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ABSTRACT

Software composition analysis (SCA) tools are proposed to detect
potential vulnerabilities introduced by open-source software (OSS)
imported as third-party libraries (TPL). With the increasing com-
plexity of software functionality, SCA tools may encounter various
scenarios during the dependency resolution process, such as diverse
formats of artifacts, diverse dependency imports, and diverse de-
pendency specifications. However, there still lacks a comprehensive
evaluation of SCA tools for Java that takes into account the above
scenarios. This could lead to a confined interpretation of compar-
isons, improper use of tools, and hinder further improvements of
the tools. To fill this gap, we proposed an Evaluation Model which
consists of Scan Modes, Scan Methods, and SCA Scope for Maven
(SSM), for comprehensive assessments of the dependency resolving
capabilities and effectiveness of SCA tools. Based on the Evaluation
Model, we first qualitatively examined 6 SCA tools’ capabilities.
Next, the accuracy of dependency and vulnerability is quantita-
tively evaluated with a large-scale dataset (21,130 Maven modules
with 73,499 unique dependencies) under two Scan Modes (i.e., build
scan and pre-build scan). The results show that most tools do not
fully support SSM, which leads to compromised accuracy. For de-
pendency detection, the average F1-score is 0.890 and 0.692 for
build and pre-build respectively, and for vulnerability accuracy,
the average F1-score is 0.475. However, proper support for SSM
reduces dependency detection false positives by 34.24% and false
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negatives by 6.91%. This further leads to a reduction of 18.28% in
false positives and 8.72% in false negatives in vulnerability reports.
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1 INTRODUCTION

Open-source software (OSS) is getting increasing attention in soft-
ware communities. Programmers import the OSS as third-party
libraries (TPLs) to avoid redundant development and boost software
development [65, 66]. However, importing OSS as dependencies
also brings critical security threats [47, 64, 67, 68]. For example,
in 2021, remote execution vulnerabilities [26, 40] were revealed in
a critical OSS, named Apache Log4j2 [28]. More than 35,000 Java
packages are affected [2], which accounts for roughly 8% of the
packages in Maven Central Repository [30]. Therefore, individual
developers and companies urge to determine whether their projects
have introduced vulnerable versions of Log4j2 as dependencies.

To protect software from such security threats from TPL, Soft-
ware Composition Analysis (SCA) tools [4, 6, 9–11, 16, 43, 46] have
been proposed and widely adopted to identify TPL reuse and to ex-
pose the hidden vulnerability threats. With the growing complexity
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Figure 1: Overview of Our Work

of software functionality, SCA tools are facing various scenarios.
Firstly, the working environment and target project format are
diverse. Throughout the DevSecOps process, artifacts transition
between different formats (e.g., source code, binaries) in different
environments (e.g., code repositories, deployed runtime). Secondly,
dependencies can be introduced by various approaches, such as
through package managers or manual imports. Thirdly, different
package managers maintain distinct dependency specifications for
flexible dependency management such as version control. Addi-
tionally, some package managers have unique designs for specific
features, such as peer dependencies in NPM [33], and dependency
scopes in Maven [31]. In summary, there are three diversities that
SCA tools need to consider, including Diverse Formats of Artifacts,
Diverse Dependency Imports, and Diverse Dependency Specifications.

To get a deeper insight into the SCA tools, some research has
been conducted. Nasif et al. [51] studied the differences among nine
SCA tools by comparing the vulnerability results to provide insights
into the adoption of SCA tools for both Java and JavaScript. An-
dreas et al. [49] evaluated the robustness of SCA tools in detecting
vulnerabilities from TPL by four types of JAR (Java Archives) mod-
ifications (i.e., patched, Uber-JAR, bare Uber-JAR, and re-packaged
Uber-JAR). However, the existing studies only peek into the perfor-
mance of SCA tools by directly comparing the vulnerability results.
They neglect the uneven capabilities of resolving dependencies and
the various scenarios that SCA tools encountered. In fact, there
is still a lack of comprehensive assessments of the SCA tool’s de-
pendency resolution capabilities that take into account the above.
Such a lack could lead to a confined interpretation of comparisons,
improper use of tools, and hinder further improvements of the tools.

To fill this gap, we proposed an Evaluation Model, which is a
guideline for a comprehensive assessment of the dependency reso-
lution capabilities and effectiveness of SCA tools for Java. In corre-
spondence with the three diversities, the EvaluationModel evaluates
SCA tools from three aspects: Scan Modes, Scan Methods, and Scan
Scopes. Scan Modes consider the various working environments and
formats of target projects; Scan Methods consider the TPL detection
algorithms; Scan Scopes considered the range of dependencies to be
included. By following the Evaluation Model, we can have a deep
insight into the strength and weaknesses of the evaluated tools.

Our objective is to evaluate the performance of state-of-the-
art SCA tools in their applicable scenarios based on the proposed
Evaluation Model and to seek further improvements. Figure 1 gives
an overview of our work. Based on the three diversities encountered
by SCA tools, we proposed the Evaluation Model and introduce the
three evaluation aspects in Section 3, including Scan Methods, Scan
Modes, and Scan Scopes. In addition, we specified the Scan Scopes in
the context of Maven to obtain the Scan Scope for Maven (SSM).
Subsequently, in RQ1, we first qualitatively investigated the tool’s

dependency resolving capabilities based on the Evaluation Model.
In RQ2, we then quantitatively measured the dependency detection
accuracy of the SCA tools in two scan modes (i.e., build scan &
pre-build scan defined in Section 3.2) on a large set (21,130 Maven
modules with 73,499 unique dependencies). In RQ3, we further
investigated the vulnerability accuracy of all the tools andmeasured
the improvements brought about by SSM.

The results show that current SCA tools do not support SSM
well. OWASP has the best performance in dependency detection
under build scan, while T11 performs the best in vulnerability
reporting both build scan & pre-build scan. The average F1-score
of dependency detection is 0.887 and 0.690 for build and pre-build
respectively, and the average F1-score of vulnerability reporting
is 0.474. Note that, proper support for SSM reduces dependency
detection false positives by 34.24% and false negatives by 6.91%.
This further leads to a reduction of 18.28% in false positives and
8.72% in false negatives in vulnerability reporting. Based on our
comprehensive evaluation, insightful suggestions for improving
SCA tools, user suggestions, and lessons learned are discussed.

In summary, we made the following main contributions:

• We proposed an Evaluation Model consisting of Scan Methods,
Scan Modes, and SCA Scope for Maven (SSM) for SCA tools for
comprehensive assessments of the dependency resolution capa-
bilities and effectiveness of Java SCA tools.

• To investigate the situation of SSM support for SCA tools, we
built and shared a test suite to evaluate tools’ coverage of Maven
dependency specifications.

• Based on the proposed Evaluation Model, we conducted a com-
prehensive study evaluating 6 state-of-the-art SCA tools for their
capabilities of dependency and vulnerability detection on 13,708
real-world Maven projects. Useful findings are highlighted for
further improving SCA tools.

