
Comparison and Evaluation on Static Application Security
Testing (SAST) Tools for Java

Kaixuan Li
∗

East China Normal University

Shanghai, China

kaixuanli@stu.ecnu.edu.cn

Sen Chen
∗

College of Intelligence and

Computing, Tianjin University

Tianjin, China

senchen@tju.edu.cn

Lingling Fan

College of Cyber Science, Nankai

University

Tianjin, China

linglingfan@nankai.edu.cn

Ruitao Feng

University of New South Wales

Sydney, Australia

halertfeng@gmail.com

Han Liu

East China Normal University

Shanghai, China

hanliu@stu.ecnu.edu.cn

Chengwei Liu

Nanyang Technological University

Singapore, Singapore

chengwei001@e.ntu.edu.sg

Yang Liu

Nanyang Technological University

Singapore, Singapore

yangliu@ntu.edu.sg

Yixiang Chen
†

East China Normal University

Shanghai, China

yxchen@sei.ecnu.edu.cn

ABSTRACT
Static application security testing (SAST) takes a significant role in

the software development life cycle (SDLC). However, it is challeng-

ing to comprehensively evaluate the effectiveness of SAST tools to

determine which is the better one for detecting vulnerabilities. In

this paper, based on well-defined criteria, we first selected seven

free or open-source SAST tools from 161 existing tools for further

evaluation. Owing to the synthetic and newly-constructed real-

world benchmarks, we evaluated and compared these SAST tools

from different and comprehensive perspectives such as effective-

ness, consistency, and performance. While SAST tools perform

well on synthetic benchmarks, our results indicate that only 12.7%

of real-world vulnerabilities can be detected by the selected tools.

Even combining the detection capability of all tools, most vulnera-

bilities (70.9%) remain undetected, especially those beyond resource

control and insufficiently neutralized input/output vulnerabilities.

The fact is that although they have already built the corresponding

detecting rules and integrated them into their capabilities, the de-

tection result still did not meet the expectations. All useful findings

unveiled in our comprehensive study indeed help to provide guid-

ance on tool development, improvement, evaluation, and selection

for developers, researchers, and potential users.

∗
These authors contributed equally to this work.

†
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00

https://doi.org/10.1145/3611643.3616262

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
• Security and privacy → Software security engineering; •
General and reference→ Empirical studies.

KEYWORDS
Static application security testing, Benchmarks, Empirical study

ACM Reference Format:
Kaixuan Li, Sen Chen, Lingling Fan, Ruitao Feng, Han Liu, Chengwei Liu,

Yang Liu, and Yixiang Chen. 2023. Comparison and Evaluation on Static

Application Security Testing (SAST) Tools for Java. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’23), December 3–9,
2023, San Francisco, CA, USA. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3611643.3616262

1 INTRODUCTION
The early detection and handling of vulnerabilities in software code

is a matter of concern for software development. In recent years, se-

curity vulnerabilities such as Log4Shell [66] and Spring4Shell [67]

have raised alarm bells. Researchers have also proposed various

methods to detect software vulnerabilities such as formal verifica-

tion [4], static application security testing (SAST) [59], dynamic

application security testing (DAST) [95], and interactive application

security testing (IAST) [81]. Practically, SAST is the most popular

technology due to its lower cost, faster operation, and stronger

capability to detect bugs or vulnerabilities without executing a pro-

gram. Hence, the development of SAST technology has obviously

evolved, and the number of corresponding tools has rapidly grown

in recent years [13, 44, 68–70, 74, 85, 90, 93, 107].

However, it is still challenging for users to objectively evalu-

ate and select the appropriate SAST tools due to the following

reasons. (1) Firstly, existing studies are mainly conducted on syn-

thetic datasets [2, 58, 80, 101], where vulnerabilities are usually

implemented and injected into programs manually. Compared to

https://doi.org/10.1145/3611643.3616262
https://doi.org/10.1145/3611643.3616262
https://doi.org/10.1145/3611643.3616262

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kaixuan Li, Sen Chen, Lingling Fan, Ruitao Feng, Han Liu, Chengwei Liu, Yang Liu, and Yixiang Chen

Selected tools

OWASP Benchmark

Vulnerable versions

Patched versions

Java CVE Benchmark

Benchmarks

Comprehensive evaluation perspectives

RQ3: Consistency Evaluation
Consistency among tools

Detected vs. claimed

RQ2: Detection Result Dissection
Best/worst detected CWE Classes

Composition of false negatives

Large-scale study on

Java OSS programs

RQ1: Effectiveness Evaluation
Synthetic vs. real-world benchmark

Approximate false positives analysis

RQ4: Performance analysis
Effectiveness vs. performance

Mapping

Detecting rules

Mapping

Figure 1: Overview of our study.

real-world vulnerabilities [8], they are much simpler in design and

easier to be detected. Therefore, it is hard to objectively reflect the

detection capability of tools in real-world programs. OpenSSF [76]

also emphasized the importance of using real-world vulnerability

data to evaluate the effectiveness of SAST tools and developed a

benchmark [75] which contains over 200 CVEs (Common Vulner-

abilities and Exposures) [14]. However, their benchmark only in-

cludes JavaScript and TypeScript CVEs. Some studies have also been

exhibited to evaluate the effectiveness of SAST tools on open-source

programs [1, 46, 97], in which the datasets used are often small in

size and limited in the number and types of contained vulnerabili-

ties. (2) Furthermore, the focus of existing studies [41, 51, 98, 100]

concerns more on quality issues, e.g., code styles, performance,

and bad practices, rather than security vulnerabilities. For example,

Thung et al. [98] performed an evaluation on Java SAST tools, in

which they explored to what extent the Java SAST tools detect real-

world defects on three open-source Java programs, and analyzed

five kinds of defects including code style and bad practices. (3)
Thirdly, specifically for Java SAST tools, the shortage of knowledge

on commonly detected types of vulnerabilities makes researchers

even harder to gain deeper insights into the strengths and weak-

nesses of a given tool. Besides, the consistency of vulnerability

types that actually reported in detection and claimed to support in

documentation is also an interesting research question to explore.

Java is one of the most popular and well-developed program-

ming languages, with a broad scope of application scenarios [99].

However, till now, there is still a lack of effort in evaluating SAST

tools on real-world programs, especially for Java. In a concurrent

work evaluating SAST tools, Lipp et al. [50] focused on SAST tools

for C programs, in which they evaluated the effectiveness of six

tools on 192 real-world vulnerability datasets using 27 open-source

C projects. But the results on C SAST tools may be not feasible

for Java SAST tools because of the different language constructs.

Meanwhile, the corresponding SAST tools can differ in their usage,

and it is a question that how to choose a Java SAST tool that is

suitable for scanning speed or workflow integration besides the

effectiveness of vulnerability detection.

As shown in Figure 1, to bridge these gaps, we evaluated 7 rep-

resentative Java SAST tools filtered from 161 tools. Then, we used

Common Weakness Enumeration (CWE) [25] as a reference to map

the detecting rules of these tools and CVEs contained in our col-

lected benchmark datasets to CWE, and automatically compared

the effectiveness of each tool. We collected 2 types of benchmark

datasets including a synthetic dataset (i.e., OWASP Benchmark) and

a real-world benchmark (i.e., the Java CVE Benchmark). The latter

includes 165 open-source Java programs with 165 unique CVEs.

The dataset covers 37 unique vulnerability types (CWEWeaknesses),
belonging to 8 CWE Classes in CWE-1000 [19]. For this, we eval-
uated the tools’ effectiveness against the 2 benchmarks. Based on

their poor effectiveness on the Java CVE Benchmark, we further dis-

sected the composition of false negatives. Moreover, we performed

a consistency evaluation on the vulnerabilities detected by these

tools between the actually detected ones and what is claimed in the

detecting rules. Finally, we performed a performance analysis on

1,049 representative Java open-source programs.

Our study unveils that the evaluation of SAST tools on synthetic

datasets does not objectively reflect the detection capability of the

tools. In particular, the selected tools overlooked most (87.3%) real-

world vulnerabilities in the Java CVE Benchmark, while they have

been shown to performwell on the OWASP Benchmark. Meanwhile,

over 70% of vulnerabilities still remain undetected when combining

the results of SAST tools, especially those beyond the scope of

CWE-664 and CWE-707. For consistency analysis, we observed that
these tools generally overstate their detection capabilities, even

with 90.5% overstatement on our real dataset. Meanwhile, their

analysis time increases sharply when the line of code (LoC) is over

50k. In particular, Insider [44] and Contrast [90] are the fastest,

while Semgrep [85] and CodeQL [13] require the longest time.

In summary, we made the main contributions as follows:

• We constructed a real-world benchmark containing 165 open-

source Java programs with 165 unique CVEs on the method level,

which is considered the largest real-world vulnerability bench-

mark for Java. It costs 13.5 person-months for the construction.

• To fairly compare the 7 SAST tools’ detecting rules, we mapped

and grouped 1,801 rules of tools studied and vulnerability data in

our 2 benchmarks into CWE Classes, and analyzed the detection

consistency among tools, as well as that between the detected

vulnerability types and those claimed in their detecting rules.

• We conducted a large-scale empirical evaluation of the selected

tools from comprehensive perspectives, including effectiveness,

consistency, and runtime performance. To this end, 43,519 (i.e.,

7 × (2, 740 + 165 × 2 + 1, 049 × 3)) scanning tasks are conducted.

• Based on the evaluation results, we discussed the lessons learned

and detailed the guidance on SAST tool development, improve-

ment, evaluation, and selection for SAST tool developers, re-

searchers, and potential users.

2 OVERVIEW
2.1 Tool Selection
We aim at gathering a representative set of SAST tools since it is

infeasible to give a complete set of all existing tools. Therefore, we

searched tool lists from recent scientific literature [1, 5, 40, 41, 51,

56, 80, 92, 98, 100] and snowballed from them, as they also recom-

mend further lists. Eventually, we obtained several prominent web-

sites [34, 35, 72, 73, 77, 78, 104] giving recommendations for SAST

tools, including GitHub, Kompar, NIST, OWASP, and Wikipedia.

This process resulted in a very substantial set of SAST tools [103],

even after removing duplicates (192 out of 576). We designed the

following criteria to select our evaluation subjects.

Comparison and Evaluation on Static Application Security Testing (SAST) Tools for Java ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 1: Tool profile. Technology: Semantic (data-flow and
control-flow analysis) or Syntactic (pattern-matching within
the code). # Stars indicates GitHub stars.

Tool Technology # Stars Version

CodeQL Semantic 6.1k v2.10.2

Contrast Semantic / 1.0.10

Horusec Syntactic 903 v2.8.0

Insider Syntactic 429 v3.0.0

SBwFSB Semantic 3.1k v4.7.0, v1.12.0

Semgrep Semantic 8.3k v0.108.0

SonarQube Semantic 7.8k v9.5.0, v4.1.0

① Java supported. First, we only included SAST tools that support

Java programs and obtained 161 Java SAST tools in total.

② Free of charge. Second, the Java SAST tools must be free of

charge.While commercial tools are indeed prevalent in the industry,

they often entail substantial costs and do not disclose their internal

rule implementations, thereby posing analytical limitations for our

study. Thus, 54 commercial tools were excluded.

③ Being maintained. Third, we eliminated tools that were no

longer maintained. Specifically, we manually checked whether the

tool’s open-source repository had been active for the last 2 years.

After this step, 20 SAST tools were further removed.

④ Command-line interface (CLI). Moreover, we did not consider

tools that have usage limits or purely operate through a graphical

user interface, as we aim to conduct a large-scale experiment in

this study. Therefore, we excluded tools such as Reshift [88], HCL

AppScan CodeSweep [42], and GitHub Code Scanning [36], Based

on this selection criterion, we excluded 33 tools.

