path such that a selected activity resides in the
same task as a victim activity. This work considered only
malware⇒target. Liu et al. [13] presented a framework MR-
Droid for ranking the risk of a given app by analyzing various
inter-component communication (ICC) flow features, hence
MR-Droid can detect activity hijacking attacks that utilize in-
tent flags. TDroid [12] first statically slices an app into a set
of runnable fragments where each fragment can launch one
of its own activity in the background and may put the activity
on top of a benign app’s task, then repacks and dynamically
executes each fragment to expose the malicious activity.

Attacks proposed in [4, 6–8] could be detected by the
above methods, and the attacks proposed in [3, 9] that
launches a fake activity in a new task to race the target app
could be detected only by TDroid [12]. The target⇒malware
attack of [5] cannot be detected by [6, 10, 12] and the attack
of [5] without using intent flags cannot be detected by [13].
Stranghogg 2.0 that is executed through Java reflection could
be partially detected by [12] only, as TDroid handles reflec-
tion partially while it is unclear if the others can handle re-
flection.

The bait apps used in VenomAttack does not contain any
attack payloads before hotpatching, hence cannot be de-
tected. The bait apps are hotpatched without re-installation
and re-distribution, hence cannot be detected after hotpatch-
ing too, as these methods analyze apps before installation.

Real-time detection. We examine 3 state-of-the-art
real-time detection methods: WindowGuard [11], Activi-
tyShielder [14] and Activity Hijacking Protector [17], that
were proposed to defeat activity hijacking attacks at runtime.
Since these tools are not publicly available and non-trivial to
re-produce, we only analyze them theoretically.

WindowGuard checks if: 1) the activities in each back
stack that is part of the foreground activity session are all
from the same app, where the foreground activity session is

14

Table 4 Results of bypassing state-of-the-art defense mechanisms

Attacks

Defense Offline Analysis Methods Android
Design

Restrictions

Real-time Detection Methods
Lee et al.

[6]
TICK

[8]
Centaur

[10]
MR-Droid

[13]
TDroid

[12]
WindowGuard

[11]
ActivityShielder

[14]
Activity Hijacking

Protector [17]
Attack in [7]

Activity hijacking [3]
Task hijacking [5] Unknown

ActivityHijacker [4]
Information stealing attack [8]

Activity injection [6]
Activity hijacking [9]

Stranghogg 2.0 Unknown Unknown Unknown Unknown
VenomAttack

: Fully detect : Partially detect :Unable to detect

the ordered activities starting from the launcher activity, end
with the activity in the foreground and each internal activity
is started by the pervious one; 2) all the activities whose GUIs
are visible belong to the same app or a whitelist of apps; and
3) activity transition in the foreground must be initiated by
either the foreground app or an app from a whitelist, where
1) and 2) are checked when the foreground activity changes.
If any of them is violated, WindowGuard warns users with
a notification. Thus, WindowGuard can detect all the prior
activity hijacking attacks except for Stranghogg 2.0. How-
ever, WindowGuard cannot detect VenomAttack. First, in
our attack, either the back stack is not a part of the fore-
ground activity session or all the activities in the back stack
all from the same app, hence 1) is not violated. Second, when
the transparent/malicious activity enters into the foreground,
only the GUIs of the transparent/malicious activity and sys-
tem activities are visible while system activities must be in
the whitelist, hence 2) is not violated. Note that the visibility
of a GUI of an activity is a state rather than whether it can
be seen on the screen. Thus, although the GUI of the target
activity covered by the transparent activity can be seen on the
screen, it is indeed in the hidden state. Third, the activity
transition that puts the transparent or malicious activity into
the foreground is initiated by the bait app or a system activity
while system activities must be in the whitelist, hence 3) is
not violated.