2 BACKGROUND

2.1 Workflow of SCA

As shown in Figure 2, a typical workflow of SCA can be summarized
into four steps [37]. In the first step Scanning, the target projects and
associated artifacts are scanned to identify the reused TPLs. In this
step, various scenarios should be taken into account for accurate
TPL detection. Specifically, the target projects can exist in diverse
environments and formats (Section 2.2), the TPLs can be introduced
in different ways (Section 2.3), and different package managers may
maintain distinct dependency specifications (Section 2.4). In the
step of Comparison, the detected OSS components are compared to
vulnerability databases, such as National Vulnerability Database
(NVD) [34], for potential security risks. The quality of the results
is affected by both the performance of dependency resolution and
the completeness and correctness of the vulnerability databases.
During the Analysis phase, guidance is provided for evaluating
risks associated with detected vulnerable components, specifically
security vulnerabilities. Finally, in Reporting, results from Analysis
are reported to end-users in various digital formats, such as Soft-
ware Bill of Materials (SBOM). In this study, we mainly focus on

1One of the commercial tools in our study. Details are in Section 4.2.
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Figure 2: SCAWorkflow

the first two steps because we aim to evaluate the dependency and
vulnerability detection capabilities of the tools.

2.2 Diverse Formats of Artifacts

Software projects could be presented in different formats (i.e., source
code and binary) in different environments (e.g., code repositories,
deployed run-time) across their software lifecycle. Figure 3 demon-
strate the main stages of DevSecOps [53]. We place emphasis on
the stages where changes occur in the format or environment of the
code. In the Develop stage, projects typically exist as source code
within a development environment or code repositories that lack
specific code execution environments (e.g., GitHub [23]). During
the Build stage, the projects remain in the form of source code but
are accompanied by the complete compilation environment. The
building output may be a binary file, such as a JAR file. During
the Release & Deliver stage, the projects typically take the form
of binary files that are prepared for deployment in the runtime
environment or to be released into artifact repositories.

2.3 Diverse Dependency Imports

TPLs can be introduced into projects in multiple ways and can
reside in different locations or formats. Specifically, three ways are
identified: ① by package managers, ② by external references, and
③ by source code cloning [5].

Firstly, dependencies can be imported via package managers.
By explicitly claiming the dependencies in the manifest file (e.g.,
pom.xml), the package manager will collect the user-specified de-
pendencies as well as the transitive dependencies from remote
repositories, such as Maven central repository [30] and NPM Reg-
istry [39]. Secondly, dependencies can be introduced through ex-
ternal references, which may include individual components, ser-
vices, or to the BOM itself [19]. In the context of Maven, users can
manually pull a JAR into the project during run-time, etc. Thirdly,
dependencies can be introduced by code clones [60] which refer to
obtaining similar or identical code snippets by copying and pasting
code in different locations [42].

2.4 Diverse Dependency Specifications

Dependency specifications refer to the features or settings used to
perform dependency management. A mature package manager may
maintain an extensive group of specifications for flexible depen-
dency management, such as version control, settings inheritance,
scope division, etc. Different package managers maintain distinct
dependency specifications. For instance, in terms of scope divi-
sion, NPM divides dependencies into two scopes, whereas Maven
employs six scopes. Therefore, the study of each package man-
ager should be conducted individually to understand its specific
dependency management approach.

3 EVALUATION MODEL FOR SCA

Considering the various scenarios SCA tools are facing, we pro-
posed an Evaluation Model for more comprehensive tool evaluation.

Figure 3: DevSecOps with Scan Modes

3.1 Overview of Evaluation Model

The Evaluation Model is a guideline that provides a structured
approach for thoroughly and comprehensively assessing the de-
pendency resolution capabilities and effectiveness of SCA tools. As
shown in Figure 1, the Evaluation Model evaluates the SCA tools
from three aspects: Scan Modes, Scan Methods, and Scan Scopes,
which are corresponded with the three diversities: diverse format
of artifacts, diverse dependency imports, and diverse dependency
specifications. ScanModes (Section 3.2) refers to the various environ-
ments or target project formats that the SCA tool has been designed
for. Identifying the Scan Modes aims to determine the type of target
project and working environment that the SCA tools are adapted
to. Scan Methods (Section 3.3) refers to the various approaches em-
ployed by SCA tools to detect the dependencies. Evaluating the
Scan Methods aims to identify the ways of introducing dependen-
cies that the tools support. Scan Scopes (Section 3.4) refers to the
specific range or scope of dependencies that are considered during
scanning, typically those that may threaten security. Identifying
the Scan Scopes aims to evaluate the extent to which the SCA tools
handle the dependency specifications.

When using the Evaluation Model for tool comparison and result
analysis, we followed the steps below. Firstly, we identified the Scan
Modes adopted by the SCA tools based on their official guidance,
considering the target project formats and working environments.
For example, from [12], we learned that Dependabot [11] is specifi-
cally designed to scan source code within GitHub repositories. To
ensure fairness and control variables, the tool comparison was con-
ducted exclusively within the same Scan Modes. Once we obtained
the scan results under each Scan Mode, we proceeded to analyze
which Scan Methods are employed and whether the Scan Methods
are properly used. For instance, a tool may exhibit low recall due
to its limitation in parsing only the manifest file (e.g., pom.xml)
while disregarding external references (e.g., manually included su-
per JARs). Finally, we scrutinized each tool’s Scan Scope to assess
how effectively they handle dependency specifications. Some tools
may exhibit inaccurate or redundant dependencies due to inad-
equate support for dependency specifications, for example with
test-only dependencies included in the final results. By following
this evaluation approach, we were able to conduct a comprehensive
analysis of the dependency detection performance of SCA tools.

3.2 Scan Modes

In this section, we summarized three Scan Modes and their corre-
sponding DevSecOps phases, namely pre-build scan, build scan,
and binary scan.

In the Develop stage, pre-build scan, a low-cost scan for source
code projects that works without run-time or building environment,
should be applied. According to the concept of “Shift Left Secu-
rity” [50], identification and correction of possible risks at an earlier
stage can avoid the high costs of later repairs. Ideally, once new
dependencies are added, they should be reported to avoid potential
risks. Pre-build scan tools (e.g., [11, 36]) usually parse user-specified
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dependencies directly from the manifest files (e.g., pom.xml, pack-
age.json), some of them also compute the transitive dependencies
using a pre-built knowledge base. The fast and lightweight nature
of pre-build scan also allows it to be used in multiple scenarios. Pre-
build scan tools are usually integrated into IDEs (e.g., IDEA [25],
Eclipse [21]) or code repositories (e.g., GitHub [23], Gitee [22]).
Furthermore, for most industry SCA users, especially those from
security sectors of traditional non-IT companies, pre-build scans
are irreplaceable due to the following reasons: ① For many com-
panies, establishing test environments is complex and heavy [45],
pre-build scan relieves users from managing such complex environ-
ments. ② Training all developers in security and adding security
testing processes into each CI/CD pipeline requires a tremendous
workload that companies may be unwilling to undertake. While ap-
plying pre-build scan will not hinder the development progress nor
jeopardize the stability of the CI/CD pipelines. ③ When companies
need to quickly count and manage the assets of a large number of
legacy projects, pre-build scans can avoid building various projects
in intricate environments and finish the detection in a short period.

During the Build stage, build scan, the scan for source code
projects within full compilation environments, should be applied.
Tools support build scan [4, 7, 9] usually use built-in dependency
resolvers (e.g., Maven Dependency Plugin [29]) or read run-time
environment settings to collect dependencies. If a binary artifact
is generated after building, it can also be applied to binary scan,
which is a scan for binary targets.

During the Release & Deliver stage, binary scans are needed to
avoid the further spread of vulnerabilities before being deployed
or stored. Tools [4, 7, 16] could identify TPLs from binary files
by multiple methods including parsing manifest files, comparing
hashes, matching file names, etc.

