
MobiDroid: A Performance-Sensitive Malware
Detection System on Mobile Platform

Ruitao Feng1, Sen Chen1∗, Xiaofei Xie1, Lei Ma2, Guozhu Meng3, 4, Yang Liu1, Shang-Wei Lin1
1Nanyang Technological University, Singapore 2Kyushu University, Japan

3Institute of Information Engineering, Chinese Academy of Sciences, China
4School of Cyber Security, University of Chinese Academy of Sciences, China

Abstract—Currently, Android malware detection is mostly
performed on the server side against the increasing number
of Android malware. Powerful computing resource gives more
exhaustive protection for Android markets than maintaining
detection by a single user in many cases. However, apart
from the Android apps provided by the official market (i.e.,
Google Play Store), apps from unofficial markets and third-
party resources are always causing a serious security threat to
end-users. Meanwhile, it is a time-consuming task if the app
is downloaded first and then uploaded to the server side for
detection because the network transmission has a lot of overhead.
In addition, the uploading process also suffers from the threat of
attackers. Consequently, a last line of defense on Android devices
is necessary and much-needed. To address these problems, in
this paper, we propose an effective Android malware detection
system, MobiDroid, leveraging deep learning to provide a real-
time secure and fast response environment on Android devices.
Although a deep learning-based approach can be maintained
on server side efficiently for detecting Android malware, deep
learning models cannot be directly deployed and executed on
Android devices due to various performance limitations such
as computation power, memory size, and energy. Therefore, we
evaluate and investigate the different performances with various
feature categories, and further provide an effective solution to
detect malware on Android devices. The proposed detection
system on Android devices in this paper can serve as a starting
point for further study of this important area.

Index Terms—Android malware, Malware detection, Deep
neural network, Mobile platform

I. INTRODUCTION

With the currently increasing number of Android devices
and apps, more and more Android users store personal data
such as online banking and shopping in their Android devices.
Consequently, the security and privacy threats on Android
platform draw much attention. Undoubtedly, Android malware
is one of the most important security threats in this security
field [34], [35].

Therefore, how to detect Android malware becomes a severe
problem. End-users expect a secure environment which is
maintained by the Android markets. In other words, they
consider their app sources are all trustable and secure enough.
It is not surprising that the demands of Android malware
detection approaches have been proposed such as signature-
based approach [36]–[38], behavior-based approach [39]–[42],
information-flow analysis-based approach [43]–[45]. We note
that machine learning-based approach [1], [46]–[51] is one of

∗Sen Chen is the corresponding author

the most promising techniques in detecting Android malware.
With the available big data and hardware evolution over the
past decade, deep learning has achieved tremendous success
in many cutting-edge domains, including Android malware
detection. Actually, all of the above solutions are under server
side for Android markets. However, when a new Android
malware family is reported, not all the Android markets are
able to respond in a reasonable time. The current analysis
workflow always follows analyzing malicious behaviors in
apps, building the detection models with the generated features
and then performing the detection on the entire apps. Since
the number of the real-world Android apps is extremely
large, e.g., there are more than 3 million Android apps on
Google Play Store, it is a time-consuming task to perform the
complete detection with that large number of apps. Moreover,
the app from unofficial markets and third-party resources like
XDA1 are more vulnerable in the wild. The security of these
kinds of apps is indeed unpredictable and uncontrollable. The
traditional server-side based malware detection is challenging
to detect such applications: 1) it is time-consuming to upload
the app to server before the installation, especially for larger
apps; 2) the uploading process on the Internet is not secure.
For example, attackers may modify the malware during the
uploading period such that an incorrect “benign” result is
returned. As a result, the user will install the malware. Hence,
a last line of defense on Android devices is necessary and
much-needed. To address the severe problem, we intend to
conduct Android malware detection on Android devices.

Actually, machine learning-based approaches have achieved
better performance compared with other approaches in An-
droid malware detection. In this paper, we intend to deploy
the trained deep learning (DL) models on server-side to An-
droid devices. While a computational intensive deep learning
software could be executed efficiently on server-side with the
GPU support, such deep learning models usually cannot be
directly deployed and executed on other platforms supported
by small Android devices due to various computation resource
limitations, such as the computation power, memory size, and
energy. Therefore, we use TENSORFLOW LITE2 for Android
to migrate the deep learning trained models. Due to the per-
formance limitations of Android devices, We first summarize

1https://forum.xda-developers.com/
2https://www.tensorflow.org/lite/



and propose 7 feature categories such as permissions, API
calls, and opcode sequences according to the existing work
to investigate their corresponding performances with the deep
learning algorithm. Based on the metrics of accuracy and time
cost (i.e., time of feature extraction and model prediction),
we propose an effective Android malware detection system,
MobiDroid, leveraging deep learning models to provide a real-
time secure and fast response environment on Android devices.