ActivityShielder checks if each launching activity can be
tracked back to the launcher of some trusted app. Except
for Stranghogg 2.0, all the other attacks including VenomAt-
tack will be tracked back to the app used for attacking. All
the other attacks (except for VenomAttack) assume that the
malware is installed on the victim while the malware could
be detected by some of other methods (e.g., [25, 26]), thus
this malware could be regarded as an untrusted app. In Ven-
omAttack, both the transparent and malicious activities are
tracked back to the bait app which is downloaded from some

app market and installed by the user. The bait app does not
contain any attack payloads before hotpatching, thus will be
considered as a trusted app in ActivityShielder. After hot-
patching, the trustiness of the bait app does not change in
ActivityShielder.

Activity Hijacking Protector checks if two UI-similar ac-
tivities from two different apps are launched in a very short
time such that the malicious one is launched after the target
one, but is displayed before the target one. This work ad-
dresses activity hijacking based phishing attacks only. Thus,
activity hijacking attacks [4, 5, 7, 8] that do not necessarily
having UI-similar activities, and the phishing attacks [5, 6, 9]
that do not satisfy the time constraint, cannot be detected.
VenomAttack satisfies neither the UI-similarity nor time con-
ditions, hence cannot be detected.

System design restrictions. Various design restrictions have
been deployed until Android 10 which can mitigate activity
hijacking attacks well. In particular, Google restricted spe-
cific API functions for checking if a target app is running, and
for launching activities in the background. The vulnerability
used in Stranghogg 2.0 has been fixed as well. Except for [5]
which does explicitly state how to check if a target app is run-
ning and how to launch activities in the background, all the
other attacks will not work in Android 10 and 11. VenomAt-
tack leverages the newly-discovered flaw to check if a target
app is running (cf. Section 3) and uses a carefully designed
transparent activity to inject malicious activities, hence cir-
cumventing all these restrictions. We will demonstrate it in
user study (cf. Section 6).

5.6 Proof-of-Concept Attack Examples

VenomAttack is a very powerful attack scheme, enabling a
spectrum of customized attacks on a large scale in real-world
scenarios. It should be noted that for all the attack exam-
ples, the adversary can distribute bait apps via app markets

15

and dynamically choose vulnerable devices using the infor-
mation collected by the bait apps. For each target app of a
chosen victim which has installed a bait app, the server cre-
ates an updated version of the bait app with attack payload
from which a patch file is computed and sent back to the bait
app installed on the victim. After that, the bait app carries the
attack payload for mounting desired attacks.

Now, we assume that the bait app has been updated with
a desired attack payload. We demonstrate more attack exam-
ples utilizing VenomAttack and highlight the impact of these
attacks.

Phishing attack. We discuss two alternative attack scenar-
ios for phishing attacks via VenomAttack. The first scenario
is detailed in Section 3. a) When the bait app finds that
the target app is running, it launches a transparent activity
which will be pushed onto the target app’s task. Once the
user backs to the target app, the transparent activity enters
the foreground, but the user sees the same GUI of the tar-
get app as the user left. If the user interacts with the tar-
get app, he/she indeed interacts with the transparent activity,
then a phishing activity is launched by the transparent activ-
ity which enters the foreground. b) The second scenario is
similar to the above one except that the target app is not run-
ning. If the transparent activity finds that the target app is
not running, it immediately destroys itself and launches the
phishing activity with the same affinity as the target app, by
which the phishing activity becomes the root activity of the
target app’s task. When the user launches the target app by
clicking its icon, the phishing activity enters the foreground.
In both cases, the user will be finally tricked to input creden-
tial on the fake login interface, and the credential entered by
the user will be stolen.