3.3 Scan Methods

The first type of Scan Method is to detect dependencies imported
with package managers. Two algorithms are commonly employed.
The tools could either resolve dependencies using the built-in de-
pendency resolvers [4, 7, 9] (e.g., Maven Dependency plugin [29]),
or parse the manifest files directly [4, 11]. The second type of Scan
Method is to detect dependencies introduced through external refer-
ences. Tools could check the run-time environment (e.g., class-path
for Maven) for all involved TPLs during the run-time. Some vendors,
such as Snyk [43], claim to monitor the actual behavior of the open-
source components at run-time [27]. The third type of Scan Method
is to identify TPL reuse by cloning code snippets. Tools [63] could
extract the code features and compare them against the features
of all registered TPLs. An SCA tool may integrate multiple Scan
Methods. Analyzing the types and completeness of Scan Methods
helps explain the capability of the SCA tools.

3.4 Scan Scopes

Determining the scope of a package manager requires a detailed
study of their dependency specifications. However, researchers
have not reached a consensus on the Scan Scopes for Maven. Im-
tiaz et al. [51] and Ponta et al. [58] report all detected dependencies,
while Dann et al. [49] only includes release dependencies (i.e., refer-
able libraries that are shipped with the application) and excludes
development-only dependencies by empirically excluding test and

provided dependencies. Yet, they leave out other Maven dependency
specifications (e.g., type and classifier) that could also help identify
release dependencies. Thus, to facilitate the identification of re-
lease dependencies and confirm the Scan Scopes for Maven (SSM),
a thorough study on Maven dependency specifications is required.

The SSM was determined with the following process. (1) We
collected all official POM elements (Maven specifications) [3] and
obtained 126 unique elements. (2) By reading the descriptions, we
filtered out POM elements that obviously do not relate to depen-
dency management, such as organization, developers, and reposi-
tory. A POM element is considered dependency-related if any of
its possible usages can fulfill any of the following two criteria: ①

it changes the tree structures, including updating, removing, and
adding dependencies to the dependency tree; Or ② it modifies any
setting of dependencies, including type, classifiers, and scope. 11
out of 126 elements remained. (3) We created projects with each
of the 11 POM elements and compared the dependency tree be-
fore and after adding them. If one of the two criteria is fulfilled,
the element is dependency-related. 9 dependency-related POM
elements (i.e., ⟨𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡⟩, ⟨𝑝𝑎𝑟𝑒𝑛𝑡⟩, ⟨𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛⟩,
⟨𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠⟩, ⟨𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙⟩, ⟨𝑣𝑒𝑟𝑠𝑖𝑜𝑛⟩, ⟨𝑡𝑦𝑝𝑒⟩, ⟨𝑠𝑐𝑜𝑝𝑒⟩, and ⟨𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 ⟩)
are obtained. Among them, ⟨𝑡𝑦𝑝𝑒⟩, ⟨𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 ⟩, and ⟨𝑠𝑐𝑜𝑝𝑒⟩ meet
the second criterion. The settings managed by them are named
Maven dependency settings (MDS). The functions of the rest six
elements meet the first criterion and are named Maven dependency
features (MDF). Each of the six elements corresponds to one MDF
except ⟨𝑣𝑒𝑟𝑠𝑖𝑜𝑛⟩. According to its possible usages, two MDF are de-
rived from ⟨𝑣𝑒𝑟𝑠𝑖𝑜𝑛⟩: variable as version and version range. Variable
as version allows users to replace a specific version value with a vari-
able defined in the ⟨𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠⟩ section or other POM files, while
version range specifies a version range to facilitate automatic ver-
sion upgrades. (4) We investigated the functionalities of all official
plugins [38]. By running the official examples, we found 2 plugins
that can add dependencies to the project distributions.Maven Shade
Plugin [14] includes shaded JARs and Maven Assembly Plugin [13]
can include additional dependencies through assembly descrip-
tor [15]. Since both plugins work similarly, they are collectively
referred to as the same MDF, plugin-packed dependencies (PPD).

Finally, we got 8 MDF and 3 MDS in total. Table 1 summarizes
the correspondence between the POM elements and MDF & MDS.

3.4.1 Maven Dependency Features. MDF are functions that change
the tree structures, including updating, removing, and adding depen-
dencies to the dependency tree. Table 1 provides a brief description
of the features. A detailed explanation of PPD is provided here and
further information about other features is on our website.
• Plugin-packed Dependencies: Distributions with PPD are Uber
JARs. Some dependencies in the Uber JAR may conflict with other
eponymous dependencies that have the same artifact and group Ids
but in different versions. Then, shading, an algorithm that provides
renaming methods for the JARs inside an Uber JAR, is introduced
to avoid duplicated names and resolve conflicts. The JARs after
shading are called shaded JARs. Except for the user-defined run-
time dependencies, shaded JARs are one of the main forms of PPD
and they may pose threats to the distribution. Taking nacos-client-
2.0.4.jar as an example, Google Gson 2.8.6 is one of its shaded JARs,
which introduces CVE-2022-25647 [18].
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Table 1: Overview of MDF & MDS

Category Name
POM Element

or Plugin

Description

Maven

Dependency

Features

Dependency
Management

⟨𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦
𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 ⟩

The Dependency Management is designed for batch management of component versions.

Parent ⟨𝑝𝑎𝑟𝑒𝑛𝑡 ⟩ A child project can inherit all settings from the parent project, except the artifact Id.
Exclusion ⟨𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛⟩ Exclusion helps exclude artifacts from the project.
Profile ⟨𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒𝑠 ⟩ The profiles modify the project-building process, including modifying and adding dependencies.
Optional ⟨𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 ⟩ A dependency is not transitive if it is optional.

Version range ⟨𝑣𝑒𝑟𝑠𝑖𝑜𝑛⟩ Version ranges specify a range of versions to facilitate automatic version upgrades.
Variable as
version ⟨𝑣𝑒𝑟𝑠𝑖𝑜𝑛⟩ Variable as version simplifies the batch version management by replacing versions with variables.

Plugin-packed
dependencies

Shade Plugin
Assembly Plugin

PPD refers to the dependencies packed within a distribution, including run-time dependencies, shaded JARs, and non-
open-source libraries.

Maven

Dependency

Settings

Type ⟨𝑡𝑦𝑝𝑒 ⟩ Set the type of a dependency.
Classifier ⟨𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 ⟩ Set the classifier of a dependency.
Scope ⟨𝑠𝑐𝑜𝑝𝑒 ⟩ Set the scope of a dependency.

3.4.2 Maven Dependency Settings. Some POM elements modify
the settings of dependencies but keep the tree structure intact.
The settings managed by such elements are MDS, including type,
classifier, and scope. They can be further grouped into two categories.
The settings that can be used to identify non-release dependencies
are called non-release dependency settings, and others are called
release dependency settings. Due to the page limitation, we only
brief on their possible values and categories, a full discussion of
reasons and usage examples will be placed on our website [20].
• Type. ⟨𝑡𝑦𝑝𝑒⟩ has 11 predefined values, including java-source,
javadoc, pom, test-jar, jar, ejb, ejb-client, war, ear, rar, and maven-
plugin, where jar is the default value. In addition, developers can
customize the types. Common examples are zip, tar.gz, and nar. The
first four types are non-release dependency settings. With java-
source, javadoc, and pom, the packing targets are the source code
files, documentation, and POMs. Test-jar marks a dependency to be
test-only and none of them are release dependency settings.
• Classifier. ⟨𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 ⟩ is empty by default and has 4 predefined
options, including tests, javadoc, sources, and client. Developers can
customize classifier values such as exec, bin, and runtime. The first
three classifiers are not release dependencies. Test marks test only
dependencies, while javadoc and sources mark the package to be
javadoc and source code only which are not release dependencies.
• Scope. ⟨𝑠𝑐𝑜𝑝𝑒⟩ has 6 values, i.e., compile, run-time, provided, system,
test, and import, where compile is the default value. Only compile
and run-time are release dependency settings. Provided and system
dependencies are not shipped with distributions. Instead, projects
look for valid alternatives in the running environment according
to their artifact and group Ids, yet the versions can be different.
Test dependencies are only used in the development and will not
be shipped either. Import dependencies will not be actively added
to the dependency list. Instead, all of its dependency management
settings will be imported to the current ⟨𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡⟩,
waiting to be referenced further.