⑤ Security related. We try to select tools that identify generalized

security vulnerabilities, rather than those aimed to detect specific

vulnerabilities or code quality issues such as linters [105]. Initially,

we selected tools that claim they can detect “vulnerabilities”, “secu-

rity issues”, and other similar terms in their documentation. Further-

more, to facilitate the comparison and evaluation of tool effective-

ness between synthetic and real-world benchmarks, it is required

that tools should demonstrate an ability to detect vulnerabilities

in synthetic benchmarks such as the OWASP Benchmark, i.e., be

able to detect at least two vulnerability types. Finally, we excluded

6 tools including Error Prone [38], Facebook Infer [54], Check-

style [9], PMD [83], google-java-format [39], and Mega-Linter [79].

⑥ Well-documented with detecting rules. Note that we intend
to select SAST tools with well-documented detecting rules, which

allows us to analyze the effectiveness of each tool by mapping them

to CWE. Meanwhile, we explore whether the detecting capacity

they claim in the rules is consistent with that in practice. After

applying this criterion, we excluded 41 tools that did not provide

publicly available documentation of their detecting rules.

Based on these criteria, we finally selected 7 tools: CodeQL, Con-

trast Codesec Scan (Contrast), Horusec [107], Insider, SpotBugs [70]

with FindSecurityBugs [69] (SBwFSB), Semgrep, and SonarQube

community edition (SonarQube) [93] (Table 1). Notably, these tools

except for Contrast not only encompass a diverse range of SAST

techniques but also reflect the popularity within the developer and

security communities, as indicated by the number of GitHub stars.

This underscores their widespread use and relevance in the field.

We have uploaded the full candidate SAST tool list [102].

2.2 Benchmark Collection
2.2.1 OWASP Benchmark. For the synthetic dataset selection,
we considered OWASP Benchmark [31], as it is consistently main-

tained and updated compared with other synthetic datasets such

as the Juliet Test Suite Java [71] and OWASP Top 10 2020 Bench-

mark [30]. Although the vulnerabilities within it are synthetic, we

can use them to draw preliminary conclusions about the detection

capabilities of SAST tools. The latest version of OWASP Benchmark

(i.e., v1.2) contains 2,740 test cases. Each case has either a genuine,

exploitable vulnerability (1,415 in total) or a non-vulnerable control

instance mimicking a false positive (1,325 in total).

2.2.2 Java CVE Benchmark. In response to OpenSSF’s call for

real-world vulnerability data in SAST tool evaluation, we con-

structed a Java CVE Benchmark by involving four steps as follows:

• Java programs collection:We first searched Java open-source

programs with disclosed CVEs and corresponding patch commits

from advisory sources such as NVD [57], Debian [24], and Red

Hat Bugzilla [87], initially obtaining a list of 680 programs.

• Version range extraction and method-level locating: We uti-

lized SZZ [91] to extract the vulnerable version range of programs

affected by each CVE, ensuring accurate identification of affected

versions. Meanwhile, we employed Ctags [15] to locate method-

level information for both vulnerable and patched versions, which

is essential for a detailed analysis of the vulnerabilities.

• Program packaging: Since the tools under evaluation accept

different types of input (e.g., source code and binaries), we further

excluded the programs that failed to be packaged. We finally

obtained 165 package-able programs [102].

• Cross-validating: To ensure the benchmark quality, we engaged

three security experts from our industry partner. They verified

the vulnerability locations identified by our automated process

and cross-validated each other’s work. Each expert thoroughly

reviewed the details provided in the vulnerability and patch in-

formation obtained from advisory sources. After that, they cross-

validated each other’s results. If disagreements arose during the

cross-validation, a majority voting [43] was used to make the

decision. In cases where the votes were evenly split, a discussion

was held to resolve the conflict. The vulnerability was then la-

beled with detailed information such as its location, the affected

versions, and the specific methods where the vulnerabilities and

patches were located.

Finally, we got 165 package-able open-source programs con-

taining 165 unique CVEs, where each program owns a vulnerable

version and a patched version, with the location of vulnerabili-

ties and patches labeled at the method level. The entire process of

collecting the Java CVE Benchmark took us 13.5 person months,

with an additional 3 person months spent on cross-validating the

vulnerability and patch locations. To the best of our knowledge, it

is the largest real-world Java vulnerability benchmark.

2.3 Mapping Vulnerability Data in Benchmarks
and Rules of Tools to CWE

Since SAST tools use different identifiers for the vulnerability types

they support, e.g., Insider uses CWEs in the reported issues, while

others introduce their own vulnerability identifiers. These different

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kaixuan Li, Sen Chen, Lingling Fan, Ruitao Feng, Han Liu, Chengwei Liu, Yang Liu, and Yixiang Chen

Table 2: CWE mapped by our benchmarks and each SAST tool.
Vulnerabilities/Rules # CWEWeaknesses CWE-284 CWE-435 CWE-664 CWE-682 CWE-691 CWE-693 CWE-697 CWE-703 CWE-707 CWE-710

OWASP Benchmark 2,740 11 % % 394 % % 1,042 % % 1,304 %

Java CVE Benchmark 165 37 14 4 102 % 7 15 % 3 31 1

CodeQL 1,065 196 75 3 401 20 117 150 19 28 96 204

Contrast 46 41 5 1 15 % 1 11 1 1 17 1

Horusec 216 47 11 % 40 % 3 59 % 3 24 6

Insider 90 30 4 1 9 % 1 8 % % 6 3

SBwFSB 152 53 6 3 39 % 3 31 % 1 42 3

Semgrep 165 43 6 1 46 % 12 67 % % 21 3

SonarQube 66 37 10 1 21 % % 21 % 1 5 2

CWE-23

TaintedPath PartialPathTraversal Detecting rules

CWE Weaknesses

CWE Classes

CWE-688

CWE-8 CWE-134CWE-22

CWE-664

mapping

mapping

Figure 2: Example of mapping and grouping rules to CWE.

identifiers make it difficult to automatically determine whether

a SAST tool hit a specific vulnerability type. CWE refers to a

community-developed list of software and hardware weakness

types, including security vulnerabilities, which is also used in CVE

reports [18] and supported by many SAST tools [20]. In addition,

all of these tools have mapped their own rules to CWE in their

documentation or GitHub repository except for SpotBugs,
1
so we

consider it a valid approach by evaluating them according to CWE.

In this study, we selected “CWE-1000: Research Concepts” as

a reference, since it aims at facilitating research into weaknesses,

including inter-dependencies among CWE entries when compared

with the other two CWEViews [21], i.e., “CWE-699: Software Devel-

opment” and “CWE-1194: Hardware Design”. Moreover, CWE-1000
claims to try to include every weakness within CWE, as well as

with minimal overlap. Considering that direct mapping of rules to

CWEWeaknesses poses some hierarchical inconsistencies, as shown

in Figure 2, which may distinguish the effectiveness of the tools that

map rules to different levels. Similarly, CWE also has hierarchical

structure issues [40, 50]. We considered mapping detecting rules

directly to the “Pillar” [22] level (hereafter denoted by CWE Classes)
in CWE-1000 for the purpose of unifying them to the same level

of CWE. Therefore, to enable us to automate the evaluation of the

tools studied, we use CWE as a reference, with the vulnerability

data in the two benchmarks and the tool’s rules mapped to CWE
Classes in CWE-1000, respectively.
Mapping vulnerability data to CWE. Since all of the vulnerabili-
ties in our two benchmarks have been mapped to CWE Weaknesses,
we thereby mapped them to CWE Classes according to CWE-1000.
Mapping detecting rules to CWE. Similarly, since these tools

have mapped their detecting rules to CWE Weaknesses except for
SpotBugs, we only need to map them to CWE Classes according to

the hierarchy of CWE-1000. For SpotBugs, we manually mapped

its rules to both CWE Weaknesses and CWE Classes. This process
involved three co-authors independently performing the mapping.

They consulted the rule documentation and the hierarchy of CWE-

1000 during this process. Any conflicts in mapping results were

resolved through “majority voting”. Finally, we determined the

support for CWE Classes by the tools. A CWE Class was considered

1
We obtained the mapping documentation of Contrast from its technical support team.

49.0%

84.4%

29.7%

13.9%

82.8% 79.8%

27.0%

0%

20%

40%

60%

80%

100%

Recall Precision F1-score

Figure 3: Effectiveness on OWASP Benchmark.

supported by a tool if the rule documentation stated it implemented

a check for at least one CWE Weakness within that class.

Table 2 shows each class in CWE-1000 is included/supported

or not (%). The number of corresponding vulnerabilities/rules is

further displayed if included/supported. Totally, 2,740 vulnerabil-

ities included in OWASP Benchmark are grouped into 11 CWE
Weaknesses and 3 CWE Classes, while our real-world benchmark

owns more coverage than it does, i.e., including 37 CWEWeaknesses
grouped into 8 CWE Classes except for CWE-682, and CWE-697.

3 COMPARISON AND EVALUATION
The evaluation aims to answer the following research questions:

• RQ1: Effectiveness analysis. How effective are these SAST

tools in detecting vulnerabilities on OWASP Benchmark and our

constructed Java CVE Benchmark?

• RQ2: Detection result dissection.What are the root causes of

the detection results in RQ1?

• RQ3: Consistency analysis. Are the detection results consis-

tent among these tools in terms of the detected vulnerability

types? Are the detected vulnerability types consistent with what

was claimed in each tool?

• RQ4: Performance analysis. How is the performance of these

tools (i.e., the time cost of detection)?

3.1 RQ1: Effectiveness Analysis
3.1.1 Setup. We evaluated the effectiveness of the 7 tools on the

two benchmarks. For the OWASP Benchmark, we compute Recall,

Precision, and F1-score as the evaluation metrics. For the Java

CVE Benchmark, we calculate the proportion of detected CVEs,

denoted as𝐶𝑉𝐸_𝑅 (
𝐷𝑣𝑢𝑙

𝐴𝑙𝑙 𝐶𝑉𝐸𝑠 𝑖𝑛 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
), and the proportion of

CVEs still detected in the patched versions, denoted as𝐶𝑉𝐸_𝑅𝑝𝑎𝑡𝑐ℎ

(

(𝐷𝑣𝑢𝑙∩𝐷𝑝𝑎𝑡𝑐ℎ)
𝐷𝑣𝑢𝑙

). Here, 𝐷𝑣𝑢𝑙 and 𝐷𝑝𝑎𝑡𝑐ℎ represent the detected

CVEs in the vulnerable and patched versions, respectively. The

latter metric approximates the rate of false positives. Inspired

by previous works [50, 98], we evaluated the real-world detection

capabilities of these tools with respect to file-level andmethod-level),
and divided them into four different scenarios as follows:

Comparison and Evaluation on Static Application Security Testing (SAST) Tools for Java ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

24

15
20

13 11

3 2 2 1 1

57

38

46

28
21

29

11

19

9
4

34

26
31

19 17

60

31
37

17
9

22

12
16

10 9

0

10

20

30

40

50

60
#

D
e
te

ct
e
d
 C

V
E
s

CodeQL Contrast Horusec Insider SBwFSB Semgrep SonarQube

𝐒𝐅−𝐀 𝐒𝐅−𝐂 𝐒𝐌−𝐀 𝐒𝐌−𝐂 𝐌𝐚𝐧𝐮𝐚𝐥 𝐂𝐡𝐞𝐜𝐤

Figure 4: Number of detected CVEs in different scenarios.

• File-level Detection with Any CWE Class (𝑆𝐹−𝐴): A CVE is

considered detected if ≥1 vulnerable file is hit by the tool, regard-
less of the CWE Class reported.

• File-level Detection with Correct CWE Class (𝑆𝐹−𝐶): A CVE

is considered detected if ≥1 vulnerable file is hit by the tool, with
the correct CWE Class reported.