The proposed system is performance-sensitive due to the
performance limitations of Android devices. Therefore, real
users are able to trade off classification accuracy and time
cost in practice. In our experiments, MobiDroid achieves
a relatively higher classification accuracy (i.e., over 97%
accuracy) with relatively lower overhead (i.e., 17.76 seconds
in total).

Overall, this paper makes the following contributions.
• We propose MobiDroid, a device-end solution to protect

Android devices from Android malware in real-time
efficiently. To the best of our knowledge, this is the
first work to detect Android malware directly on Android
devices rather than server side.

• We evaluate and investigate the different performances
with various feature categories for deep learning algo-
rithm, and further provide an effective solution according
to the classification accuracy and time cost. Moreover, the
corresponding results can be used to help users to trade
off classification accuracy and time cost in practice.

• In our experiments, we conduct a comparative study
between machine learning algorithm and deep learning
algorithm on Android devices in malware detection,
demonstrating the usefulness of our approach.

In summary, existing techniques mainly focus on detecting
Android malware on the server side based on the information
from the APK file and the source code. Different with the
existing techniques, this paper performs the first study on the
Android malware detection performances with various feature
categories on the mobile side, which serve as a starting point
for further study of this important area.

The rest of this paper is organized as follows: Section II
introduces the background of this work, Section III details our
proposed approach to detect Android malware. We conduct
our experiments in Section IV. Section V discusses the limi-
tations of MobiDroid. We list the related work in Section VI.
Finally, we conclude this paper and discuss the future work in
Section VII.

II. PRELIMINARIES

In this section, we briefly introduce the structure of Android
apps, the existing security mechanisms of Android apps, and
the migration/quantization procedure of trained deep leaning
models.

A. Android Apps

To execute the code of Android apps, Android developers
compile their source code and other components, like applica-
tion structure files and other resources, etc., into an Android

application package (APK). APK is a compressed application
file for Android platform, which is used to deliver Android
mobile applications. For each APK, it contains a manifest file,
Dex files, resources, assets, and certificates.

The manifest file contains the meta-data for Android apps,
which defines the package name and application ID, app
components like Intent filters, activities, and services, etc.,
permissions, device compatibility, like uses-feature and uses-
sdk, etc. Dex files as extension are Dalvik executable code,
which can be executed on Dalvik virtual machine in Android
OS and converted from Java bytecode via an alternative
instruction set. However, the instruction format in Dex is quite
complicated and hardly interpretable by a developer. To make
them more accessible, they are often decompiled into smali
files by reverse engineering, which contain the same contents
as Dex, but have a better syntax format before manual analysis.

B. Security Mechanisms

The existing security mechanisms can be mainly divided
into two categories, which are application market and Android
OS platform aspects in practice.

From the aspect of Android market, the official market
(i.e., Google Play Store) provides a security verification when
the APK uploaded. For instance, Google provides protection
backed by its machine learning algorithm. Some high-quality
third-party markets also present security check for the up-
loaded applications. For example, ApkMirror3 not only pro-
vides the signature verification, but also performs a protection
service provided by GuardSquare. However, most of current
security check service provided by third-party markets is very
simple and limited. Some of them only contain a signature
verification, which can be bypassed easily. Thus, users, who
download applications from the third-party markets, install and
use it at their own security risk.

On the device, there exist a lot of antivirus applications pro-
vided. The most famous applications, like Avast and Kasper-
sky, mainly provide their antivirus service by monitoring the
privacy-sensitive components on the device and an appli-
cation scanning with their on-cloud virus database. Besides
the protection from outside, Android OS also provides some
strong built-in security mechanism, like application sandbox,
etc. Application sandbox mechanism provides an independent
execution environment for every application. Hence, the attack
from an application can only work on its own requested com-
ponents. For instance, if Bluetooth permissions and actions
liked activities are not required in the application, the attack
can never access the functions provided by Bluetooth. Differ-
ent from other systems, like Linux and Windows, malicious
code in Android OS cannot easily hijack the whole system,
unless a developer promises it every available system-level
component hand by hand.