3.5 Scope of Our Work

Our study specifically focused on evaluating Java SCA tools for
scanning (1) source code projects within (2) the context of Maven,
targeting (3) non-code-clone dependencies. Firstly, the reason for
our emphasis on source code projects is their prevalence compared
to binary releases. Out of the 13,709 GitHub projects we collected
(details provided in Section 4.3), 9,152 projects (66.8%) are with-
out available binary releases. Moreover, applying SCA during the

source code stage enables early detection and prevention of po-
tential security issues, aligning with the principles of “shift left
security” [50]. Secondly, we chose to concentrate on Maven due to
its intricate dependency management mechanism and more com-
plex dependency specifications compared to other modern package
managers. Additionally, a Java developer productivity report [8]
revealed that 67% of the surveyed developers identified Maven as
their primary build tool, while only 20% utilized Gradle and 11%
used Ant. Thirdly, we did not evaluate the capability of detecting
dependencies introduced by code clones, as to the best of our knowl-
edge, no clone-based SCA tools are specifically designed for Java
and it remains to be a challenge.
4 OVERVIEW

4.1 Research Questions (RQs)

The purpose of this paper is to evaluate the dependency and vul-
nerability detection performance of the SCA tools in depth based
on the Evaluation Model. This study focuses on the following RQs.
RQ1: How do the SCA tools cover the three aspects of the Evaluation
Model? This RQ qualitatively examines the tools’ support for differ-
ent Scan Modes, Scan Methods, and the SSM. Initially, we assessed
the support of Scan Modes and Scan Methods of SCA tools. We then
gave an overview of the prevalence of Maven dependency specifi-
cations in large datasets and examined the SCA tools’ coverage of
the specifications (i.e., SSM elements: MDF & MDS).
RQ2: How is the dependency detection accuracy of SCA tools in build
scan & pre-build scan? To address this question, we conducted a
quantitative analysis of the dependency resolution capabilities of
SCA tools by comparing the results obtained from both the build
scan and pre-build scan with the ground truth for each project.
RQ3:What are the vulnerability accuracy of the tools and how can
SSM help improve them? After dependency detection, further risk
assessments are required, where vulnerability mapping is the most
common one [49, 51, 54]. In RQ3, vulnerability accuracy is evaluated.
We then measured the improvement SSM brings to the vulnerability
reports by removing non-release dependencies and adding missing
release dependencies with their corresponding vulnerabilities.

4.2 Tool Selection

To select SCA tools for the empirical study, we performed a well-
defined systematic literature review and picked 4 open-source tools
from seven papers [48, 49, 51, 55–58] according to three criteria.
First, the tool has to support scanning the Maven source code



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Lida Zhao, Sen Chen, Zhengzi Xu, Chengwei Liu, Lyuye Zhang, Jiahui Wu, Jun Sun, and Yang Liu

projects and provides dependency and vulnerability reports sepa-
rately. Second, it has to be mentioned in at least two papers. Third, it
has to be available to us. The tools are OWASP Dependency Check
(OWASP) [56] [58], Eclipse Steady (Steady) [49] [57], Dependabot
Alerts (Dependabot) [49] [51], and OSSIndex [48] [55]. Moreover,
we also selected two commercial tools T1, and T2 to evaluate the
SCA accuracy of practical tools. To comply with their policies, they
are anonymized. OWASP Dependency Check has 11 analyzers that
provide full support for package managers such as Maven, NPM,
and Nuget. Its vulnerability data comes from NVD. Eclipse Steady
focuses on resolving projects of Maven, Gradle, and PIP. Its vulnera-
bility data comes from NVD and some data works [59]. Dependabot
Alerts is embedded in GitHub, which provides dependency graph
detection and vulnerability alerts for 11 languages including Java.
It maintains an advisory database based on NVD, public commits
on GitHub, and Security advisories reported on GitHub. OSSIndex
provides a free catalog of open-source components for 10 languages.
All vulnerability data is derived from public sources.
4.3 Data Construction

4.3.1 Dataset 1 (DS1). DS1 is designed to examine the coverage
of Maven dependency specifications for SCA tools, where each
project contains 1-to-8 examples MDF or 1 MDS. The test projects
were generated from an automated Maven project generator

developed by us according to the following steps. First, we deter-
mined 8 MDF and 3 MDS to be examined according to Section 3.4.
Second, we generated all combinations of the eight MDF, a total
of 256 (28) combinations. Third, since MDF & MDS work indepen-
dently, projects are built separately. All possible options of each
MDS are grouped in one project (12 options for ⟨𝑡𝑦𝑝𝑒⟩, 5 options
from ⟨𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 ⟩, and 5 options from ⟨𝑠𝑐𝑜𝑝𝑒⟩), so there are three
MDS-related projects. Finally, 259 projects were generated and a
ground truth dependency list was attached to each of them.

4.3.2 Dataset 2 (DS2). DS2 is a group of real-world Maven projects
of all levels of popularity. The motivation for collecting it is to
examine the performance of SCA tools on real-world source code
projects. We searched for Java projects and sorted them according
to the star number. But due to the GitHub limitation, we could
only retrieve the first 1,000 projects of each star number. Then, we
checked the project file structure and only kept the project with
a pom.xml in its root path. In total, 13,708 projects were collected
and the star numbers ranged from around 70,000 to 20.

4.3.3 Dataset 3 (DS3). DS3 consists of POM files of all Maven li-
braries in all versions (8,364,337 versions when collected) from the
Maven central [30]. This dataset is collected to reveal the distribu-
tion of dependency-related elements in all libraries.

5 EMPIRICAL STUDY

5.1 RQ1: Qualitative Evaluation on Tool

Capability

5.1.1 Experimental Setup. Following the steps in Section 3.1, we
first evaluate the tools’ support of Scan Mode. Then we identifie the
types of Scan Methods that the tools adopt based on DS2. The preva-
lence of all Maven dependency specifications (i.e., SSM elements:
MDF & MDS) is investigated based on DS2 and DS3. The GitHub

Figure 4: Prevalence of MDF

(a) Classifier Settings (b) Scope Settings

(c) Type Settings

Figure 5: Prevalence of MDS

Table 2: Support of Scan Methods and Scan Modes

Types of build Scan pre-build Scan

Scan Methods OSSIndex OWASP Steady T1 Dependabot T1 T2

package manager
√ √ √ √ √ √ √

external reference × × × × × × ×

projects from DS2 reflect the specification usage in daily coding
practice, while DS3 reveals the usage in open-source libraries. We
count the frequency according to the following rule. If a feature or a
setting is used in a POM file, the frequency of the corresponding fea-
ture or setting is increased by one. Multiple occurrences in the same
POM file are only counted once. The default values of MDS are not
counted (i.e., type-jar and scope-compile) because almost all POM
files have them. Then, the coverage of SSM is examined with DS1 in
both build scan & pre-build scan for each tools. For each project, by
comparing the tool’s detected dependencies with the ground truth,
we can learn whether a specification is correctly handled. For ex-
ample, when checking dependency management, org.apache.logging.
log4j:log4j-core:2.14.0 is placed in the ⟨𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡⟩
and referenced in the ⟨𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠⟩ by its group and artifact
name. Dependabot resolves it as org.apache.logging.log4j:log4j-core
without version, so, dependency management is not supported by
Dependabot in pre-build scans.