• Method-level Detection with Any CWE Class (𝑆𝑀−𝐴): A CVE

is considered detected if ≥1 vulnerable method is hit, regardless

of the CWE Class reported.
• Method-level Detection with Correct CWE Class (𝑆𝑀−𝐶): A
CVE is considered detected if ≥1 vulnerable method is hit with

the correct CWE Class reported.

3.1.2 Results. The overall results on these two benchmarks are

shown in Figure 3 and Figure 4, respectively.

Effectiveness on the OWASP Benchmark. Figure 3 shows that
Contrast and SBwFSB can detect close to all synthetic vulnerabili-

ties, with F1-score 84.4%, and 82.8%, respectively. However, Insider

failed to detect most synthetic vulnerabilities with 23.9% Recall,

9.8% Precision, and 13.9% F1-score. As displayed in Figure 5, the

effectiveness on three CWE Classes varies from tools. However,

synthetic vulnerabilities belonging to CWE-693 are easier detected
by tools, especially those involving insecure cryptographic algo-

rithms or insufficiently random values. While those related to Path
Traversal (CWE-22) and Trust Boundary Violation (CWE-501) are

hardly detected by these tools. In particular, Horusec and Insider

failed to detect all of these two types. For Insider, the number of its

detecting rules is limited, with no strong coverage of diverse Java

vulnerabilities, i.e., 90 in total, with only 9 rules related to CWE-664.
Moreover, Insider has no rule supporting CWE-501 and CWE-22

although claiming to cover the OWASP Top 10. While for Horusec,

CWE-501 is also not supported by its rules. However, we further

noticed that CWE-22 is supported by its rules but not detected.

More specifically, Horusec implements 3 related rules, but all of

them are based on primitive regular expressions which only detect

few related vulnerabilities related to the hard-coded use of either

@javax.ws.rs.PathParam() or @jakarta.ws.rs.PathParam().

Finding 1: SAST tools generally perform well on the synthetic

dataset (i.e., the OWASP Benchmark), especially Contrast and

SBwFSB, which both got an F1-score over 80%, while Insider

showed the lowest detection rate (i.e., 13.9% F1-score), following

SonarQube with an F1-score of 27.0%.

Effectiveness on the Java CVE Benchmark. As shown in Figure 4,

the effectiveness of the 7 tools is analyzed in the 4 scenarios afore-

mentioned. Note that there may exist some cases in 𝑆𝑀−𝐶 where

some tools hit the true CWE Class of a CVE, but a wrong CWE
Weakness was actually reported. To ensure the accuracy of our re-

sults, we further checked the CWEWeaknesses reported by the tools

in 𝑆𝑀−𝐶 . The corrected results are presented as “Manual Check” in

Figure 4 . Contrary to the effectiveness of OWASP Benchmark, it

displays poor effectiveness on real-world vulnerabilities of these

tools, reflecting that over 85% of CVEs were ignored by selected

tools. Even the top-performing tool (Horusec) achieved a mere

12.7%𝐶𝑉𝐸_𝑅. Although Horusec is a syntax-based tool whose rules

are implemented by regular expressions, it outperforms the three

semantic-based tools (SBwFSB, CodeQL, and Semgrep). This un-

veils that the semantic analysis method is not always more effective

than the less complex syntactic ones when in practice. Moreover,

we observed that Horusec integrated with some other tools (e.g.,

GitLeaks [37] and Trivy [89]). It is worth noting that Horusec also

integrates OWASP Dependency-Check [32] within it, a Software

Composition Analysis (SCA) [33] tool, helping Horusec hit another

49 correct CVEs by scanning the vulnerable TPLs used in programs.

Although it is not a SAST tool, such an approach may inspire us

for detecting more vulnerabilities during DevSecOps [86].

Following Horusec, SBwFSB, and CodeQL detected 17 (10.3%)

and 11 (6.7)% CVEs. Both tools are equipped with data-flow analysis

(DFA) and control-flow analysis (CFA), especially taint analysis. To

detect vulnerabilities, SBwFSB uses resource files to list and store

vulnerable sources and sinks to search taint paths, which can limit

its search scope in practice. While CodeQL models source code

as database records allowing its queries to search when scanning,

which is considered a stronger technology than SBwFSB. But we

found that the default rules within CodeQL are still simple which

limits its effectiveness when detecting complex vulnerabilities such

as CVEs. For instance, consider a CodeQL rule designed to detect

CWE-22 vulnerabilities, as shown in Listing 1. It tracks tainted

data from user input (source) to a file path creation (sink) (L3-

4). However, it fails to detect indirect influences of user input on

path creation. Additionally, it deems a variable as “guarded” if it

undergoes any form of check or sanitization, which may not be

sufficient. For example, simply replacing “../” in user input could

not prevent an attacker from constructing a path traversal string

such as “..././..././”. This inadequate sanitization could still lead to an

exploit, which this default rule would not detect.

1 from DataFlow :: PathNode source , DataFlow :: PathNode sink ,
2 PathCreation p, Expr e, TaintedPathLocalConfig conf
3 where e = sink.getNode ().asExpr () and e = p.getAnInput ()

and
4 conf.hasFlowPath(source , sink) and not guarded(e)
5 select p, source , sink , "$@ flows to here and is used in a

path.",
6 source.getNode ()

Listing 1: TaintPathLocal.ql in CodeQL.

Notably, Contrast, themost effective tool according to theOWASP

Benchmark, nearly failed to detect all the CVEs in all 4 scenarios.

Thus, the evaluation using synthetic datasets may yield discrepan-

cies or even opposite conclusions from those on real-world ones.

Finding 2: These tools overlook more than 85% of CVEs (false

negatives), although performing well against synthetic bench-

marks. Horusec and SBwFSB perform better than the other

tools, with a 𝐶𝑉𝐸_𝑅 of only 12.7%, and 10.3% respectively.

Effectiveness vs. CVSS severity.We try to explore the relation-

ship between the effectiveness of SAST tools and the severity of

vulnerabilities by leveraging the Common Vulnerability Scoring

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kaixuan Li, Sen Chen, Lingling Fan, Ruitao Feng, Han Liu, Chengwei Liu, Yang Liu, and Yixiang Chen

36.0%

81.4%

0.0% 0.0%

75.4% 72.9%

0.0%
0%

20%

40%

60%

80%

100%

Recall Precision F1-Score

(a) Effectiveness on CWE-664.

37.4%
32.6%

47.8%

72.8%

90.3% 96.0% 94.8%

0%

20%

40%

60%

80%

100%

Recall precision F1-Score

(b) Effectiveness on CWE-693.

72.7%
77.8%

35.4%

11.8%

70.6% 67.6%

14.0%

0%

20%

40%

60%

80%

100%

Recall Precision F1-Score

(c) Effectiveness on CWE-707.

Figure 5: Effectiveness of each class on OWASP Benchmark.

Table 3: Detection results
according toCVSS severity.
CVSS severity # Detected # Total

High 13 40

Medium 32 120

Low 3 5

40

120

5
158

499

23

High Medium Low

680 Java programs

Java CVE Benchmark

Figure 6: Severity distribution
in the Java CVE Benchmark.

System (CVSS) [28] associated with each CVE. Due to the absence

of CVSS V3 [17] for some CVEs, we finally used CVSS V2 [16] for

a fair evaluation. As shown in Figure 6, the severity distribution of

the Java CVE Benchmark aligns with that of the original 680 pro-

grams, suggesting that the distribution of our benchmark does not

significantly skew the results. As outlined in Table 3, SAST tools

detected 60% of low-severity CVEs. For medium-severity CVEs,

the detection ratio dropped to 26.7% (32/120). Interestingly, the

detection ratio for high-severity CVEs was slightly higher at 32.5%.

Meanwhile, we also observed distinct detection patterns within

each severity level. For instance, all four high-severity injection-

related vulnerabilities, which fall under the Improper Neutraliza-
tion (CWE-707) class, were detected. However, no input-validation

issues, also under CWE-707, were detected at this level. The dis-

crepancy in detection rates could be due to the complexity of high-

severity vulnerabilities or the nature of the vulnerability itself. For

instance, injection vulnerabilities, which often involve improper

input handling, might be easier to detect than deserialization vul-

nerabilities, which require complex object processing. Additionally,

only 5% (2/40) of medium-severity Deserialization of Untrusted Data
(CWE-502) vulnerabilities were detected. Out of these, 38 vulnera-

bilities were found in the widely used jackson-databind [53] project,

yet none were detected, highlighting the importance of effective

vulnerability detection in popular software components.

To analyze approximate false positives, we focused on 𝑆𝐹−𝐶
and 𝑆𝑀−𝐶 since there is no focus on CWE Classes in the other sce-

narios as mentioned before. As shown in Table 4, while most of

the tools are generally poor in detecting real-world vulnerabili-

ties, there are still rather the same vulnerabilities reported in the

patched versions. Overall, it reflects that the selected tools are not

“vulnerability-sensitive” enough since they are not sensitive enough

to distinguish pieces of code before and after patching the vulner-

ability. Especially in 𝑆𝑀−𝐶 , it unveils that Horusec and CodeQL

are more effective than the other tools on the patched versions,

with a𝐶𝑉𝐸_𝑅𝑝𝑎𝑡𝑐ℎ at 28.6% and 45.5%, respectively, while SBwFSB

still reported 16/17 the same CVEs. It was observed that there exist

Table 4: Approximate false positives in 𝑆𝐹−𝐶 and 𝑆𝑀−𝐶 .

Tools

𝑆𝐹−𝐶 𝑆𝑀−𝐶
𝐷𝑉𝑢𝑙 # (𝐷𝑣𝑢𝑙 ∩ 𝐷𝑝𝑎𝑡𝑐ℎ) # 𝐷𝑉𝑢𝑙 # (𝐷𝑣𝑢𝑙 ∩ 𝐷𝑝𝑎𝑡𝑐ℎ)

CodeQL 15 9 11 5
Contrast 2 2 1 1
Horusec 38 23 21 6
Insider 11 11 4 4
SBwFSB 26 25 17 16
Semgrep 31 26 9 4

SonarQube 12 8 9 5

minor differences between each vulnerable and patched version on

the syntax level, but the patched version does fix the corresponding

CVE. However, the detecting rules of these tools are coarse-grained.

This results in these tools capturing only simple patterns of these

CVEs on the syntax level, instead of capturing their exact patterns

on the semantic level. Meanwhile, we observed that there are cer-

tain vulnerability types are more often labeled as false positives

than others in the tools. For instance, Incorrect Type Conversion or
Cast (CWE-704), which is mapped by HS-JAVA-143 by Horusec,

is very likely to be false positives in our scope, especially on the

jackson-dataformats-binary [27] (205/275, 74.5%). Therefore, identi-

fying these kinds of vulnerability types and disabling corresponding

rules probably contributes to reducing false positives, although a

few true positives may be omitted.

Finding 3: These tools are not “vulnerability-sensitive” when
performing on patched versions, which reflect tools’ false posi-

tives. In particular, Horusec (6/21) and CodeQL (5/11) perform

better than the others. While SBwFSB seems less sensitive

(16/17) than the other 6 tools in 𝑆𝑀−𝐶 .

3.2 RQ2: Detection Result Dissection
We further focused on analyzing the detection results of these tools

on the Java CVE Benchmark, including CWE Classes and CWE
Weaknesses that are easier and harder to detect, as well as the

underlying reasons for overlooking certain CVEs.