C. Deep Learning Model Migration and Quantization

After a DL model finishes the training process and is ready
to deploy to a target device, it oftentimes goes through either

3https://www.apkmirror.com/



Fig. 1. The processes of feature preparation and deep learning model training

quantization, or platform migration, or both, before deployed
to end-user applications, such as mobile devices, self-driving
cars, and video surveillance. This is because the training
phase requires a vast amount of computation and energy
resources. As the model size and the complexity of the tasks
grow, more data are needed to train the network till reaching
optimality, which could spend days, if not weeks, in training
on high-performance GPU clusters. On the other hand, the
deployment of the DNN models is usually faced with the
resource-constrained environment with limited computation,
storage, and power.

Due to environment difference of a target platform (e.g.,
mobile phones, green energy embedded systems) and training
platform (e.g., often equipped with GPUs), a DL model often
goes through a customization phase to cater specific software
and hardware constraints of a target platform. Quantization
reduces the precision of a DL model so as to improve
the computation efficiency, reduce memory consumption and
storage size, which has become a common practice when
migrating a large DL model trained on the cloud system to
a mobile or IoT devices with low computation power.

Recently, the rapid development of system-on-chip (SoC)
acceleration (e.g., Qualcomm Snapdragon, Kirin 970, Sam-
sung Exynos9) for AI applications provides the hardware sup-
port and foundation for universal deployment across platforms,
especially on mobile device, edge computing device and so
forth. Some lightweight solutions are proposed for mobile
platforms such as CoreML,4 TensorFlow Lite, Caffe2 Mobile
and Torch Android. Likewise, a solution is also proposed for
deploying DL models in the web environment (e.g., Tensor-
Flow.js). It proposes a chance to deploy the DL-based malware
detection task on a mobile device directly. Hence, in this paper,
we perform the first study on the performances of DL-based
malware detection on mobile devices.

III. APPROACH

In this section, we first introduce the overview of our
approach, and then detail each of the key phases.

4https://developer.apple.com/documentation/coreml/

A. Overview of MobiDroid

To achieve our approach, we propose MobiDroid, whose
functionality could be divided into two major parts. As
shown in Fig. 1, the first part of our system contains feature
preparation and DL model training. We select 3 kinds of
feature types based on the investigation of existing stud-
ies, which are manifest properties, API calls,
opcode sequences, as the input of our deep neural net-
work. The first part allows to generate a DL trained model
and a vector dictionary for the second part. To make the
model adaptive to Android devices, we then migrate the pre-
built DL model from the first part to a TENSORFLOW LITE
model, which is mobile readable format. Also, a quantization
phase5, which is a general technique to reduce model size
while also providing lower latency with little degradation in
accuracy, is presented as a performance optimization for the
mobile platforms.

As shown in Fig. 2, the second part loads the mi-
grated/quantized DL model and vector dictionary into mobile
device. After that, when an application is downloaded from
market or third-party resource, MobiDroid is able to extract
feature vector from it and deliver the result to our detection
system. Hence, after predicting with the loaded DL model, we
obtain a certain level of confidence based on predictive output
to know whether the downloaded Android app is a malware.

B. Feature Preparation

Android app is provided as a packed APK file, which
contains the compiled binary files, XML files, like manifest
file, and other resources, etc. In data processing progress, to
get the features from the APK file, we first decode the package
to separate files by using ApkTool.6 Among the decoded
application source files, we can extract three different feature
types, which are manifest properties, API calls, and opcode
sequences, from the raw application data. According to the
different contents in each feature, we presented two different
vector embedding methods to generate the inputs for the neural
network.