Spoofing attack. Android attempts to achieve security by al-
lowing apps to request permissions only from the foreground.
The runtime permission model is deployed to provide users
with increased situational context to help them with their per-
mission decisions. VenomAttack can be used to implement
spoofing attacks, asking for any runtime permissions such as
SMS, photos, microphone and GPS, while pretending to be
some target apps installed on the device. Specifically, the
bait app declares all required permissions in the manifest file,
including the ones to be obtained via spoofing attacks. We
emphasize that only the INTERNET permission is obtained
by the bait app at first. From the user’s perspective, only ba-
sic permissions required for the functionalities of the bait app
are granted. But actually, it can hijack the GUI interaction
of the target app as done for phishing attacks. When backing

to or launching the target app, the fraud activity enters the
foreground which tricks the user to obtain the running per-
missions while pretending to be the target app. For example,
the bait app uses a fraud activity to obtain the LOCATION
permission by targeting a navigation app. The spoofing at-
tack exploits users’ functional requirements to defraud users’
trust, so that almost all the running permissions can be ob-
tained gradually to mount further attacks.

DoS attack. VenomAttack can also be used to implement
DoS attacks, making target apps unusable. We discuss two al-
ternative attack scenarios for chosen target apps. a) In the first
scenario, when the transparent activity enters the foreground
by resuming, it protects itself to be killed unless its task is
closed. To prevent itself from being killed, the API func-
tion onKeyDown of the transparent activity can be rewritten,
which is invoked when some key is pressed down by the user,
but does nothing. Consequently, the user can see the GUI of
the target app on the screen but cannot interact with it. b)
In the second scenario, when the transparent activity enters
the foreground by resuming, it immediately invokes the API
function moveTaskToBack in onRestart, onStart or
OnResume. This will move the transparent activity back into
the background again so that the user will never see the GUI
of the target app in the screen. In either scenario, the target
app cannot be used anymore from the user’s viewpoint, re-
sulting in very bad user experience. Such attacks could be
used to compete other apps that have similar functionalities.

6 User Study

To demonstrate VenomAttack in real-world scenarios, we
conduct a user study to answer the following research ques-
tions using the first scenario of our phishing attack (cf. Sec-
tion 6).

RQ1: Can VenomAttack effectively steal credentials?

RQ2: Is it reasonable to achieve activity hijacking via the
transparent activity in VenomAttack?

RQ3: Are participants aware of VenomAttack?

These research questions evaluate whether VenomAttack
is able to obtain users’ credentials stealthily in real-world sce-
narios. For RQ1, we record the credentials of participants
received from the bait app, then compute attack success rate.
For RQ2 and RQ3, we ask participants to finish a question-
naire. This study was approved by the Institutional Review
Board of our institutes and conducted under a limited envi-
ronment without posing any security threats to real users.

16

Table 5 Questionnaire of the user study
No. Question Options

Question-1
Do you think the financial apps provide

more functionalities after login? Yes or No

Question-2
Based on your past experience, is it

common to re-login after app switching? Yes or No

Question-3 Are you aware any attacks during the study? Yes or No
Question-4 If yes, when do you think attacks occur?
Question-5 If yes, what makes you aware of the attacks?

6.1 Setup

Participants. We recruited 20 participants from our institutes
whose ages range from 18 to 50. 10 of them are graduate stu-
dents major in computer science and the others are colleagues
in computer science too. To reduce noises of the study, all the
participants have at least one year experience of Android mo-
bile devices. We do not consider other factors such as gender
and first language, that are negligible to our study.

Dataset. We randomly selected 10 popular apps as our sub-
jects from the top 100 financial apps on Google Play Store.
They are installed on 4 different Android devices (i.e., Xi-
aomi Redmi K30, Xiaomi Redmi 10X Pro, HUAWEI Honor
30S, and HUAWEI Nova5 Pro) which use derivatives of An-
droid 10.0. The 10 financial apps are randomly partitioned
into two groups: 5 target apps that will be attacked by Veno-
mAttack, and 5 non-target apps that will be explored by the
participants but will not be attacked.

Procedures. We first install our bait app EasyNote on the
Android devices. For each participant, we randomly select
one target app and one non-target app from the two groups,
while each of 10 financial apps is constrained to be used 4
times. The bait app is hotpatched accordingly for each par-
ticipant. We also provide each participant the corresponding
accounts for the two financial apps and the bait app.