3.2.1 Setup. To observe the effectiveness of the tools when focus-

ing on specific vulnerability types, we concentrated on studying

the CWE Classes that are most frequently detected regardless of

tools. To analyze the root causes for the poor effectiveness of the

selected tools, we manually reviewed the 48 detected CVEs and

the 117 missing ones in the Java CVE Benchmark as well as the

detecting rules’ implementation. This process was conducted in

three rounds involving three co-authors. Initially, each co-author

individually analyzed all the CVEs and detection rules of each tool,

checking for any rules mapped to CWE Weaknesses for undetected

Comparison and Evaluation on Static Application Security Testing (SAST) Tools for Java ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

0

10

20

30

40

50

60
#

 D
e
te

c
te

d

C

V
E

s

CodeQL Contrast Horusec Insider SBwFSB Semgrep SonarQube

Figure 7: Distribution of detected CVEs in each CWE Class.

CVEs. Subsequently, they discussed their findings to reach a con-

sensus, resolving any disagreements through further discussion.

In the final round, 20% of the CVEs were randomly selected for

review by all authors. Disagreements were resolved through dis-

cussion, potentially leading to updates on the root causes. Finally,

we grouped the root causes into three main categories.

3.2.2 Results. Best vs. worst detected CWEClasses.Overall, Fig-
ure 7 reflects that among the vulnerabilities in our Java CVE Bench-

mark, CWE-{664, 707} are the easily detected CWE Classes. Specif-
ically, CWE-664 refers to Improper Control of a Resource Through
its Lifetime, which involves the management of system resources

such as memory allocation and deallocation, and CWE-707 refers
to Improper Neutralization, which includes vulnerabilities related

to the improper handling of input or data. Interestingly, although

vulnerabilities related to the two classes of CWE-691 and CWE-
710 are theoretically supported by all the deployed tools, most of

the associated CVEs remained undetected, except the SonarQube

which lacks rules for CWE-691. It is due to their low proportion

(4.8%) in our real-world benchmark. In particular, CVEs related to

CWE-664 are detected by all the tools. After eliminating the over-

lapping in detected vulnerabilities, 32 unique CVEs (32/107) in this

class were found. Especially, CVEs of {CWE-22, CWE-502, CWE-

200, and CWE-611} are the most frequently detected types within

this class, accounting for 62.5% (20/32). Moreover, 22 (14 unique) of

the 31 CVEs related CWE-707 were detected by all tools except for

Contrast. Within this class, 3 OS Command Injection (CWE-78), and

3 Improper Input Validation (CWE-20) were detected.

Finding 4: Real-world vulnerabilities related to CWE-664 and
CWE-707 are more easily detected, especially those relevant

to CWE-{22, 200, 502, 611}, CWE-{20, 78} are more effectively

detected. However, these tools still missed 70.1% of the 107

CWE-664 vulnerabilities and 37.5% of the 29 CWE-707 ones.

Composition of missing vulnerabilities (false negatives). The
48 successfully detected CVEs can be grouped into seven CWE
Classes: CWE-284 (3), CWE-664 (32), CWE-691 (2), CWE-693 (6),
CWE-703 (2), CWE-707 (14), and CWE-710 (1). We observed that it

is because their patterns are easy for SAST to spot, e.g., CVE-2019-
18393 [65] is a typical vulnerability related to CWE-22 caused by not

checking the use of “\”, which is a common path-traversal pattern

for SAST tools to detect. As displayed in Table 5, the composition of

overlooking the 117 CVEs can be summarized into three categories:

① C1: No detecting rules supported by tools (2.6%-8.5%). In
this category, although only 3 (2.6%) CVEs are not supported by any

tool’s pre-defined rules, we found that each tool generally fails to

support 2-10 (8.5%) CVEswhich SAST is typically sufficient to detect

but no rule was implemented. In particular, even CodeQL, which

1 for (javax.servlet.http.Cookie theCookie : theCookies) {
2 if (theCookie.getName ().equals("BenchmarkTest00002")) {
3 param = java.net.URLDecoder.decode(theCookie.

getValue (), "UTF -8");
4 break;
5 }
6 }
7 fileName = org.owasp.benchmark.helpers.Utils.TESTFILES_DIR+

param;
8 fos = new java.io.FileOutputStream(fileName , false);

Listing 2: Testcase 0002 (CWE-22) in the OWASP Benchmark.

1 public ClassPathResource(String path , ClassLoader
classLoader) {

2 Assert.notNull(path , "Path must not be null");
3 String pathToUse = StringUtils.cleanPath(path);
4 if (pathToUse.startsWith("/")) {
5 pathToUse = pathToUse.substring (1);
6 }
7 this.path = pathToUse;
8 this.classLoader = (classLoader != null ? classLoader :

ClassUtils.getDefaultClassLoader ());
9 }
10 @Override
11 public URL getURL () throws IOException {
12 URL url = this.classLoader.getResource(this.path);
13 if (url == null) {
14 throw new FileNotFoundException(this.path + "cannot

be resolved to URL because it does not exist");
15 }
16 return url;
17 }

Listing 3: Simplified code snippet for CVE-2018-9159.

has the most rules among these tools, still failed to implement rules

for 10 CVEs in the Java CVE Benchmark. For instance, CVE-2015-
2913 [62] is related to Use of Insufficiently Random Values, where
SAST is generally sufficient to detect most relevant instances [6]

although false negatives may occur if custom cryptography is used.

② C2: Inadequate detection capabilities of tools (76.9%-82.9%).
90-97 CVEs were undetected due to inadequate detection capacities

of these tools, indicating that the predefined rules in the tools
are not sufficiently effective in identifying real-world vulnerabil-

ities. On the one hand, the primitive implementation of predefined

rules, including source and sink lists, significantly impacts the

tools’ detection, e.g., 91.2% (52/57) of CVEs related to CWE-502

went undetected despite targeted rules. While a base search for

ObjectInputStream() and readObject() in source code could

detect some related vulnerabilities, most cases required additional

DFA and CFA in rule implementation. On the other hand, code

patterns in the CVEs were notably more complex than those in the

synthetic cases, a finding that is also revealed in a concurrent study

on Android [52]. For instance, despite owning rules targeting CWE-

22, tools such as SBwFSB and CodeQL only detected 16.7% of related

CVEs, even though they could detect all synthetic cases labeled with

the same CWE in the OWASP Benchmark. As shown in Listing 2,

the synthetic code pattern is relatively straightforward and follows

a linear flow within the same scope. The user-controlled input is

taken directly through a cookie (L1-6) and then used in constructing

a file path (L7). This pattern is rudimentary and primarily tests if the

SAST tool can track data flow within a single method. Conversely,

the code pattern in the Java CVEBenchmark example [94] (Listing 3)

is more nuanced and encapsulated within a class structure. It arises

from two separate methods for user-controlled input and usage

respectively with an implicit connection of a class field. The con-

structor of ClassPathResource (L1-9) accepts a user-controlled

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kaixuan Li, Sen Chen, Lingling Fan, Ruitao Feng, Han Liu, Chengwei Liu, Yang Liu, and Yixiang Chen

Table 5: Examples of missing CVEs by categories.
Categories CVE ID CWE Weakness CWE Class

C1 CVE-2015-2913 CWE-330 CWE-693
CVE-2013-5960 CWE-310 CWE-693

C2 CVE-2018-9159 CWE-22 CWE-664
CVE-2021-20190 CWE-502 CWE-664

C3 CVE-2014-3651 CWE-400 CWE-664
CVE-2018-1274 CWE-770 CWE-664

path as an input but does not perform adequate validation before

saving it as a field. Although there is some normalization (L5), it is

not sufficient to prevent path traversal sequences. The vulnerability

manifests when another method getURL attempts to read the field

this.path and resolve it (L11-17), and an attacker can exploit this

by providing specially crafted paths. Detecting it requires the abil-

ity of inter-procedural DFA and insufficient validation detection,

which is not required by Listing 2.

The marked distinction between these patterns highlights the

need for SAST tools to excel in analyzing real-world code, especially

when dealing with object interactions and method calls. While the

OWASP Benchmark is useful for basic testing, it lacks the com-

plexity present in real-world scenarios. Thus, using a real-world

benchmark is vital for evaluating the practical effectiveness of tools.

③ C3: Hard to be detected by SAST (14.5%). In this case, we

found that there are 24 CVEs difficult for SAST to detect. For ex-

ample, CVE-2014-3651 [61] is a vulnerability related to Uncontrolled
Resource Consumption (CWE-400). However, SAST typically has

limited utility in recognizing resource exhaustion problems, since

determining boundary values on integers requires a strong capacity

in propagating boundary value information across any control flow

units including loops. Moreover, in addition to certain practical

restrictions, there exists a theoretical limit when inferring based

on the undecidability of SAST [47]. For instance, invariants and

post-conditions are supposed to be deduced even for a loop.

Finding 5: Over 76.9% overlooked CVEs are caused by insuffi-

cient support of these tools, especially those mapped to CWE-22,

CWE-502. While 14.5% are hard for SAST to detect, including

those related to checking boundary value issues (e.g., CWE-400).

3.3 RQ3: Consistency Analysis
3.3.1 Setup. Inspired by findings on the Java CVE Benchmark as

shown in RQ1, we further constructed two consistency analyses:

(1) the consistency of detected CVEs among the tools, and (2) the
consistency of detected CVEs between tools actually detect and

what they claim to support. For the latter task, we try to explore

whether these tools “keep their promises” based on the mapping

results of detecting rules and CVEs. To weaken the impacts of CVEs

that are hard for SAST to detect (C3 in Section 3.2.2), we place the

scope on those CVEs that SAST technically has the ability to detect.

3.3.2 Results. The fact is that the number of detected CVEs in

each CWE Class varies for each tool, as displayed in Figure 7.

Consistency among the tools. As indicated in Figure 8, there is

no CVE that was detected simultaneously even by the four best-

performing tools, which reflects these tools have different focuses.

By comparing the detected vulnerabilities by all tools, we found that

11 unique CVEs are detected only by Horusec, with 11 and 4 ones

Size of each list

0

10.5

21

11

CodeQL

21

Horusec

17

SBwFSB

9

Semgrep

Number of elements: specific (1) or shared by 2, 3, ... lists

3 (2)

9

2

34

1

5

14 11

4

1

2

2

2

2

0

1

00

1

0

CodeQL

Horusec SBwFSB

Semgrep

Figure 8: Tools combination in 𝑆𝑀−𝐶 .

only detected by SBwFSB, and Semgrep respectively. Specifically,

the most detected CVEs by Horusec are in CWE-664, especially
those related to CWE-611. Meanwhile, the most detected CVEs

by SBwFSB are in CWE-707, including CWE-20. While CodeQL

detected most CVEs related to CWE-693, e.g., the use of a broken
or risky cryptography algorithm (CWE-327). However, there are 19

(39.6%) certain CVEs being detected by no less than two tools, such

as CVE-2018-17187 (CWE-295), CVE-2018-20318 (CWE-611), and

CVE-2018-20227 (CWE-22), etc. It is observed that these CVEs’ pat-

terns are easy for SAST to detect. For instance, CVE-2018-17187 [63],
a vulnerability found in The Apache Qpid Proton-J transport [3], is
related to Improper Certificate Validation, which even syntax-based

tools can hit by searching for well-known dangerous sinks such as

X509TrustManager, and checkClientTrusted.
Besides, although SBwFSB and CodeQL detected 3 CVEs related

to CWE-22, we found that CodeQL even reported a more precise

vulnerability type: Path Traversal: ‘\\..\filename’ (CWE-29) for CVE-
2018-20227 [64]. Specifically, there are 20 rules for detecting related

vulnerabilities covering both absolute path traversal and relative
path traversal, including {CWE-22, CWE-23, CWE-29, CWE-36}, etc.

It unveils that CodeQL hasmore complete coverage and fined
granularity on path-traversal vulnerabilities.