5https://www.tensorflow.org/lite/performance/post training quantization/
6https://ibotpeaches.github.io/ApkTool/



Besides, to determine the features used in our detection
system, we also perform a comparison of the extracting and an-
alyzing performance for most commonly used features, which
include features not used in our system, in previous malware
detection approaches. Based on the result, we selected three
performance-sensitive features as our model inputs. The details
of the feature selection part will be illustrated in section IV-C.
Feature definition and extraction. In Fig. 1, step 1© refers to
feature extraction. From manifest file in application package,
three features are extracted under XML tag uses-permission,
intent-filter, and uses-feature. uses-permission contains An-
droid system permissions, which are related to the privacy
of an Android user. Android apps must request the relative
permission before accessing sensitive user data or certain
system feature. Information from intent-filter refers to intent
objects. Each intent contains a message object which is used
to request actions from the app component by developers. This
feature define the basic actions, which may be used in attacks,
like sending SMS or reading the pictures, etc. from Android
devices. From uses-feature tags, we extract hardware features.
Such as Audio Hardware Features and Bluetooth Hardware
Features etc. Each feature refers to a basic hardware usage
defined in Android operation system.

From the decompiled smali code files, we extract 2 types of
features, which are API calls and opcode sequences. API call
contains both the method name and the package name of the
corresponding method. They may not only contain methods
from Android and Java packages, but also involve third-party
methods. The opcode sequences are generated by matching
the function name in smali files with their opcode hex. Each
sequence represents a single smali code file.
Feature vector generation. To represent the features extracted
from raw data as a computable format, we built a dictionary for
direct matching on permission, intent, hardware component,
and API call features. Due to the complexity among opcode
sequences, it is difficult to represent them through direct
matching. To handle this problem, we embedding them to a
one-hot vector per step in our neural network.

The dictionary for features in manifest are generated from
the Android source code which are predefined by Google
developers. Totally, there are 324 permissions, 213 intents and
76 hardware features listed in dictionary.

By extracting and analyzing the API calls from more than
50,000 real-world Android applications, we find that there are
a lot of API calls are not related to any sensitive components
in Android OS. For example, the View loading API is widely
used in most applications, but it cannot participate in any
kinds of attacks. Meanwhile, among our dataset, most API
calls from the third-party packages appeared only few times.
In other words, a third-party API call in an application may
never appear in others. Thus, we remove all uncommon third-
party packages and the API calls which are not related to any
sensitive components manually by experience and get the API
call dictionary, which contains 1509 APIs, in the step 2© of
Fig. 1.

According to the combined dictionary of manifest property

TABLE I
DEEP NEURAL NETWORK ARCHITECTURE

Input

Embedding Layer input: (None, None)
output: (None, None, 8)

Reshape input: (None, None, 8)
output: (None, 1, None, 8)

Convolutional Layer input: (None, 1, None, 8)
output: (None, 64, None, 1)
ReLU

Reshape input: (None, 64, None, 1)
output: (None, 64, None)

Global Max Pooling input: (None, 64, None)
output: (None, 64)

Linear Dense Layer input: (None, 64)
output: (None, 16)
ReLU

Linear Dense Layer input: (None, 16)
output: (None, 2)

Softmax Classification

and API call features, the size of vector is determined by the
dictionary size of features. For each Android app, the vector is
represented by mapping the retrieved values to the dictionary
size dimension vector space in step 3©.

C. DL Model Training

We present a convolution neural network (CNN) to train
the classifier for malicious and benign Android apps, with our
generated input feature vector delivered by step 4©. However, it
is difficult to figure out the correlation between each dimension
of feature vector and the detection target. Thus, we train 7 test
deep neural network models for each single feature category
and their combination, to determine which feature will be
considered as the input of our training network. By comparing
their accuracy, precision, and recall etc., we determine to use
the 3 feature categories (i.e., manifest properties, API calls,
and opcode sequences) combination model as our pre-trained
model, which can be deployed on mobile devices. The details
of our evaluation will be illustrated in section IV-C.

As shown in Table I, the first layer of our DL model is
feature embedding layer. With input vector and sequences,
we need to unite them as an entire input before sending to
the training parts. Hence, we transform the converted hex
sequences, which represent the opcode sequences, to a one-
hot vector within a lookup table for each sequences bundle.
We then combine the result vector with the vector, which
is generated by direct matching, together in a combination
layer. The resulting vector is reshaped to a matrix and send
to the next layer. The second layer is the convolution layer,
which receives the embedded matrix as its input and applies
convolution filters to produce activation maps for each batch.
As a result of the unfixed-length of the opcode sequences,
batches surely have different length. Thus, to transform the
results in fixed-length vector for the hidden layer, a global
max pooling is used after activation. Finally, the fixed length
vector is passed to a hidden full layer, which is a multi-layer
perception, for classification. To detect the relation between
the result vector, we construct two sublayers in the hidden



Fig. 2. The Overview and Workflow of MobiDroid

layer, each of them contains a Rectified Linear Unit activation
function. At last, the result from the hidden layer is passed to
a soft-max classifier function to get the final training result.