The user study begins with a brief introduction which asks
each participant to do the following tasks without revealing
the purpose of our study: (a) Opens the two financial apps
and explores them with the provided accounts; (b) Opens the
bait app and explores it with the provided account; (c) Re-
explore the two financial apps with the provided accounts.
During the above tasks, participants are asked to roughly
record their actions and can stop at anytime when they smell
a rat. During task a, no attack occurs. During task b, the
bait app launches the transparent activity. During task c, the
accounts are stolen and sent back to our server.

After finishing the above tasks, each participant is asked
to complete a questionnaire. The questionnaire is shown in
Table 5, where the second column shows the questions, and

Yes
65%

No
35%

图表标题

Yes No

Yes
70%

No
30%

图表标题

Yes No

(a)

Yes
65%

No
35%

图表标题

Yes No

Yes
70%

No
30%

图表标题

Yes No

(b)

Fig. 9 Results of question-1 (a) and question-2 (b) in Table 5

the third column shows the options for some questions.

6.2 Study Results

RQ1. We obtained the credentials of 19 participants, out of
20 participants, resulting in 95.0% attack success rate. We
interviewed the participant to whom our attack fails, in or-
der to understand the failure. We found that after the fake
activity enters into the foreground during task c, instead of
entering the account into the fake login interface, this partici-
pant clicks the Back button intended to explore the non-target
app again. This clicking event pauses the fake activity, hence
resulting in the failure of our attack. However, the participant
was not aware of any abnormalities and did not report any
attacks in RQ3. We argue that the bait app could mount the
phishing attack again and again by launching the transparent
activity when it is opened until the attack succeeds.

Answering RQ1. VenomAttack achieves 95.0% attack
success rate in our user study. The failed participant
was not aware of any abnormalities and did not report
any attacks in RQ3, thus VenomAttack could iteratively
mount attacks until it succeeds in practice.

RQ2. Recall that in the first scenario of our phishing attack,
the transparent activity resides on top of the target app’s task
and enters the foreground when the user backs to the target
app. From the viewpoint of the user, he/she backs to the target
app, after which the login interface is displayed. Therefore, it
is important to study if it is reasonable to display the fake lo-
gin interface via the transparent activity when the user backs
to the target app, i.e., RQ2. To answer RQ2, we design two
questions: question-1 and question-2 in Table 5. Question-1
studies the necessity of login and question-2 studies the com-
monality of re-login in practice.

The results are reported in Figure 9. 13 participants (65%)
believe that the financial apps provide more functionalities
after login, c.f. Figure 9(a). This means that users often have
to login if they want to use more functionalities of financial

17

Table 6 Time cost of loading the transparent activity

Android Device Android
Version

API
Level

Init
Time
(ms)

Back to
Background
Time (ms)

HUAWEI Nova5 Pro EMUI 10.1.0 29 6 5
HUAWEI HONOR 30S Magic UI 3.1.1 29 7 6

Xiaomi MI 9 MIUI 12.0.3 29 8 4
Xiaomi Redmi10X Pro MIUI 11.0.5 29 7 3

Xiaomi Redmi K30 MIUI 12.0.5 29 17 7
OPPO Realme X ColorOS V7 29 14 9

apps. 14 participants (70%) believe that it is common to re-
login after app switching, c.f. Figure 9(b), meaning that there
are many scenarios where users have to re-login to continue
to use more functionalities of Android apps. This finding was
also mentioned by Saltaformaggio et al. in Section 4.2.2 of
[21]. These results indicate that achieving activity hijacking
via a transparent activity will not draw users’s attention.

We also analyze the time cost of landing the transparent
activity on different Android devices, including the time cost
for initializing the transparent activity and the time cost for
moving the transparent activity to the background. The re-
sults are reported in Table 6. Although both time costs vary
in Android devices due to the differences of performance be-
tween devices, the time cost for initializing the transparent
activity is no more than 17 ms, and the time cost for moving
the transparent activity to the background is no more than 9
ms. These results explain why participants are not aware of
the transparent activity in our user study.