Since none of the single tools performs well on the Java CVE

Benchmark, and there are different focuses among tools, we try

to analyze the effectiveness improvement by combining multiple

SAST tools. Here, we selected and combined the SAST tools with

the most CVEs found. A CVE is thereby considered found if at

least one tool was able to detect it. As the combination of tools

can also result in an increase in false positives, we selected those

that contain the fewest SAST tools and also output the fewest

false positives. The best combination of the 4 tools is {CodeQL,
Horusec, SBwFSB, Semgrep}, which can cover 45 unique CVEs

as shown in Figure 8. However, the 𝐶𝑉𝐸_𝑅 reaches 27.3% (45/165)

and𝐶𝑉𝐸_𝑅𝑝𝑎𝑡𝑐ℎ at 66.7% (30/45), which is an improvement of only

14.6% but 38.1% increase in false positives compared with Horusec.

For a combination of three tools, the best one is {CodeQL, Horusec,
SBwFSB}, with 𝐶𝑉𝐸_𝑅 at 24.8% and 𝐶𝑉𝐸_𝑅𝑝𝑎𝑡𝑐ℎ at 63.4%.

Finding 6: The combination of tools can improve vulnerability

detection (45/165, 27.3%) but is not high as expected, which

still fails to detect over 70% real-world vulnerabilities, with an

approximate cost of a 63.4-66.7% increase in false positives.

Consistency between detected and claimed by each tool. As
revealed in Table 2, by mapping their rules to CWE-1000, each tool

is able to support a wide range of vulnerabilities but still misses

some CWE Classes. In detail, CVEs belonging to CWE-{682, 697, 703,
710} are less supported by tools than those of the other CWE Classes,
although CodeQL implements 204 rules supporting CWE-710. It

Comparison and Evaluation on Static Application Security Testing (SAST) Tools for Java ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

140
113 107

95

128

79
98

11
1

21
4

17
9 9

0

20

40

60

80

100

120

140

#
 C

V
E

s

Supported # Detected

Figure 9: Consistency between the detected CVEs and those
claimed to be supported by each tool.

unveils that it is generally consistent with the most detected CWE
Classes, i.e., CWE-{664, 693, 707} as mentioned in Section 3.2.2.

However, vulnerabilities related to CWE-682 are only supported

by CodeQL, while CodeQL and Contrast claim to support those

belonging to CWE-697. These two classes did not appear in our

benchmarking experiment, so we are not able to analyze their

consistency. When it comes to the two CWE Classes, they con-

cern vulnerabilities related to incorrect calculation and incorrect

comparison, respectively. Through our analysis, we observed these

vulnerabilities are only caused by security-critical calculations/com-

parisons, most likely causing security-unrelated issues including

code smell, etc. Therefore, the influence of the lack of real-world

vulnerabilities under the two CWE Classes has been weakened.

As unveiled in Figure 9, there is much over-statement by
these tools. Specifically, these tools are generally over-claimed

to support 90.5% vulnerabilities than their actual capacity in our

real-world benchmark. It indicates that potential users should select

tools cautiously, instead of only relying on tools’ claims. Even the

best performing tool, Horusec, overstates that 80.4% of CVEs can

be detected by its support, whereas actually they are not. Moreover,

CodeQL has the most default detecting rules (1,065), with support

for unique 196 CWE Weaknesses, but it only detected 7.9% CVEs

of those claimed to support. However, for specific CWE Classes,
Horusec owns 40.4% (59/146) rules related to CWE-693, especially
for CWE-295 (13), and CWE-798 (28), since it is integrated with

GitLeaks. As a result, it also detected 20% CWE-693 related vul-

nerabilities, including CVE-2013-2172, which is caused by an XML

signature cryptographic issue. But SBwFSB detected none of the re-

lated CVEs although owning (31/152) rules belonging to CWE-693.

Finding 7: These tools are generally over-stated in their ca-

pacity for vulnerability detection. Specifically, there are over

90% CVEs failing to be detected although they are claimed to be

supported. Especially Contrast, it over-claims to support 99.1%

(112/113) CVEs in the Java CVE Benchmark.

3.4 RQ4: Performance Analysis
Apart from evaluating the effectiveness of these tools, we also

intended to analyze their performance. We try to explore whether

there is a correlation between the detecting technology used and

performance when scanning programs of different sizes.

3.4.1 Setup. To mitigate the bias in dataset construction, we col-

lected representative Java open-source programs in various sizes by

following the two criteria. (1) We first collected Java open-source

0

100

200

300

400

500

T
im

e
co

ns
um

ed
 (

s)

LoC
CodeQL Contrast Horusec Insider
SBwFSB Semgrep SonarQube

Figure 10: Average performance of SAST tools

programs from the repositories published in the package manager

including Maven [29] since they are more likely to be packaged

successfully. We got 3,500 programs as the initial list. (2) We then

selected representative programs by setting two sub-criteria: ① each

program’s package should be relied on by at least one package, and

② there exist new packages relying on them within the last three

years. Finally, we obtained 1,049 programs that can be packaged,

of which the versions are all up-to-date till August 2022. To ensure

robustness and consider potential infrastructure variability, we per-

formed each performance measurement three times for each tool.

The reported results represent the average of these trials.

3.4.2 Results. We analyzed their runtime performance based on

the lines of code (LoC) of the programs.

Performance analysis.As displayed in Figure 10, it is clear that the
scanning time required by the selected SAST tools increases as the

LoC of Java programs increases. Specifically, the performance does

not vary considerably when the program’s LoC is less than 50k, but

it increases significantly above 50k, particularly for CodeQL. Insider

is the fastest among the SAST tools studied, requiring on average

less than 10 seconds to scan code when LoC is no more than 50k,

and about 43.9 seconds to scan even for programs over 100k LoC.

It is because Insider is a syntax-based SAST tool, by comparing the

source code directly against the pre-defined keywords. Contrast

is also efficient, surpassing Insider as the fastest tool when LoC

is greater than 20k since its input must be a jar or war file of

the Java programs, and the scan is performed by uploading the

jar or war file to a cloud server. It can be observed that CodeQL

requires more time than the other 6 tools when the LoC of programs

is over 50k. CodeQL involves the aforementioned two steps: (1)
first generates the codebase based on the given program; (2) then
performs semantic analysis involving DFA and CFA on the codebase

with queries. Moreover, some queries take a long time to scan, such

as “Taint Path” checking, even over 24 hours if setting no time limit.

Finding 8: The analysis time increases sharply on programs

over 50k LoC. Insider and Contrast are the fastest, while Sem-

grep and CodeQL require the longest time to finish the scan,

with an average of 267s, and 193s, respectively.

Effectiveness vs. performance. Syntax-based tools (Insider, Ho-

rusec) generally run faster than semantic-based ones (CodeQL,

SBwFSB, SonarQube, and Semgrep), which coincides with our afore-

mentioned assumption. Horusec is the slowest syntax-based tool,

which even generally takes longer than SonarQube to complete a

scan. In particular, it takes an average of 83 seconds to complete a

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kaixuan Li, Sen Chen, Lingling Fan, Ruitao Feng, Han Liu, Chengwei Liu, Yang Liu, and Yixiang Chen

scanwhen the LoC is less than 50k, and 120 seconds when the LoC is

over 50k. It is considered since (1) Horusec needs to copy the folder
of programs to prepare for the scan, and (2) it is integrated with

various tools including GitLeaks, Trivy, and OWASP Dependency-

Check. (3) Horusec is equipped with a more complex syntax-based

analysis than Insider by further comparing their implementation of

detecting rules. Meanwhile, Semgrep takes more time than others

on each program when LoC is no more than 50k, generally taking

267 seconds on average. Interestingly, it is not affected much by

the program size, with an average scan time of 230 seconds on LoC

less than 500, while on LoC of 10k-15k, it takes an average of 274

seconds to complete the scan. Although both Semgrep and CodeQL

perform semantic-based analysis when scanning, the performance

of Semgrep was not influenced by LoC. We summarize the two

reasons: (1) besides a combination of syntax analysis and semantic

analysis, there are also some trade-offs between detecting capacity

and scan speed in Semgrep, including limited intraprocedural DFA,

no pointer or shape analysis, and individual elements in arrays

or other data structures are not tracked, etc. It also results in the

aforementioned limited effectiveness in vulnerability detection in

Section 3.1.2. (2) Semgrep takes an optimization called “Single-file
analysis” that directly links scanning with the number of rules, in-

dependent of LoC. Specifically, Semgrep slices and runs single files

in a given program, which also deprives it of the ability to detect cer-

tain complex inter-procedural issues. These insights could guide the

development and refactoring of SAST tools to handle continuously

updated rules and increasingly complex software implementations,

especially for those with over 100k LoC.

Finding 9: There is a trade-off between semantic-based analysis

and the performance within Semgrep, which contributes to its

scanning performance well. Meanwhile, its deployed file-slicing

technology is considered useful when analyzing large programs.

4 DISCUSSION
4.1 Lessons Learned
4.1.1 For Java SAST Developers. (1) Improve effectiveness with
efficient rules. Since detecting capacity is the foundation of SAST

tools, developers should first ensure their effectiveness. ① Imple-

ment rules by extracting exact semantic patterns of vulnerabilities,

e.g., to detect CWE-502 vulnerabilities, it is not enough to only

search for common sinks such as readObject(), DFA and CFA

should also be used to trace the tainted path (Section 3.2.2). ② Tools

should excel in analyzing real-world code. This requires develop-

ers to observe and summarize the features of real-world vulner-

abilities when designing rules, e.g., tools should be enhanced by

analyzing vulnerabilities with object interactions and method calls

(Section 3.2.2). (2) Improve the scalability on large programs. Since
users would not consider a time-consuming SAST tool even though

it could hit some vulnerabilities, developers should consider the

performance when scanning large programs, e.g., the “single-file”

analysis in Semgrep would be a useful inspiration (Section 3.4.2).

4.1.2 For Java SAST Researchers. (1) A unified mapping ref-
erence is essential. As mentioned in Section 2.3, it is desirable to

use publicly available references such as CWE to map detecting

rules and vulnerabilities, which would facilitate the evaluation of

the effectiveness of SAST tools for various vulnerability types and

further gives directions for improvement. (2) Call for a more compre-
hensive and systematic real-world benchmark. To better understand

the actual effectiveness of tools, there is a need for constructing a

real-world benchmark containing diverse vulnerability types ac-

cording to existing references such as CWE. Despite our efforts to

include as many CVEs as possible, the benchmark could be further

diversified by incorporating more vulnerability types, particularly

those belonging to CWE-682 and CWE-697.

4.1.3 For Java SAST Users. (1) Select tools according to different
application scenarios. ① As mentioned in Section 3.3.2, Horusec

performs better on detecting vulnerabilities related to CWE-611,

with CodeQL better on CWE-327 and CWE-22, while SBwFSB out-

performs on those related to CWE-20, i.e., input-validation issues.

② Users are also recommended to choose different tools depending

on various phases in SDLC, e.g., during the implementation phase

of large programs, faster tools such as Semgrep would be better

since the performance is not limited by the size of the program

and not requiring the program to be compilable (Section 3.4.2).

While for major phases of the SDLC, it may be necessary to choose

tools that scan comprehensively and efficiently such as Horusec,

which is more effective than others although using syntax-based

analysis. (2) Call for use of tools combination, and even other vulner-
ability detection tools. In practice, we generally recommend using

a combination of multiple SAST tools, even better also involving

different types of tools such as SCA tools, to facilitate as much as

possible shifting-left security during SDLC, e.g., Horusec integrates

OWASP Dependency Check in it to detect vulnerable dependencies

used (Section 3.1.2). (3) Disable rules that are more likely labeled as
false positives. As mentioned in Section 3.1.2, this strategy helps

triage through issues reported since certain issue types are more

frequently labeled as false positives than others on a specific tool.