5.1.2 Result and Discussion. As shown in Table 2, all selected tools
support detecting dependencies introduced by package managers
while no one support detecting dependencies from external refer-
ences, such as manually included super JARs.
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Table 3: The Coverage on MDF.

build Scan pre-build Scan

Features OSSIndex OWASP Steady T1 Dependabot T1 T2

dependency
-Management

√ √ √ √ × × √

exclusion
√ √ √ √ × √ √

parent
√ √ √ √ × × ×

profiles
√ √ √ √ √ √ √

optional
√ √ √ √ √ √ √

version range
√ √ √ √ √ √ √

variable as version
√ √ √ √ × √ √

PPD × √ × × × × ×
(1) A cross means the feature is not supported.

Table 4: The Coverage on MDS.

build Scan pre-build Scan

Category Dependency Settings O
S
S
I
n
d
e
x
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S
P
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t
e
a
d
y

T
1

D
e
p
e
n
d
a
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o
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T
1

T
2

Release

Dependency

Settings

type-jar
√ √ √ √ √ √ √

type-ejb
√ √ √ √ √ √ √

type-ejb-client
√ √ √ √ √ √ √

type-war
√ √ √ √ √ √ √

type-ear
√ √ × √ √ √ √

type-rar
√ × × √ √ √ √

type-maven-plugin
√ √ √ √ √ √ √

type-others
√ √ √ √ √ √ √

classifier-client
√ √ √ √ √ √ √

classifier-others
√ √ √ √ √ √ √

scope-compile
√ √ √ √ √ √ √

scope-runtime
√ √ √ √ √ √ √

Non-release

Dependency

Settings

type-pom
√ √ × √ √ √ √

type-test-jar
√ √ √ √ √ √ √

type-javadoc
√ √ √ √ √ √ √

type-java-source
√ √ √ √ √ √ √

classifier-javadoc
√ √ √ √ √ √ √

classifier-sources
√ √ √ √ √ √ √

classifier-tests
√ √ √ √ √ √ √

scope-provided × × × × √ × ×
scope-test × × × × √ × ×
scope-system

√ √ √ √ √ √ √

(1) For release dependency settings, a tick means correctly including release depen-
dencies, while in non-release dependency settings, a tick means wrongly including
redundant non-release dependencies.

The prevalence of MDF examined in DS2 and DS3 is shown in
Figure 4. To keep it intuitive, columns with a frequency of less
than 0.01% are not displayed (i.e., type-java-source, type-javadoc,
type-ejb-client, and classifier-client). From the figure, ⟨𝑝𝑎𝑟𝑒𝑛𝑡⟩ is the
most common MDF, with 84% usage in DS2 and 64% in DS3. The
version range is the least used MDF, with less than 2% occurrence.

Figure 5 shows the prevalence of MDS examined in DS2 and DS3.
The scope is the most used MDS. Over 35% of the POM files contain
at least one test dependency. System dependencies are hardly used
with less than 0.6% occurrence. Most values of type and classifier
occur in less than 5% of POM files, and about half of the values
appear in less than 0.1% of POM files. Generally, the prevalence of
MDF & MDS is close in both of the datasets.

The tools’ coverage of MDF & MDS examined by DS1 is sum-
marized in Table 3 and Table 4, respectively. By comparing the
dependency output with the ground truth, if the dependency is in
the report, then tick it, otherwise cross it. The results show that
most of the MDF can be correctly handled by tools in the build
scan, except the PPD. However, some high-frequency features are
not supported in pre-build scans (i.e., parent and dependencyMan-
agement). Dependencies with any non-release dependency settings
are considered non-release dependencies. Most tools can distin-
guish between scopes and exclude provided and test dependencies.
While no tool notices the differences between different kinds of
types and classifiers, they include all kinds of types and classifiers
indistinguishably, including the non-release dependencies settings.

Finding 1: In build scans, PPD is not supported by most SCA

tools. Most SCA tools only rely on the result of the Maven de-
pendency plugin, and they do not consider detecting components
outside the scope of the dependency plugin. However, some PPD
(e.g., shaded JARs and non-open-source libraries) are not handled
by the Maven dependency plugin, which results in poor support
for PPD. Figure 4 shows around 10% of projects contain PPD and
thus ignoring it may entail false negatives for the detection results.
There are two algorithms that help detect PPD. In build scans, the
local library files can be obtained by reading the build-classpath.
Each JAR file can then be reverse-engineered to recover the file
structure to track down the PPD. In pre-build scans or any scenarios
without local library files, tools can analyze the plugin settings and
understand which files are to be packaged. OWASP uses an algo-
rithm similar to the first solution, it collects pieces of evidence [4],
i.e., pieces of information about dependencies, including POM files,
class files, etc. The evidence is further used to infer the identifiers
of dependencies. Previous works [49, 58] claimed Steady could ana-
lyze libraries by code-based methods, however, during the source
code scans, such techniques are not applied to the library files.
Finding 2: In pre-build scans, SCA tools are weak in main-

taining cross-project information. As shown in Table 3, parent
and dependencyManagement are not well supported by most tools,
though, they are used in around 80% and 8% of projects respec-
tively. The low support for them is due to the poor maintenance
of cross-project information, which is the information recorded
in other related projects, usually the parent projects. Take parent
as an example, all information in the POM file of parent projects
(except for the artifact Id) is inherited by children. However, when
only scanning the child project, no dependencies are inherited. The
cases of dependency management are even worse. Users usually
place dependency references in ⟨𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠⟩ with only group
Ids and artifact Ids, whose version will be further determined by the
definition in ⟨𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡⟩. If the definition is placed
in parent POM files, no version will be resolved for tools such as
Dependabot. Reconstructing the relationships between projects is
not straightforward. Some projects may have recursive parents,
and settings or dependencies may conflict with their parents. Nev-
ertheless, understanding and correctly implementing the resolving
policy can decrease the false negatives significantly.
Finding 3: All SCA tools include the system dependencies,

which are not release dependencies. Similar to provided de-
pendencies, system dependencies are intentionally excluded from
the project distributions since they may be platform specific and
are usually provided by the JDK [32]. Thus, they are not release
dependencies. From the perspective of security, importing depen-
dencies with system scope is not suggested. Because such libraries
are usually self-developed and not open-source libraries. Traditional
name-based SCA for source code can hardly map them with known
vulnerabilities. We recommend taking these tools out separately
and testing them further with other Scan Modes (e.g., binary scans)
or methods (e.g., code clone detection).
Finding 4: Most SCA tools pay little attention to type and

classifier. In both build scan & pre-build scan, all SCA tools tend to
include dependencies with all kinds of types and classifiers without
displaying them in the report. Omitting the settings hinders the
identification of non-release dependencies and leads to an increase
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in false positive release dependencies. We recommend that these
tools retain information about type and classifier in the reports and
provide users with the option to manage them.

Answering RQ1: (1) In both build scan and pre-build scan,
PPD (an MDF that occurs in around 12% of POM files) are
not supported by most SCA tools. (2) Although cross-project
managingMDF (i.e., parent and dependency management) have
the highest occurrence, the tools of pre-build scan are less
capable of supporting them compared to build scan. (3) InMDS,
Dependencies with Scope-system are non-release dependencies
but all tools include them. (4) Most tools do not distinguish
type and classifier in MDS, and they tend to include all kinds
of dependencies, including non-release dependencies.