Answering RQ2: The results show that 65% of the par-
ticipants (i.e., 13 participants) believe that the financial
apps provide more functionalities after login and 70%
of the participants (i.e., 14 participants) believe that re-
login is common in practice. Thus, it is reasonable to
achieve activity hijacking via the transparent activity.

RQ3. To answer RQ3, we ask participants to fill the question
“Are you aware any attacks during the study?".

In our study, only one participant out of 20 participants
is aware of the attack, however the account of this partici-
pant is also stolen by the bait app. To understand the rea-
son, we interviewed this participant with two more questions:
question-4 and question-5 in Table 5. The participant found
that after submitting the account via the fake login interface,
the fake interface is closed and the target app enters the fore-
ground, but the login status of the target app does not change,
namely, without login. Therefore, the participant considered
if an attack occurred. Except for this participant, the other
participants did not realize any security-related issues after

completing the login. To understand the effect of this issue
on stealthiness, we furthermore asked all the other 19 partici-
pants: “Do you think the reason for the unchanged login sta-
tus is a malfunction or security issue of the app?”. All the 19
participants thought it was the malfunction of the target app.
We argue that even if a user is aware of the login status after
submitting the account, the attack has already finished and
the adversary actually has obtained his/her credential. It may
be more stealthy to emit some messages to remind the user
that the username or password is not correct and ask he/she
to re-login again. This often occurs in practice.

Answering RQ3: Only one participant in our study con-
sidered if he/she was attacked due to the unchanged sta-
tus after login. However, all the participants are not
aware of any attacks before the credentials are stolen.

7 Discussion

7.1 Impact of VenomAttack

VenomAttack leverages hotpatch techniques, newly-
discovered flaw and bug, and an elegant transparent activity.
We also proposed a fully automated fake activity generation
approach for adaptive large-scale phishing attacks. As exam-
ined in Sections 2 and 5, VenomAttack can circumvent the
design restrictions of Android that are intended to mitigate
activity hijacking attacks and can be successfully deployed
on the recent versions of Android. Furthermore, hotpatch
provides a convenient and effective way to implement
dynamic code loading, which could be leveraged by other
attacks. Both the flaw and bug can be used to infer if an app
is running or not which could be used by other attacks. That
would call more attention from Google.

VenomAttack can defeat the most representative and state-
of-the-art defense mechanisms that were designated to defend
against activity hijacking. This implies that the attack-and-
defense game on activity hijacking is still far from over.

Compared over existing activity hijacking attacks, Veno-
mAttack has many unique features, making it more powerful
and stealthy. VenomAttack is shipped with a remote engine
which can automatically generate attack payload including
fake activities with high similarity of the original ones in a
short time (c.f. Section 4). Together with hotpatch tech-
niques, VenomAttack has the ability to mount sophisticated
attacks on a large number of dynamically chosen target vic-
tims and target apps at the same time.

18

Our bait app EasyNote with the hotpatch technique Tin-
ker was successfully released on Google Play Store and was
not labeled as a malware by any of the 63 app security en-
gines of VirusTotal. This reveals that Google and the security
engines of VirusTotal either do not check whether apps have
hotpatch techniques or fail to detect the presence of the hot-
patch technique.

Our user study showed that VenomAttack can achieve very
high attack success rate without users’ awareness in the real
scenarios, indicating that users should be more cautious about
activity hijacking attacks when using Android apps.

7.2 Mitigation of VenomAttack

We discuss possible strategies and suggestions that could be
adopted to mitigate VenomAttack.

For Android system, it is important and urgent to identify
all the possible design weaknesses that could be used by the
adversary to infer running information of apps and add more
design restrictions on them. Indeed, though Android has
added restrictions on the API functions that are used by prior
activity hijacking attacks, our attack uses a newly-discovered
flaw in Android or bug in derivatives of Android. On the
other hand, hotpatch can be used to dynamically add attack
payloads without re-installation and re-distribution. This is-
sue could be mitigated by restricting installed apps to execute
remotely downloaded code in Android with code integrity
checks.