4.2 Threats to Validity
4.2.1 External Validity. (1) Our study’s generalizability is the

primary external threat. We based our findings on 7 Java SAST

tools and a dataset of 165 open-source Java programs with vali-

dated CVEs. This selection might limit the direct applicability of our

results to other tools or datasets. However, we have ensured diver-

sity in our tool selection and comprehensiveness in our dataset to

enhance the relevance of our findings. (2) Another threat relates to
our SAST tool selection when focusing on “security-related” tools

in Section 2.1. To mitigate it, we selected these tools systematically

based on their documentation and proven ability to detect vulner-

abilities in the OWASP Benchmark. This not only enabled us to

compare tool effectiveness across synthetic and real-world bench-

marks but ensured a fair comparison across tools. Moreover, we

required tools to have well-documented rules. While this require-

ment is crucial for our analysis approach and consistency analysis

(RQ3), we acknowledge that it may limit the variety of tools studied.

4.2.2 Internal Validity. (1) The first threat pertains to the map-

ping of rules to CWE. Since the studied tools havemapped their own

rules to CWE Weaknesses except for SpotBugs, aiding our further
mapping to CWE Classes. For SpotBugs, which lacks such mapping,

we mitigated this threat by conducting a systematic, three-round

Comparison and Evaluation on Static Application Security Testing (SAST) Tools for Java ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

mapping process involving three co-authors to minimize subjec-

tivity. (2) Another threat is the validation of vulnerabilities in our

benchmark. To mitigate this, we engaged three security experts

from our industry partner in a rigorous cross-validation process

(Section 2.2.2). This ensured the quality of our benchmark. (3) The
last threat concerns the presence of undetected vulnerabilities in

the Java CVE Benchmark. However, we focused on whether the

selected tools could find known and existing vulnerabilities, so it is

feasible to draw conclusions about their effectiveness.

5 RELATEDWORK
5.1 Studies of SAST Tools
There are many existing studies evaluating SAST tools [2, 5, 7, 10,

26, 40, 41, 45, 50, 51, 58, 80, 98, 100, 101].

Most studies evaluating Java SAST tools use either synthetic

benchmarks [2, 5, 49, 58] or real-world benchmarks that are lim-

ited in size and/or vulnerability types [40, 46, 97]. For instance, the

benchmarks used in [2, 5, 49, 58] are synthetic and only consider

partial vulnerability types, which could hinder a more compre-

hensive conclusion. While Kaur et al. [46] compared two SAST

tools for Java on a real-world benchmark (Apache tomcat dataset),

the vulnerability types of their benchmark are limited, i.e., only

involving 5 CWE weaknesses, and they only evaluated the tools’

false negatives. Similarly, Goseva-Popstojanova et al. [40] evalu-

ated a commercial Java SAST tool using Tomcat, which contains 32

vulnerabilities grouped into only 4 CWE weaknesses. They consid-

ered the effectiveness of tools and their combination but without

analysis of their rules mapping or efficiency. Meanwhile, Thung

et al. [97] conducted an analysis of the false negatives of five Java

SAST tools against three open-source programs over eight years

ago. Their findings, which align with our study, revealed that the

tools under examination exhibited weaknesses in detecting real-

world vulnerabilities. However, their study was limited in terms

of the number of tools evaluated and the range of vulnerability

types included in their benchmarks. In contrast, our work provides

a comprehensive evaluation of Java SAST tools, considering both

synthetic and real-world benchmarks, and multiple evaluation per-

spectives including effectiveness, consistency, and efficiency. This

distinguishes our work from previous studies and provides a more

holistic understanding of the capabilities of Java SAST tools.

Several studies have evaluated SAST tools in other research areas,

such as Android [10–12, 26, 52, 55, 82, 84, 96], C/C++ [1, 23, 50, 106],

JavaScript [7], and PHP [60]. For instance, Chen et al. [10] eval-

uated 4 Android SAST tools on 2,157 security weaknesses of 693

banking apps and proposed a tool named AUSERA to identify data-

related weaknesses. Pauck et al. [82] conducted an evaluation to

explore whether Android taint analysis tools keep their promises,

and proposed ReproDroid, a framework allowing accurate compar-

ison. Mordahl et al. [55] explored the complexities of configuration

spaces in Android static taint analysis tools. Similarly, studies such

as [50] and [7] have included various real-world vulnerabilities to

evaluate SAST tools for C/C++ and JavaScript, respectively. How-

ever, their results are not necessarily transferable to Java SAST

tools due to the different language constructs. Yet, there is a lack of

similar efforts in evaluating SAST tools for Java, particularly with

real-world vulnerabilities. This gap in the literature underscores

the novelty and importance of our work.

In summary, our work distinguishes it from the state of the art in

terms of the considered (1) programming languages (Java SAST
tools), (2) benchmark types and diversity of vulnerabilities
(synthetic plus the largest real-world vulnerabilities), (3) evalu-
ation methodology (mapping detecting rules and ground truth

to CWE hierarchy), (4) detection code granularity (vulnerable

file-level andmethod-level), and (5) evaluation perspectives (rules
coverage, effectiveness, consistency among tools’ focuses as well

as their over-statements, and runtime performance analysis).

5.2 Studies of Other Analysis Tools
Numerous studies have been conducted on quality assurance tools,

with a primary focus on code-quality issues [41, 48, 51, 98, 100],

including code smell and bad practices. For instance, Liu et al. [51]

compared 6 Java quality assurance tools with 1,425 code-quality

bugs included in their benchmark and analyzed the effectiveness

of bug warnings. Lenarduzzi et al. [48] carried out a comparative

study of six tools, including SonarQube, with a primary focus on

code-quality issues such as syntax, design, and bad practices. They

conducted an analysis of 47 Java projects, assessing the agreement

and precision of the tools. Their study offers valuable insights into

the overall capabilities of these tools, particularly in identifying

low-quality code and improving it through the evaluation of 151

code smells. Contrary to the aforementioned studies, our research

specifically concentrates on the aspect of security and vulnerability

detection, providing a more detailed analysis of SAST tools.

6 CONCLUSION
In this paper, we conducted a comprehensive study on seven SAST

tools based on OWASP Benchmark and our constructed real-world

benchmark, by evaluating them from effectiveness, consistency,

and runtime performance analysis. The comparison and evaluation

show that their detection capacity remained lower than expected.

Many useful findings were unveiled to facilitate this important

research direction, specifically, our work provides actionable guid-

ance on SAST tool development, improvement, and selection for

SAST developers, researchers, and potential users.

7 DATA AVAILABILITY
We have released all evaluation data [102] to replicate the results

of this work and to encourage further studies on Java SAST tools.

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program of

China (2021ZD0114501), China Scholarship Council (202206140052,

202106 140088), and National Research Foundation, Singapore, and

Cyber Security Agency under its National Cybersecurity R&D Pro-

gramme (NCRP25-P04-TAICeN). Any opinions, findings and con-

clusions or recommendations expressed in this material are those of

the author(s) and do not reflect the views of the National Research

Foundation, Singapore and Cyber Security Agency of Singapore.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kaixuan Li, Sen Chen, Lingling Fan, Ruitao Feng, Han Liu, Chengwei Liu, Yang Liu, and Yixiang Chen

REFERENCES
[1] Bushra Aloraini, Meiyappan Nagappan, Daniel M. German, Shinpei Hayashi,

and Yoshiki Higo. 2019. An empirical study of security warnings from static

application security testing tools. Journal of Systems and Software 158 (2019),
110427. https://doi.org/10.1016/j.jss.2019.110427

[2] Midya Alqaradaghi, Gregory Morse, and Tamás Kozsik. 2022. Detecting security

vulnerabilities with static analysis - A case study. Pollack Periodica 17, 2 (2022),
1–7. https://doi.org/10.1556/606.2021.00454

[3] Apache. 2023. Home - Apache Qpid. https://qpid.apache.org/index.html. (Ac-

cessed on 31/01/2023).

[4] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT

press.

[5] Sindre Beba and Magnus Melseth Karlsen. 2019. Implementation analysis of
open-source Static analysis tools for detecting security vulnerabilities. Master’s

thesis. NTNU.

[6] Alexandre Braga, Ricardo Dahab, Nuno Antunes, Nuno Laranjeiro, and Marco

Vieira. 2019. Understanding How to Use Static Analysis Tools for Detecting

Cryptography Misuse in Software. IEEE Transactions on Reliability 68, 4 (2019),

1384–1403. https://doi.org/10.1109/TR.2019.2937214

[7] Tiago Brito, Mafalda Ferreira, Miguel Monteiro, Pedro Lopes, Miguel Barros,

José Fragoso Santos, and Nuno Santos. 2023. Study of JavaScript Static Anal-

ysis Tools for Vulnerability Detection in Node. js Packages. arXiv preprint
arXiv:2301.05097 (2023).

[8] Joshua Bundt, Andrew Fasano, Brendan Dolan-Gavitt, William Robertson, and

Tim Leek. 2021. Evaluating Synthetic Bugs. In Proceedings of the 2021 ACM Asia
Conference on Computer and Communications Security (Virtual Event, Hong

Kong) (ASIA CCS ’21). Association for Computing Machinery, New York, NY,

USA, 716–730. https://doi.org/10.1145/3433210.3453096

[9] Checkstyle. 2022. checkstyle – Checkstyle 10.6.0. https://checkstyle.sourceforge.

io/. (Accessed on 31/01/2023).

[10] Sen Chen, Lingling Fan, Guozhu Meng, Ting Su, Minhui Xue, Yinxing Xue,

Yang Liu, and Lihua Xu. 2020. An empirical assessment of security risks of

global Android banking apps. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. 1310–1322.

[11] Sen Chen, Ting Su, Lingling Fan, Guozhu Meng, Minhui Xue, Yang Liu, and

Lihua Xu. 2018. Are mobile banking apps secure? what can be improved?. In

Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 797–802.

[12] Sen Chen, Yuxin Zhang, Lingling Fan, Jiaming Li, and Yang Liu. 2022. Ausera:

Automated security vulnerability detection for Android apps. In Proceedings of
the 37th IEEE/ACM International Conference on Automated Software Engineering.
1–5.

[13] CodeQL. 2022. CodeQL. https://codeql.github.com/docs/codeql-overview/

about-codeql/ (Accessed on 31/01/2023).

[14] MITRE corporation. 2023. Common Vulnerabilities and Exposures. https:

//cve.mitre.org/. (Accessed on 31/01/2023).

[15] Ctags. 2023. Universal Ctags. https://ctags.io/. (Accessed on 31/01/2023).

[16] CVSS V2. 2023. CVSS v2 Complete Documentation. https://www.first.org/cvss/

v2/guide. (Accessed on 16/06/2023).

[17] CVSS V3. 2023. CVSS v3.0 User Guide. https://www.first.org/cvss/v3.0/user-

guide. (Accessed on 16/06/2023).

[18] CWE. 2022. CVE-CWE mapping guidance. https://cwe.mitre.org/documents/

cwe_usage/guidance.html (Accessed on 31/01/2023).

[19] CWE. 2022. CWE-1000: Research Concepts. https://cwe.mitre.org/data/

definitions/1000.html (Accessed on 31/01/2023).

[20] CWE. 2022. CWE-Compatible Products and Services. https://cwe.mitre.org/

compatible/compatible.html (Accessed on 31/01/2023).

[21] CWE. 2023. CWE-View - CWE Glossary. https://cwe.mitre.org/documents/

glossary/index.html#View. (Accessed on 31/01/2023).

[22] CWE. 2023. Pillar WeaknessCWE Glossary. https://cwe.mitre.org/documents/

glossary/index.html. (Accessed on 31/01/2023).

[23] José D’Abruzzo Pereira and Marco Vieira. 2020. On the Use of Open-Source

C/C++ Static Analysis Tools in Large Projects. In 2020 16th European Dependable
Computing Conference (EDCC). 97–102.