5.2 RQ2: Quantitative Evaluation on

Dependency Accuracy

5.2.1 Experiment Setup. This experiment evaluates the accuracy of
SCA tools in both build scan and pre-build scan onDS2. We collected
dependency ground truths for the projects that were buildable. Out
of 13,708 projects, 3,955 are buildable which contain 21,130 Maven
modules and 73,499 unique dependencies. The ground truths for
dependencies were built up in the following steps. (1) First, we
determined whether a project is buildable by running mvn compile.
(2) Second, we retrieved the project dependency tree and the build-
classpath by calling the Maven Dependency Plugin [29]. (3) Third,
following the SSM, we removed the non-release dependencies from
the ground truths according to their settings. (4) Fourth, we located
all the library files according to the build-classpath and detected
the PPD by parsing manifest files to add them to the ground truth.
(5) Last, we searched for all JARs included in the projects based on
their extension name (i.e., .jar, .war, .rar). Out of 3,955 projects, 340
projects were found to contain a total of 9,886 JARs. For each JAR,
we first calculated the SHA1 value and searched it using Central
Repository API [41]. 8,263 JARs were confirmed by SHA1 match-
ing. If no match was found, we searched the JAR’s name, which
successfully identified only 1 JAR. Unfortunately, 1,622 JARs failed
to match with any existing published JARs on Maven Central. In
total, 8,264 TPLs were identified and added to the ground truth.

According to the functionality of the 6 tools, they were split
into two groups and tested in build scan and pre-build scan respec-
tively. Four tools, including OSSIndex, OWASP, Steady, and T1,
support build scan, while three tools, i.e., T1, T2, and Dependabot,
support pre-build scan. We triggered scans with all tools on the
3,955 projects, but some tools failed to scan part of the projects. T2
has scan limitations that we finally imported 1,509 Maven projects.
Steady takes on average about 38 minutes to scan a project at 3
processes, and more than 3 processes will crash its service. There-
fore, due to the time limitation, we scanned 467 projects with it.
When analyzing the results, we only included the successful cases
of each tool. All scanning records are available on our website [20].
We compared the scan results of SCA tools with the ground truth
of the projects using precision ( #𝑇𝑃

#𝑇𝑃+#𝐹𝑃 ), recall (
#𝑇𝑃

#𝑇𝑃+#𝐹𝑁 ), and
F1-score ( 2×𝑟𝑒𝑐𝑎𝑙𝑙×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ) as evaluation metrics. Here, #𝑇𝑃 rep-
resents the number of correctly resolved dependencies by the tool,
#𝐹𝑃 represents the number of incorrectly resolved dependencies,

Table 5: Dependency Accuracy for build Scan

Tool Precision Recall F1-Score

OSSIndex 0.997 0.833 0.908
OWASP 0.997 0.885 0.937
Steady 0.996 0.730 0.843
T1 0.998 0.755 0.860
avg. 0.997 0.801 0.887

Table 6: Dependency Accuracy for pre-build Scan

Tool Precision Recall F1-Score

Dependabot 0.525 0.287 0.371
T1 0.999 0.754 0.859
T2 0.838 0.840 0.839
avg. 0.787 0.627 0.690

and #𝐹𝑁 represents the number of dependencies missed by the
tools according to the ground truth.

5.2.2 Result and Discussion for build Scan . What stands out in
Table 5 is that the precision of all tools is close and is generally
much higher than the recall in build scan. Among all tools, OWASP
has the highest recall, with 0.889. The recall of Steady and T1 are
below the average, with 0.736 and 0.759, respectively.

Missing PPD and super JARs are the main reasons for low recall
which counts for about 4% and 2.8% of all release dependencies,
respectively. It is tricky that some of the dependencies are marked
as provided dependencies in the POM file while the provider still
packed them into the distribution as shaded JARs. Such a phenome-
non reveals the truth that judgment by scope settings of dependen-
cies alone is unreliable and must be supplemented by the detection
of PPD. OWASP is the only tool that detects shaded JARs from
local libraries. Another general cause that impairs the recall is the
versions with SNAPSHOT which counts for about 4.8% of all release
dependencies. SNAPSHOT, as a temporary version mark, is usu-
ally used in projects under development. Such SNAPSHOT -version
packages are usually neither publicly released nor stable. OWASP,
Steady, and T1 refuse to report versions with SNAPSHOT. Further-
more, the delay in scan time leads to a gap between the ground truth
and the tools’ reports. We found that about 2% of dependencies de-
fine their versions as LATEST, which will always retrieve the latest
library version for not only themselves but also all their transitive
dependencies. Some organizations, such as software.amazon.awssdk,
publish dependencies every day, and if their reports are not gener-
ated on the same day, the results will be different.

5.2.3 Result and Discussion for pre-build Scans. Table 6 shows pre-
build scan results on the three SCA tools. The average F1-score
of these tools in pre-build scan is much lower compared to build
scan, at 0.692. The performance of different tools varies greatly. T1
performs best in precision while T2 has the best recall which is
about 3 times higher than the recall of the worst tool, Dependabot.

In pre-build scans, build-classpath and library files are not acces-
sible, which makes the PPD inaccessible and decreases the recall
by about 4%. Furthermore, compared to the tools in build scan,
the tools in pre-build scan have worse support on MDF, espe-
cially in maintaining cross-project information, e.g., versions in
⟨𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡⟩ and variables in ⟨𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠⟩. For in-
stance, Dependabot does not resolve such information and many
dependency versions remain empty or stay as variables that are
unreadable. Another challenge of pre-build scan tools is to maintain
the transitive dependency graph information for all libraries to
extend the user-specified dependencies into integrated dependency
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Figure 6: Maven Dependency Conflict Resolution

trees. However, with new library versions being released every
day, the tools need to continuously update the graph to ensure its
reliability. T1 and T2 partially resolve the transitive dependencies,
while Dependabot only reports user-specified dependencies. None
of the tools resolves the LATEST into specific versions. Furthermore,
deficiencies in handling dependency conflicts contribute to lower
recall. For example, T1misses several release dependencies because
the dependency conflict is not correctly handled. If there are two
dependencies with the same name but in different versions, Maven
will pick the “nearest definition”. That is, Maven will always choose
the version of the closest dependency on the dependency tree [31].
Therefore, compile dependencies are sometimes listed as children
of the test or provided dependencies. Figure 6 explains the example.
Component D is imported twice by different libraries (B and C) and
they are in scope-provided and scope-compile respectively. Now that
D1 is the “nearest definition”, then the D2 will be updated to D1 and
omitted. Besides, scope-compile always has a higher priority over
scope-provided. Thus, the scope of D1 will be updated from provided
to compile. Instead of taking this situation into account, T1 cuts
off the whole branch of the provided dependency (B), causing the
absence of the compile dependencies (D1). One possible solution is
to cut the whole dependency branch after recovering the omits and
reverse the scope update to restore the complete dependency tree.

Answering RQ2: (1) In build scan, OWASP performs the
best with F1-score of 0.937, while in pre-build scan, T1 has
the highest F1-score of 0.860. (2) The precision and recall
of dependency detection for tools in build scan are higher
than that in pre-build scan, with average F1-scores of 0.887
and 0.690, respectively. (3) For pre-build scan tools, the
main reasons that reduce the detection performance are fail-
ing to maintain cross-project information (e.g., versions in
⟨𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡⟩ and variables in ⟨𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠⟩), fail-
ing to resolve transitive dependency resolution, and errors in
handling dependency conflicts, while for build scan tools, the
main reasons are missing PPD. In both Scan Modes, tools do
not translate “LATEST” to specific versions.