For the perspective of Android app markets, we recom-
mend further enhancing the code audit for submitted apps. In
our experiments, we successfully released an app with a hot-
patch technique on Google Play Store. This implies that the
official app market lacks of a systematic assessment method
to detect the present of self-update in Android apps, although
the Developer Program Policy states that it is not allowed to
update in any ways other than Google Play’s update mecha-
nism. We believe that other app markets have the same issue,
hence, their code audit should be enhanced as well.

App developers should pay more attention to the security
of apps. According to our study, 1) the four basic components
of apps should not be exported if it is not necessary [27];
2) apps should protect their private-sensitive UI pages (e.g.,
the login interface of financial apps) to be screenshotted by
the adversary so that the adversary cannot automatically con-
struct fake UI pages [22, 28]; 3) private-sensitive UI pages
should use secure keyboards which can helps the users aware
if they are interacting with a fake UI page; and 4) apps should
use toasts to remind users when they back to the background

or enter the foreground, so that users can perceive if the cur-
rent activity they are interacting is from the target app. Last
but not least, users should also pay attention to toasts and
keyboards.

7.3 On Activity Hijacking Attack in Android 11

We also verified our attack in Android 11 (API level
30). We found that Android 11 has attempted at coun-
termeasures by implementing two mechanisms. First,
a new permission QUERY_ALL_PACKAGES is in-
troduced to control visibility of apps so that both
the API functions getInstalledPackages and
getInstalledApplications can only be invoked
with this permission. However, it is a normal permission
and is granted automatically at install time. Therefore,
we could declared this permission in the manifest file.
Second, two activities from two distinct apps cannot reside
in the same task even the declared task affinities of the
activities are same, as the real task affinity of an activity in
back stack is the concatenation of the app’s UID and the
declared task affinity, where each app has a unique static
UID. To circumvent this mechanism, the transparent activity
could monitor the launching event of the target app via
side-channel information [3, 9] although it is less reliable
than directly using the newly-discovered flaw or bug. When
the target app is launched, the transparent activity moves
itself into the foreground by invoking the API function
moveTaskToFront, then destroys itself and launches the
malicious activity. Therefore, Android 11 is still vulnerable.

8 Conclusion

In this article, we proposed a novel activity hijacking attack
VenomAttack, enabling automated, customized and large-
scale attacks in recent Android versions. It is able to circum-
vent the sandbox security mechanism of Android and bypass
the existing defense mechanisms including real-time detec-
tion. Our user study demonstrated the effectiveness of Ven-
omAttack in the real-world scenarios without users’ aware-
ness, which would call more attention to the stakeholders. Fi-
nally, we discussed the impact of VenomAttack and proposed
strategies and suggestions from the perspectives of Android
system, app markets, and app developers to mitigate it.

Acknowledgements This work was supported by the National Natural Sci-
ence Foundation of China (Grant Nos. 62072309 and 6171101225).

19

References

1. Lu L, Li Z, Wu Z, Lee W, Jiang G. CHEX: statically vetting Android

apps for component hijacking vulnerabilities. In: Proceedings of ACM

Conference on Computer and Communications Security. 2012, 229–

240

2. Gourdin B. Framing attacks on smart phones and dumb routers: Tap-

jacking and geo-localization attacks. In: Proceedings of USENIX

Workshop on Offensive Technologies. 2010

3. Chen Q A, Qian Z, Mao Z M. Peeking into your app without actually

seeing it: UI state inference and novel Android attacks. In: Proceedings

of USENIX Security Symposium. 2014, 1037–1052

4. Wang Z, Li C, Guan Y, Xue Y, Dong Y. Activityhijacker: Hijacking

the Android activity component for sensitive data. In: Proceedings of

International Conference on Computer Communication and Networks.