[24] Debian. 2023. Debian – The Universal Operating System. https://www.debian.

org/. (Accessed on 31/01/2023).

[25] Common Weakness Enumeration. 2022. Common Weakness Enumeration.

https://cwe.mitre.org/index.html (Accessed on 31/01/2023).

[26] Lingling Fan, Ting Su, Sen Chen, GuozhuMeng, Yang Liu, Lihua Xu, Geguang Pu,

and Zhendong Su. 2018. Large-scale analysis of framework-specific exceptions

in Android apps. In Proceedings of the 40th International Conference on Software
Engineering. 408–419.

[27] FasterXML. 2020. jackson-dataformats-binary. https://mvnrepository.com/

artifact/com.fasterxml.jackson.dataformat/jackson-dataformats-binary. (Ac-

cessed on 31/01/2023).

[28] Forum of Incident Response and Security Teams. 2023. Common Vulnerability

Scoring System SIG. https://www.first.org/cvss/. (Accessed on 12/06/2023).

[29] The Apache Software Foundation. 2023. Maven – Welcome to Apache Maven.

https://maven.apache.org/. (Accessed on 31/01/2023).

[30] The OWASP Foundation. 2020. OWASP-Top-Ten-Benchmark, 2020. https:

//github.com/jrbermh/OWASP-Top-Ten-Benchmark (Accessed on 31/01/2023).

[31] The OWASP Foundation. 2022. OWASP Benchmark. https://owasp.org/www-

project-benchmark/ (Accessed on 31/01/2023).

[32] The OWASP Foundation. 2023. OWASP Dependency-Check. https://owasp.org/

www-project-dependency-check/. (Accessed on 31/01/2023).

[33] The OWASP Foundation. 2023. Software Component Analysis. https://owasp.

org/www-community/Component_Analysis. (Accessed on 31/01/2023).

[34] GitHub. 2022. Awesome static analysis. https://github.com/mre/awesome-

static-analysis#multiple-languages-1 (Accessed on 22/08/2022).

[35] GitHub. 2022. GitHub-analysis-tools-dev. https://github.com/analysis-tools-

dev/static-analysis#java (Accessed on 22/08/2022).

[36] GitHub. 2023. GitHub code scanning. https://github.blog/2022-08-15-the-next-

step-for-lgtm-com-github-code-scanning/. (Accessed on 31/01/2023).

[37] GitHub. 2023. Gitleaks. https://gitleaks.io/. (Accessed on 31/01/2023).

[38] Google. 2022. Error Prone. https://errorprone.info/. (Accessed on 31/01/2023).

[39] Google. 2023. Google-java-format. https://github.com/google/google-java-

format. (Accessed on 31/01/2023).

[40] Katerina Goseva-Popstojanova and Andrei Perhinschi. 2015. On the capability of

static code analysis to detect security vulnerabilities. Information and Software
Technology 68 (2015), 18–33. https://doi.org/10.1016/j.infsof.2015.08.002

[41] Andrew Habib and Michael Pradel. 2018. How Many of All Bugs Do We Find? A

Study of Static Bug Detectors. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (Montpellier, France) (ASE 2018).
Association for Computing Machinery, New York, NY, USA, 317–328. https:

//doi.org/10.1145/3238147.3238213

[42] HCL. 2023. HCL AppScan CodeSweep. https://marketplace.visualstudio.

com/items?itemName=HCLTechnologies.hclappscancodesweep. (Accessed

on 31/01/2023).

[43] Jerónimo Hernández-González, Daniel Rodriguez, Inaki Inza, Rachel Harrison,

and Jose A Lozano. 2018. Learning to classify software defects from crowds: a

novel approach. Applied Soft Computing 62 (2018), 579–591.

[44] Insidersec. 2022. Insider. https://github.com/insidersec/insider (Accessed on

31/01/2023).

[45] Hong Jin Kang, Khai Loong Aw, and David Lo. 2022. Detecting False Alarms

from Automatic Static Analysis Tools: How Far Are We?. In Proceedings of the
44th International Conference on Software Engineering (Pittsburgh, Pennsylvania)
(ICSE ’22). Association for Computing Machinery, New York, NY, USA, 698-709.

[46] Arvinder Kaur and Ruchikaa Nayyar. 2020. A Comparative Study of Static

Code Analysis tools for Vulnerability Detection in C/C++ and JAVA Source

Code. Procedia Computer Science 171 (2020), 2023–2029. Third International

Conference on Computing and Network Communications (CoCoNet’19).

[47] William Landi. 1992. Undecidability of static analysis. ACM Letters on Program-
ming Languages and Systems (LOPLAS) 1, 4 (1992), 323–337.

[48] Valentina Lenarduzzi, Fabiano Pecorelli, Nyyti Saarimaki, Savanna Lujan, and

Fabio Palomba. 2023. A critical comparison on six static analysis tools: Detection,

agreement, and precision. Journal of Systems and Software 198 (2023), 111575.
[49] Jingyue Li, Sindre Beba, and Magnus Melseth Karlsen. 2019. Evaluation of

open-source IDE plugins for detecting security vulnerabilities. In Proceedings of
the Evaluation and Assessment on Software Engineering. 200–209.

[50] Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. 2022. An Em-

pirical Study on the Effectiveness of Static C Code Analyzers for Vulnera-

bility Detection. In Proceedings of the 31st ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (Virtual, South Korea) (ISSTA 2022).
Association for Computing Machinery, New York, NY, USA, 544-555. https:

//doi.org/10.1145/3533767.3534380

[51] Han Liu, Sen Chen, Ruitao Feng, Chengwei Liu, Kaixuan Li, Zhengzi Xu, Liming

Nie, Yang Liu, and Yixiang Chen. 2023. A Comprehensive Study on Quality

Assurance Tools for Java. In Proceedings of the 32st ACM SIGSOFT International
Symposium on Software Testing and Analysis (Seattle, USA) (ISSTA 2023). Associ-
ation for Computing Machinery, New York, NY, USA.

[52] Linghui Luo, Felix Pauck, Goran Piskachev, Manuel Benz, Ivan Pashchenko,

Martin Mory, Eric Bodden, Ben Hermann, and Fabio Massacci. 2022. Taint-

Bench: Automatic real-world malware benchmarking of Android taint analyses.

Empirical Software Engineering 27 (2022), 1–41.

[53] Maven. 2023. Jackson Databind. https://mvnrepository.com/artifact/com.

fasterxml.jackson.core/jackson-databind. (Accessed on 16/06/2023).

[54] Meta. 2023. Infer Static Analyzer. https://fbinfer.com/. (Accessed on 1/06/2023).

[55] Austin Mordahl and Shiyi Wei. 2021. The impact of tool configuration spaces on

the evaluation of configurable taint analysis for android. In Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and Analysis.
466–477.

[56] Marcus Nachtigall, Michael Schlichtig, and Eric Bodden. 2022. A Large-Scale

Study of Usability Criteria Addressed by Static Analysis Tools. In Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis
(Virtual, South Korea) (ISSTA 2022). Association for Computing Machinery, New

York, NY, USA, 532-543. https://doi.org/10.1145/3533767.3534374

https://doi.org/10.1016/j.jss.2019.110427
https://doi.org/10.1556/606.2021.00454
https://qpid.apache.org/index.html
https://doi.org/10.1109/TR.2019.2937214
https://doi.org/10.1145/3433210.3453096
https://checkstyle.sourceforge.io/
https://checkstyle.sourceforge.io/
https://codeql.github.com/docs/codeql-overview/about-codeql/
https://codeql.github.com/docs/codeql-overview/about-codeql/
https://cve.mitre.org/
https://cve.mitre.org/
https://ctags.io/
https://www.first.org/cvss/v2/guide
https://www.first.org/cvss/v2/guide
https://www.first.org/cvss/v3.0/user-guide
https://www.first.org/cvss/v3.0/user-guide
https://cwe.mitre.org/documents/cwe_usage/guidance.html
https://cwe.mitre.org/documents/cwe_usage/guidance.html
https://cwe.mitre.org/data/definitions/1000.html
https://cwe.mitre.org/data/definitions/1000.html
https://cwe.mitre.org/compatible/compatible.html
https://cwe.mitre.org/compatible/compatible.html
https://cwe.mitre.org/documents/glossary/index.html#View
https://cwe.mitre.org/documents/glossary/index.html#View
https://cwe.mitre.org/documents/glossary/index.html
https://cwe.mitre.org/documents/glossary/index.html
https://www.debian.org/
https://www.debian.org/
https://cwe.mitre.org/index.html
https://mvnrepository.com/artifact/com.fasterxml.jackson.dataformat/jackson-dataformats-binary
https://mvnrepository.com/artifact/com.fasterxml.jackson.dataformat/jackson-dataformats-binary
https://www.first.org/cvss/
https://maven.apache.org/
https://github.com/jrbermh/OWASP-Top-Ten-Benchmark
https://github.com/jrbermh/OWASP-Top-Ten-Benchmark
https://owasp.org/www-project-benchmark/
https://owasp.org/www-project-benchmark/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-community/Component_Analysis
https://owasp.org/www-community/Component_Analysis
https://github.com/mre/awesome-static-analysis#multiple-languages-1
https://github.com/mre/awesome-static-analysis#multiple-languages-1
https://github.com/analysis-tools-dev/static-analysis#java
https://github.com/analysis-tools-dev/static-analysis#java
https://github.blog/2022-08-15-the-next-step-for-lgtm-com-github-code-scanning/
https://github.blog/2022-08-15-the-next-step-for-lgtm-com-github-code-scanning/
https://gitleaks.io/
https://errorprone.info/
https://github.com/google/google-java-format
https://github.com/google/google-java-format
https://doi.org/10.1016/j.infsof.2015.08.002
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/3238147.3238213
https://marketplace.visualstudio.com/items?itemName=HCLTechnologies.hclappscancodesweep
https://marketplace.visualstudio.com/items?itemName=HCLTechnologies.hclappscancodesweep
https://github.com/insidersec/insider
https://doi.org/10.1145/3533767.3534380
https://doi.org/10.1145/3533767.3534380
https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-databind
https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-databind
https://fbinfer.com/
https://doi.org/10.1145/3533767.3534374

Comparison and Evaluation on Static Application Security Testing (SAST) Tools for Java ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[57] National Vulnerability Database. 2023. NVD-Home. https://nvd.nist.gov/. (Ac-

cessed on 31/01/2023).

[58] Anh Nguyen-Duc, Manh Viet Do, Quan Luong Hong, Kiem Nguyen Khac, and

Anh Nguyen Quang. 2021. On the adoption of static analysis for software

security assessment-A case study of an open-source e-government project.

Computers & Security 111 (2021), 102470.

[59] Flemming Nielson, Hanne R Nielson, and Chris Hankin. 2015. Principles of
program analysis. springer.

[60] Paulo Nunes, Ibéria Medeiros, José Fonseca, Nuno Neves, Miguel Correia, and

Marco Vieira. 2019. An empirical study on combining diverse static analysis tools

for web security vulnerabilities based on development scenarios. Computing
101 (2019), 161–185.

[61] NVD. 2014. CVE-2014-3651. https://nvd.nist.gov/vuln/detail/CVE-2014-3651.

(Accessed on 31/01/2023).

[62] NVD. 2015. CVE-2015-2913. https://nvd.nist.gov/vuln/detail/CVE-2015-2913

(Accessed on 31/01/2023).

[63] NVD. 2018. CVE-2018-17187. https://nvd.nist.gov/vuln/detail/CVE-2018-17187

(Accessed on 31/01/2023).

[64] NVD. 2018. CVE-2018-20227. https://nvd.nist.gov/vuln/detail/CVE-2018-20227

(Accessed on 31/01/2023).