5.3 RQ3: Quantitative Evaluation of

Vulnerability Accuracy

5.3.1 Experiment Setup. This experiment has two purposes: to
evaluate the vulnerability detection accuracy and to quantify the
impact SSM brought to the vulnerability reports.

For the first purpose, the scanning projects and methods are
the same as RQ2, but the focus is on vulnerability reports. The
vulnerability ground truth is derived from GitHub Advisory Data-
base [24] (GAD) which is the biggest open-source vulnerability
database available to the public. We only used the reviewed Maven

Table 7: Vulnerability Precision and Recall

Mode Tool Precision Recall F1

build OSSIndex 0.470 0.363 0.410
build OWASP 0.567 0.621 0.593
build Steady 0.348 0.177 0.234
build T1 0.636 0.629 0.633
pre-build Dependabot 0.846 0.378 0.522
pre-build T1 0.627 0.625 0.626
pre-build T2 0.288 0.324 0.305

Table 8: Vulnerability Improvements Based on SSM

Mode Tool RFP RFN

build OSSIndex 0.000 0.120
build OWASP 0.001 0.010
build Steady 0.000 0.074
build T1 0.000 0.051
pre-build Dependabot 0.155 0.349
pre-build T1 0.002 0.069
pre-build T2 0.076 0.036
build tree-plugin* 0.189 0.057
*tree-plugin refers to Maven Dependency Plugin

Table 9: Details of RFN and RFP for Tree-plugin Results

Dependency Vulnerability

Item Number Percentage Number Percentage

Total Count 287,728 100% 113,111 100%
RFN 19,880 6.91% 9,864 8.72%
– PPD 11,617 4.16% 6,202 5.67%
– super JARs 8,263 2.87% 3,662 3.24%
RFP 98,516 34.24% 20,673 18.28%
– scope-provided 32,785 11.39% 11,196 9.90%
– scope-test 63,555 22.09% 9,382 8.29%
– classifier-tests 406 0.14% 117 0.10%
– type-test-jar 264 0.09% 74 0.07%
– classifier-sources 228 0.08% 60 0.05%
– type-pom 1,657 0.58% 11 0.01%
– scope-system 330 0.11% 7 0.01%
– type-java-source 0 0.00% 0 0.00%
– type-javadoc 4 0.00% 0 0.00%
– classifier-javadoc 8 0.00% 0 0.00%

advisories with 3,036 unique CVE Ids (Jan 11, 2023). The precision
of all tools may be affected due to the incompleteness of GAD.

To quantify the impact of SSM, the vulnerabilities related to non-
release dependencies and missing release dependencies are referred
to as the reduced false positives (RFP) and reduced false negatives
(RFN), respectively. For each tool, RFP is the sum of vulnerability
numbers related to non-release dependencies of all projects divided
by the total vulnerability number of all projects; and RFN is the sum
of vulnerability numbers related to missing release dependencies
of all projects divided by the total vulnerability number. Vulnerabil-
ity reports are obtained directly by mapping vulnerability data to
detected dependencies, which quality is influenced by two factors.
① dependency detection accuracy and ② vulnerability mapping
data quality. Improving vulnerability mapping data often requires
extensive manual collection and validation by professionals. Some
big organizations are working on it [24, 35] and their quality is
not compared here. Besides, we aim to improve the accuracy of
vulnerability reporting by improving the accuracy of dependency
detection. Thus, to avoid the impact of vulnerability data quality,
in the second experiment, RFP and RFN were only calculated based
on each tool’s own reported vulnerabilities. We also included the
Maven Dependency Plugin [29] results as a reference (tree-plugin),
whose dependency reports are unique dependencies parsed from
the plugin’s output, and the vulnerability data are mapped from
GAD. We further decomposed the RFP and RFN of the tree-plugin
according to SSM to detail the reasons for the improvements.
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5.3.2 Result and Discussion. Table 7 shows the precision and recall
in both build scan & pre-build scan. In build scan, T1 has the highest
precision and recall in vulnerability detection while Steady has the
worst. In pre-build scan, Dependabot has the best precision and T1
has the best recall. Overall, the precision and recall of all tools are
generally not good enough, which can be improved by applying
SSM, as dependency detection performance has a great influence
on vulnerability detection performance. Take Dependabot as an
example, it gets 0.287 recall in dependency detection and gets only
0.378 recall in vulnerability reporting.

Table 8 shows the vulnerability reporting improvements by re-
moving non-release dependencies or adding missing release de-
pendencies with their corresponding vulnerabilities according to
the SSM. Some tools (i.e., OSSIndex, OWASP, T1, and Steady) have
almost no reduction in FP because they excluded the scope-provided
and scope-test dependencies by default, which are the two major
contributors to non-release dependencies. As we analyzed in RQ1,
Dependabot does not exclude such non-release dependencies and
thus has more reduction in FP. Compare to RFP, RFN is more sig-
nificant in all tools. Most RFN comes from PPD and only OWASP
supports finding PPD; thus, it has the lowest RFN among all tools.
PPD vulnerabilities count around 5.48% of all vulnerabilities.

To provide a deeper analysis of the improvements, Table 9 shows
the results of the decomposition of the RFP and RFN reported by
the tree-plugin according to SSM. 34.24% of dependencies reported
by the tree plugin are non-release dependencies (RFP) and 6.91% of
release dependencies are missing (RFN). According to Section 3.4,
10 sub-classes contribute to RFP, (i.e., scope-test, scope-provided,
scope-system, type-pom, type-java-source, type-javadoc, type-test-jar,
classifier-sources, classifier-tests, and classifier-javadoc) and scope-
test, scope-provided are two major contributors which count 22.09%
and 11.39% dependencies respectively. The sum of the percentage of
other contributors is less than 1%, and 5 of them are barely usedwith
less than 0.05% prevalence. Since one dependency can match with
several items and fit in multiple sub-classes, the sum of the break-
down numbers may be larger than the total counts. For instance, a
dependency can be set with both scope-test and type-test-jar. While
in the RFN, PPD and super JARs are related, which count 4.04% and
2.87% of the total dependency count respectively. The influence
on dependency detection further influences vulnerability report-
ing. 18.28% of vulnerabilities from non-release dependencies are
reduced and 8.72% of missing release dependencies vulnerabilities
are identified. Items that have a big impact on dependency accuracy
might have a small impact on vulnerability reporting. Although
there are nearly twice as many test dependencies as provided depen-
dencies, provided dependencies introduce more vulnerabilities than
test dependencies. Removing provided dependencies reduces 9.90%
of vulnerabilities while removing test dependencies reduces 8.29%
of vulnerability reports. The remaining non-release dependency
settings have almost no contribution to reducing false positive vul-
nerabilities. Detecting PPD and super JARs help reduce 5.48% and
3.24% of false negative vulnerabilities respectively.

Answering RQ3: (1) In both build scan and pre-build scan,
T1 performs best in vulnerability reporting. (2) SSM shows
the greatest improvement for Dependabot with an RFN of

0.349. For the result of the tree-plugin, applying SSM helps
reduce 18.28% of false positive vulnerabilities and locate 8.72%
of false negative vulnerabilities. Scope-provided and scope-test
are the main contributors to the RFP while locating more PPD
is the main contributor to the RFN. (3) To improve vulner-
ability detection performance, it is important to guarantee
dependency detection performance. The flaws discussed in
RQ2 should be mitigated (e.g., by excluding non-release de-
pendencies (especially scope-provided and scope-test), paying
more attention to detect PPD, and enhancing cross-project
information maintenance).