2016, 1–9

5. Ren C, Zhang Y, Xue H, Wei T, Liu P. Towards discovering and un-

derstanding task hijacking in Android. In: Proceedings of USENIX

Security Symposium. 2015, 945–959

6. Lee S, Hwang S, Ryu S. All about activity injection: threats, semantics,

and detection. In: Proceedings of IEEE/ACM International Conference

on Automated Software Engineering. 2017, 252–262

7. Ren Y, Li Y, Yuan F, Zhang F. Hijacking activity technology analy-

sis and research in Android system. In: Proceedings of International

Conference on Trustworthy Computing and Services. 2013, 46–53

8. Xiao Y, Bai G, Mao J, Liang Z, Cheng W. Privilege leakage and infor-

mation stealing through the Android task mechanism. In: Proceedings

of IEEE Symposium on Privacy-Aware Computing. 2017, 152–163

9. Yang L, Zhi Y, Wei T, Yu S, Ma J. Inference attack in android activ-

ity based on program fingerprint. Journal of Network and Computer

Applications, 2019, 127: 92–106

10. Luo L, Zeng Q, Cao C, Chen K, Liu J, Liu L, Gao N, Yang M, Xing

X, Liu P. System service call-oriented symbolic execution of An-

droid framework with applications to vulnerability discovery and ex-

ploit generation. In: Proceedings of Annual International Conference

on Mobile Systems, Applications, and Services. 2017, 225–238

11. Ren C, Liu P, Zhu S. Windowguard: Systematic protection of GUI se-

curity in Android. In: Proceedings of Annual Network and Distributed

System Security Symposium. 2017

12. Liu J, Wu D, Xue J. TDroid: exposing app switching attacks in An-

droid with control flow specialization. In: Proceedings of IEEE/ACM

International Conference on Automated Software Engineering. 2018,

236–247

13. Liu F, Cai H, Wang G, Yao D, Elish K O, Ryder B G. MR-Droid: A

scalable and prioritized analysis of inter-app communication risks. In:

Proceedings of IEEE Security and Privacy Workshops. 2017, 189–198

14. Yan F, Li Y, Zhang L. Activityshielder: An activity hijacking defense

scheme for Android devices. In: Proceedings of International Confer-

ence on Computer Communication and Networks. 2018, 1–9

15. Chen S, Fan L, Chen C, Su T, Li W, Liu Y, Xu L. Storydroid: Auto-

mated generation of storyboard for android apps. In: Proceedings of

IEEE/ACM International Conference on Software Engineering. 2019,

596–607

16. Chen T, He J, Song F, Wang G, Wu Z, Yan J. Android stack machine.

In: Proceedings of International Conference on Computer Aided Veri-

fication. 2018, 487–504

17. Bkakria A, Mariem G, Cuppens-Boulahia N, Cuppens F, Lanet J L.

Real-time detection and reaction to activity hijacking attacks in An-

droid smartphones. In: Proceedings of International Conference on

Privacy, Security and Trust. 2017, 253–258

18. Li L, Li D, Bissyandé T F, Klein J, Le Traon Y, Lo D, Cavallaro L.

Understanding android app piggybacking: A systematic study of mali-

cious code grafting. IEEE Transactions on Information Forensics and

Security, 2017, 12(6): 1269–1284

19. Gao J, Li L, Kong P, Bissyandé T F, Klein J. Borrowing your en-

emy’s arrows: the case of code reuse in android via direct inter-app

code invocation. In: Proceedings of ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations

of Software Engineering. 2020, 939–951

20. Tuncay G S, Qian J, Gunter C A. See no evil: Phishing for permis-

sions with false transparency. In: Proceedings of USENIX Security

Symposium. 2020, 415–432

21. Saltaformaggio B, Bhatia R, Gu Z, Zhang X, Xu D. GUITAR: piecing

together android app guis from memory images. In: Proceedings of

ACM SIGSAC Conference on Computer and Communications Secu-

rity. 2015, 120–132

22. Chen S, Fan L, Chen C, Xue M, Liu Y, Xu L. GUI-Squatting attack:

Automated generation of Android phishing apps. IEEE Transactions

on Dependable and Secure Computing, 2019, 1–1

23. Song F, Lei Y, Chen S, Fan L, Liu Y. Advanced evasion attacks and

mitigations on practical ML-based phishing website classifiers. Inter-

national Journal of Intelligent Systems, 2021, 36: 5210–5240

24. Chen S, Su T, Fan L, Meng G, Xue M, Liu Y, Xu L. Are mobile

banking apps secure? what can be improved? In: Proceedings of

ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering. 2018,

797–802

25. Song F, Touili T. Model-checking for android malware detection. In:

Proceedings of Asian Symposium on Programming Languages and

Systems. 2014, 216–235

26. Xu Z, Ren K, Song F. Android malware family classification and char-

acterization using CFG and DFG. In: Proceedings of International

Symposium on Theoretical Aspects of Software Engineering. 2019,

49–56

27. Chen S, Fan L, Meng G, Su T, Xue M, Xue Y, Liu Y, Xu L. An em-

pirical assessment of security risks of global android banking apps. In:

Proceedings of IEEE/ACM International Conference on Software En-

gineering. 2020, 1310–1322

28. Tang C, Chen S, Fan L, Xu L, Liu Y, Tang Z, Dou L. A large-scale em-

pirical study on industrial fake apps. In: Proceedings of IEEE/ACM In-

ternational Conference on Software Engineering: Software Engineer-

ing in Practice. 2019, 183–192

20

Pu Sun is a Ph.D. student in Shang-

haiTech University, China, supervised

by Prof. Fu Song. He received the

B.S. degree in Computer Science from

Northeastern University at Qinhuang-

dao, China, in 2018. His research inter-

ests are in software testing and software

security.

Sen Chen is an Associate Professor

with the College of Intelligence and

Computing, Tianjin University, China.

Previously, he was a research as-

sistant professor and postdoctoral re-

search fellow at Cybersecurity Lab,

School of Computer Science and Engi-

neering, Nanyang Technological Uni-

versity from 2019 to 2020. He received his Ph.D. degree in com-

puter science from East China Normal University, in 2019. His re-

search focuses on software engineering, security, and data-driven

analytics.

Lingling Fan is an Associate Profes-

sor with the College of Cyber Science,

Nankai University, China. She received

her Ph.D and B.S. degrees in computer

science from East China Normal Uni-

versity, in 2019 and 2014, respectively.

Previously, she was a research assistant

professor and postdoctoral research fel-

low at Cybersecurity Lab, School of Computer Science and Engi-

neering, Nanyang Technological University from 2019 to 2020. Her

research focuses on program analysis and testing, Android applica-

tion security analysis and testing.

Pengfei Gao is a Ph.D. student in

ShanghaiTech University, supervised

by Prof. Fu Song. He received the

B.S. degree in Computer Science from

China University of Mining and Tech-

nology in 2017. His research interests

are in program analysis and software

security.

Fu Song is an Associate Professor

(Tenured) with ShanghaiTech Univer-

sity, China. He received the M.S. de-

gree in Software Engineering from East

China Normal University in 2009, and

the Ph.D. degree in Computer Science

from University Paris-Diderot in 2013.

Previously, he was an Assistant Profes-

sor with hanghaiTech University from August 2016 to July 2021,

lecturer and associate research professor with East China Normal

University from August 2013 to July 2016. His research interests

are primarily in formal methods and computer security.

Min Yang is a Professor and vice dean

with School of Computer Science, Fu-

dan University, China. He received the

B.S. and Ph.D degrees in computer sci-

ence from Fudan University in 2001

and 2006, respectively. His research in-

terests are primarily in mobile security

and privacy, AI security and privacy,

and program analysis.