[65] NVD. 2019. CVE-2019-18393. https://nvd.nist.gov/vuln/detail/CVE-2019-18393

(Accessed on 31/01/2023).

[66] NVD. 2021. Log4Shell: CVE-2021-44228. https://nvd.nist.gov/vuln/detail/CVE-

2021-44228. (Accessed on 31/01/2023).

[67] NVD. 2022. Spring4Shell: CVE-2022-22965. https://nvd.nist.gov/vuln/detail/cve-

2022-22965. (Accessed on 31/01/2023).

[68] The University of Maryland. 2022. FindBugs. http://findbugs.sourceforge.net/

(Accessed on 31/01/2023).

[69] The University of Maryland. 2022. FindSecurityBugs. https://find-sec-bugs.

github.io/ (Accessed on 31/01/2023).

[70] The University of Maryland. 2022. SpotBugs. https://spotbugs.github.io/

(Accessed on 31/01/2023).

[71] National Institute of Standards and Technology. 2017. Juliet Test Suite. https:

//samate.nist.gov/SARD/test-suites (Accessed on 31/01/2023).

[72] National Institute of Standards and Technology. 2022. NIST: Free for Open

Source Application Security Tools. https://www.nist.gov/itl/ssd/software-

quality-group/source-code-security-analyzers (Accessed on 22/08/2022).

[73] National Institute of Standards and Technology. 2022. SAMATE: Source Code

Security Analyzers. https://www.nist.gov/itl/ssd/software-quality-group/

source-code-security-analyzers (Accessed on 22/08/2022).

[74] Opensecurity. 2022. NodeJSScan. https://github.com/ajinabraham/nodejsscan

(Accessed on 31/01/2023).

[75] OpenSSF. 2020. OpenSSF CVE Benchmark. https://github.com/ossf-cve-

benchmark/ossf-cve-benchmark (Accessed on 31/01/2023).

[76] OpenSSF. 2022. Open Source Security Foundation. https://openssf.org/ (Ac-

cessed on 31/01/2023).

[77] OWASP. 2022. Free for Open Source Application Security Tools. https://owasp.

org/www-community/Free_for_Open_Source_Application_Security_Tools (Ac-

cessed on 22/08/2022).

[78] OWASP. 2022. Source Code Analysis Tools. https://owasp.org/www-

community/Source_Code_Analysis_Tools (Accessed on 22/08/2022).

[79] oxsecurity. 2023. Megalinter. https://github.com/oxsecurity/megalinter. (Ac-

cessed on 31/01/2023).

[80] Tosin Daniel Oyetoyan, Bisera Milosheska, Mari Grini, and Daniela

Soares Cruzes. 2018. Myths and Facts About Static Application Security Testing

Tools: An Action Research at Telenor Digital. In Agile Processes in Software
Engineering and Extreme Programming, Juan Garbajosa, Xiaofeng Wang, and

Ademar Aguiar (Eds.). Springer International Publishing, Cham, 86–103.

[81] Yuanyuan Pan. 2019. Interactive application security testing. In 2019 Inter-
national Conference on Smart Grid and Electrical Automation (ICSGEA). IEEE,
558–561.

[82] Felix Pauck, Eric Bodden, and HeikeWehrheim. 2018. Do Android Taint Analysis

Tools Keep Their Promises?. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association
for Computing Machinery, New York, NY, USA, 331–341.

[83] PMD. 2023. PMD. https://pmd.github.io/. (Accessed on 31/01/2023).

[84] Lina Qiu, Yingying Wang, and Julia Rubin. 2018. Analyzing the analyzers:

Flowdroid/iccta, amandroid, and droidsafe. In Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis. 176–186.
[85] R2C. 2022. Semgrep. https://www.semgrep.dev/ (Accessed on 31/01/2023).

[86] RedHat. 2018. What is DevSecOps? https://www.redhat.com/en/topics/devops/

what-is-devsecops. (Accessed on 31/01/2023).

[87] RedHat. 2023. Red Hat Bugzilla Main Page. https://bugzilla.redhat.com/. (Ac-

cessed on 31/05/2023).

[88] Reshift. 2023. Reshift. https://www.softwaresecured.com/. (Accessed on

31/01/2023).

[89] Aqua Security. 2023. Trivy. https://trivy.dev/. (Accessed on 31/01/2023).

[90] Contrast Security. 2022. Contrast Security. https://www.contrastsecurity.com/

(Accessed on 31/01/2023).

[91] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do

changes induce fixes? ACM sigsoft software engineering notes 30, 4 (2005), 1–5.
[92] Justin Smith, Lisa Nguyen Quang Do, and Emerson Murphy-Hill. 2020. Why

Can’t Johnny Fix Vulnerabilities: A Usability Evaluation of Static Analysis Tools

for Security. In Proceedings of the Sixteenth USENIX Conference on Usable Privacy
and Security (SOUPS’20). USENIX Association, USA, Article 13, 18 pages.

[93] SonarSource. 2022. SonarQube. https://www.sonarqube.org/ (Accessed on

31/01/2023).

[94] Spark. 2018. spark/src/main/java/spark/resource/ClassPathResource.java at

27236534e90bd2bfe339fd65fe6ddd6a9f0304e1. https://github.com/perwendel/

spark/blob/030e9d00125cbd1ad759668f85488aba1019c668~1/src/main/java/

spark/resource/ClassPathResource.java. (Accessed on 31/01/2023).

[95] Martin R Stytz and Sheila B Banks. 2006. Dynamic software security testing.

IEEE security & privacy 4, 3 (2006), 77–79.

[96] Ting Su, Lingling Fan, Sen Chen, Yang Liu, Lihua Xu, Geguang Pu, and Zhendong

Su. 2020. Why my app crashes? understanding and benchmarking framework-

specific exceptions of Android apps. IEEE Transactions on Software Engineering
48, 4 (2020), 1115–1137.

[97] Ferdian Thung, David Lo, Lingxiao Jiang, Foyzur Rahman, and Premkumar T

Devanbu. 2015. To what extent could we detect field defects? An extended

empirical study of false negatives in static bug-finding tools. Automated Software
Engineering 22 (2015), 561–602. https://doi.org/10.1007/s10515-014-0169-8

[98] Ferdian Thung, Lucia, David Lo, Lingxiao Jiang, Foyzur Rahman, and Premku-

mar T. Devanbu. 2012. To What Extent Could We Detect Field Defects? An

Empirical Study of False Negatives in Static Bug Finding Tools. In Proceedings of
the 27th IEEE/ACM International Conference on Automated Software Engineering
(Essen, Germany) (ASE 2012). Association for Computing Machinery, New York,

NY, USA, 50–59. https://doi.org/10.1145/2351676.2351685

[99] TIOBE. 2023. The Java Programming Language-TIOBE. https://www.tiobe.com/

tiobe-index/java/. (Accessed on 31/01/2023).

[100] David A. Tomassi. 2018. Bugs in the Wild: Examining the Effectiveness of Static

Analyzers at Finding Real-World Bugs. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE
2018). Association for Computing Machinery, New York, NY, USA, 980–982.

https://doi.org/10.1145/3236024.3275439

[101] Andreas Wagner. and Johannes Sametinger. 2014. Using the Juliet Test Suite

to Compare Static Security Scanners. In Proceedings of the 11th International
Conference on Security and Cryptography - SECRYPT, (ICETE 2014). INSTICC,
SciTePress, 244–252. https://doi.org/10.5220/0005032902440252

[102] Website of This Study. 2023. Comparison and Evaluation on Static Application

Security Testing (SAST) Tools for Java. https://sites.google.com/view/java-

sast-study/home (Accessed on 31/01/2023).

[103] Website of This Study. 2023. Tools Selection. https://sites.google.com/view/java-

sast-study/tool-selection (Accessed on 31/01/2023).

[104] Wikipedia. 2022. List of tools for static code analysis. https://en.wikipedia.org/

wiki/List_of_tools_for_static_code_analysis (Accessed on 22/08/2022).

[105] Wikipedia. 2023. Linter-Wikipedia. https://en.wikipedia.org/wiki/Lint_

(software). (Accessed on 22/06/2023).

[106] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J.P. Hudepohl, and M.A. Vouk.

2006. On the value of static analysis for fault detection in software. IEEE
Transactions on Software Engineering 32, 4 (2006), 240–253.

[107] Zupit. 2022. Horusec. https://docs.horusec.io/docs/overview/ (Accessed on

31/01/2023).

Received 2023-02-02; accepted 2023-07-27

https://nvd.nist.gov/
https://nvd.nist.gov/vuln/detail/CVE-2014-3651
https://nvd.nist.gov/vuln/detail/CVE-2015-2913
https://nvd.nist.gov/vuln/detail/CVE-2018-17187
https://nvd.nist.gov/vuln/detail/CVE-2018-20227
https://nvd.nist.gov/vuln/detail/CVE-2019-18393
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/cve-2022-22965
https://nvd.nist.gov/vuln/detail/cve-2022-22965
http://findbugs.sourceforge.net/
https://find-sec-bugs.github.io/
https://find-sec-bugs.github.io/
https://spotbugs.github.io/
https://samate.nist.gov/SARD/test-suites
https://samate.nist.gov/SARD/test-suites
https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers
https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers
https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers
https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers
https://github.com/ajinabraham/nodejsscan
https://github.com/ossf-cve-benchmark/ossf-cve-benchmark
https://github.com/ossf-cve-benchmark/ossf-cve-benchmark
https://openssf.org/
https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools
https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://github.com/oxsecurity/megalinter
https://pmd.github.io/
https://www.semgrep.dev/
https://www.redhat.com/en/topics/devops/what-is-devsecops
https://www.redhat.com/en/topics/devops/what-is-devsecops
https://bugzilla.redhat.com/
https://www.softwaresecured.com/
https://trivy.dev/
https://www.contrastsecurity.com/
https://www.sonarqube.org/
https://github.com/perwendel/spark/blob/030e9d00125cbd1ad759668f85488aba1019c668~1/src/main/java/spark/resource/ClassPathResource.java
https://github.com/perwendel/spark/blob/030e9d00125cbd1ad759668f85488aba1019c668~1/src/main/java/spark/resource/ClassPathResource.java
https://github.com/perwendel/spark/blob/030e9d00125cbd1ad759668f85488aba1019c668~1/src/main/java/spark/resource/ClassPathResource.java
https://doi.org/10.1007/s10515-014-0169-8
https://doi.org/10.1145/2351676.2351685
https://www.tiobe.com/tiobe-index/java/
https://www.tiobe.com/tiobe-index/java/
https://doi.org/10.1145/3236024.3275439
https://doi.org/10.5220/0005032902440252
https://sites.google.com/view/java-sast-study/home
https://sites.google.com/view/java-sast-study/home
https://sites.google.com/view/java-sast-study/tool-selection
https://sites.google.com/view/java-sast-study/tool-selection
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://en.wikipedia.org/wiki/Lint_(software)
https://en.wikipedia.org/wiki/Lint_(software)
https://docs.horusec.io/docs/overview/

	Abstract
	1 Introduction
	2 Overview
	2.1 Tool Selection
	2.2 Benchmark Collection
	2.3 Mapping Vulnerability Data in Benchmarks and Rules of Tools to CWE

	3 Comparison and Evaluation
	3.1 RQ1: Effectiveness Analysis
	3.2 RQ2: Detection Result Dissection
	3.3 RQ3: Consistency Analysis
	3.4 RQ4: Performance Analysis

	4 Discussion
	4.1 Lessons Learned
	4.2 Threats to Validity

	5 Related Work
	5.1 Studies of SAST Tools
	5.2 Studies of Other Analysis Tools

	6 Conclusion
	7 Data Availability
	Acknowledgments
	References