6 DISCUSSION

Tool developers should improve the tools to fully handle

Maven dependency specifications. ① Existing SCA tools rely
heavily on theMaven Dependency Plugin [29] to retrieve the depen-
dency trees, as this plugin resolves all user-specified dependencies
and transitive dependencies. However, it sometimes includes non-
release dependencies and misses the PPD (e.g., shaded JARs and
non-open-source libraries). Existing SCA tools should enrich the
Scan Methods and distinguish non-release dependencies with a bet-
ter understanding of SSM. ② For pre-build scan tools, they do not
have the assistance of the Maven Dependency Plugin and have to re-
solve the manifest files (e.g., pom.xml) from scratch. All MDF should
be well supported, especially to maintain cross-project information
and resolve transitive dependencies. ③ Performance and scalability
need to be considered. In reality, large commercial companies or
large open-source organizations often pay more attention to se-
curity reviews. These organizations often have massive projects
that require rapid and scaled scans. During the experiment of RQ2,
we recorded the execution time of build scans (pre-build scans are
executed on remote servers, so no execution time is recorded.) The
result shows that Steady is the slowest one with an average exe-
cution time of 2,266 seconds (about 38 minutes), while OSSIndex,
OWASP, and T1 took 77, 105, and 209 seconds on average, respec-
tively. OWASP, OSSIndex, and T1 provide reports in JSON or CSV
format with full dependency lists, while Steady only provides the
dependency list on its GUI web pages, which is not code-friendly
and scalable. In terms of report acquisition and execution time,
steady is not a suitable tool for scanning large-scale datasets.

Tool developers should focus on developing Java SCA tools that
can detect TPLs imported by external reference and copy-and-paste.
In terms of Scan Methods, most tools concentrate on detecting TPLs
imported by package managers, with few or no tools supporting de-
tection of TPLs imported by external reference and copy-and-paste.
This is problematic as Lopes et al [1] discovered that approximately
26% of files are duplicated and 65% of functions are cloned in Java
GitHub projects. Failure to include such capabilities results in in-
complete TPL detection for Java and leaves potential vulnerabilities.

Users are recommended to choose different tools according

to various scenarios. Tools perform differently in different scenar-
ios, so when choosing a tool, users should never lose sight of the
environmental context and purpose. To obtain vulnerability reports,
for projects under development or large legacy projects that require
rapid and scaled scanning, pre-build scan is appropriate. The best
tool is T1 and the best free tool is Dependabot. For projects ready
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for building and releasing, build scan is a superior option. The best
tool is T1, and the best free tool is OWASP.
Packagemanager designers should simplify dependency spec-

ifications to facilitate dependency management. Maven is
a legacy package manager with many dependency management
problems [61, 62], and compared to newer package managers (e.g.,
cargo [17] and NPM [39]), it has too many dependency specifica-
tions. For example, NPM identifies release dependencies by two
dependency scopes (i.e., devDependencies and dependencies), while
Maven has 6 dependency scopes and other settings (MDS) or fea-
tures (MDF). Complex dependency specifications can result in some
settings rarely used (e.g., type-ejb-client, and classifier-client), in-
creasing the barrier to use for both users and tool developers.
Tool testers or researchers should apply the EvaluationModel
whenmeasuring detection performance for all SCA tools. Ap-
plying the Evaluation Model helps users to understand the tools
fairly and comprehensively. Although we only compared Maven
SCA tools in this work, the three diversities of SCA scenarios are
practical for most package managers of other languages. The Eval-
uation Model can be applied directly to them, except that each
package manager has its own unique dependency specifications,
which may require additional examination and modeling.

7 THREATS TO VALIDITY

The absence of TPLs imported by source code clones in the

ground truth can introduce bias to the precision and recall

measurements of the tools. Since no Java SCA tool can detect
TPL reuse by code clone, we attempt to collect this ground truth
data independently. However, we encounter challenges in reliably
identifying TPL reuse through code clones. It is difficult to deter-
mine the extent to which clones indicate TPL reuse, as well as to
identify the specific TPL when multiple TPLs contain the same
functions. Ultimately, we decide not to include the TPLs imported
by code clones in the ground truth, to avoid introducing greater
uncertainty and reduce the reliability of our results.
Different versions of SCA tools threaten the validity of re-

sults. The tool versions we used are as follows: OWASP (v7.1.1),
OSSIndex (v3.20), and Steady (v3.2.4). Other tools provide online
services and the exact version can not be confirmed. These tools
will progress over time, which may result in inconsistent results.
To minimize the influence, we suggest using the same version of
the tools if they are available.
Different scanning times for build scans can lead to different

results. Most projects from RQ2 are under active development,
therefore their contents may change over time. Possible contin-
gencies include, but are not limited to ① the project updates to
different dependency versions; ② the GitHub repository is switched
to private or deleted. Even if the project contents are not changed,
dependency trees could change if new versions satisfying depen-
dency constraints are released [52]. To minimize the influence, we
have tried our best to collect scan results at almost the same time
and keep the building log for further analysis.
Excluding failed scans during data collection may compro-

mise measurement validity. It is possible for tools to fail in
scanning certain projects, and we opted to exclude these failed

scans during the data collection process. However, this exclusion
may introduce variations in the datasets used for evaluating dif-
ferent tools, which could undermine the validity of the results. To
mitigate this issue, we made efforts to run as many projects as
possible within the datasets.

8 RELATEDWORK

Dann et al. [49] conducted an empirical study on the types of mod-
ifications on Java releasing libraries that could influence vulnera-
ble dependencies detection. They summarized 4 types of modifi-
cations (i.e., re-compilation, re-bundling, metadata-removal, and
re-packaging) and studied their prevalence on JARs. Then they
triggered scans on 6 SCA tools to learn the impact of the modifi-
cations. Imtiaz et al. [51] evaluated nine SCA tools on a large web
application in both NPM and Maven by comparing the differences
in the vulnerability reports. The authors claimed that the key point
for good SCA tools is the accuracy of the vulnerability database. We
have identified significant differences between our work and the
previous research works [51] and [49]. Both of these works directly
compare vulnerability results, which we find insufficient to draw
convincing conclusions. Vulnerability results can be influenced
by the accuracy of dependency detection as well as the quality of
vulnerability mapping data. In this study, we conducted separate
evaluations on dependency accuracy and investigated the factors
that impede the tools’ ability to detect dependencies effectively.
Additionally, unlike [49], we extended the evaluation to source
code projects. Furthermore, in contrast to [51], we have studied
the various scenarios encountered by SCA tools and proposed a
comprehensive assessment of the dependency resolution capabili-
ties for Java SCA tools. This approach has enabled us to gain new
insights and make discoveries from a different perspective.

9 CONCLUSION

In this work, we proposed an Evaluation Model for SCA tools con-
sists of Scan Methods, Scan Modes, and Scan Scopes for Maven. Then,
we qualitatively examined the capabilities of the tools based on
the Evaluation Model and quantitatively evaluated the dependency
and vulnerability detection performance of 6 SCA tools on 21,130
Maven modules in two Scan Modes (i.e., build scan & pre-build scan).
We also measured the improvement brought about by SSM and pro-
vided some recommendations for further tool improvements.

10 DATA AVAILABILITY

More discussions and examples of MDF & MDS, the details of the
datasets, and the evaluation data can be publicly accessed at [44].
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