D. DL Model Migration and Quantization

To deploy our pre-trained DL model on Android platform,
we convert and migrate the model from our server-side
platform, which is implemented on Keras,7 to TensorFlow-
lite model, which is supported by Android operating system.
To achieve this target, we firstly migrate our pre-trained
model to a TensorFlow model first. Following the Google
TensorFlow guidance, we then migrate the TensorFlow model
to a mobile readable TensorFlow-lite model. Apart from the
model migration, we also quantize our pre-trained model to
improve the performance on the mobile platform, which does
not affect the accuracy of detection.

E. Detection System Architecture (MobiDroid)

Before conducting a real-time detection, the quantized
TensorFlow-lite model and feature dictionary should be de-
ployed to the detection system in advance. According to Fig. 2,
there are three steps before completing the prediction.

The first step of MobiDroid is feature preparation. While an
APK file is received, MobiDroid first decodes it into original
resources and smali files. Across the extraction step, there
include three features described above, which contains mani-
fest properties, API calls, and opcode sequences, generated as
outputs. To generate the input vector from extracted features,
we re-implemented our Python vector generation scripts in
Java to retrieve the prediction inputs for the target application.
Hence, we can get the manifest property vector and API call
vector, except for the opcode sequence. To combine the mul-
tiple kinds of inputs, we perform a binarization, which is the
same as the embedding idea used in our training layer, for the

7https://keras.io/

TABLE II
MALWARE DATASET

Malware Dataset Orginal Size Reorganized Size
Drebin 5,560 5,527

Genome 1,260 1,148
Contagio 360 338
Pwnzen 1,830 1,807

VirusShare 20,000 12,679
Total 29,010 21,499

sequence information. As a result, an opcode sequence vector
is generated. While all the features are transformed into a
vector. We connect them together as the detection model input
at the end of the second step. The third step is app prediction.
With the help of our migrated and quantized detection model,
which deployed from the training part, MobiDroid sends the
combined application vector to the detection system and obtain
the final prediction result.

IV. EXPERIMENTS

In this section, the goals of our experiments are to de-
termine: (1) the different performance of different feature
types (manifest properties, API calls, and opcode sequences);
(2) the different accuracy of different feature categories; (3)
the different performance between DL models and machine
learning models.

A. Dataset

As shown in Table II, we collect more than 50,000 Android
apps in total. Specifically, these apps consist of 29,010 mal-
ware, and others are benign apps crawled from Google Play
Store. However, these might be malware on the official market.
To filter the potential malware as far as possible, we upload
them to VirusTotal8, which is an online antivirus service with
over 50 scanners, to make a verification. The 29,010 malicious
samples contain 5,560 apps downloaded from Drebin [1],
1,260 apps validated in Genome project [35], 20,000 crawled
from VirusShare, and the remaining are used in KuafuDet
including 360 from Contagio Mobile Website and 1,830 from
Pwnzen Infotech Inc. In summary, we collect a large-scale
dataset of benign and malicious samples for the following
experiments.

Since our dataset come from multiple sources, there have
a lot of duplicated samples. Therefore, we perform a hash
check for eliminating redundant applications among malicious
and benign applications. During the data prepossessing, which
has raw data decoding and feature vector generation steps, we
receive some failed cases due to the capabilities of ApkTool
and the vector generation scripts. While the rest of the failures
are just caused by broken APK packages, we also remove them
directly. As a result, we choose 21,499 benign and malicious
samples respectively from our dataset to conduct the following
experiments.

8https://www.virustotal.com/



Fig. 3. Processing time of different feature types

B. Experimental environment

All the experiments are run on an Ubuntu 14.04 server
with two Intel Xeon E5-2699 V3 CPUs, 192GB RAM, and
NVIDIA Tesla P40 GPU and Nexus 6/6P mobile devices.
The implementation language of our system on server side is
Python. The data preprocessing is depended on AndroGuard9

and ApkTool. The deep neural network and training project are
implemented with Keras, Numpy, Scikit-learn and TensorFlow
libraries.

C. Feature Selection

To get access to the necessary information for our experi-
ments, we use 4 different kinds of existing tools, which are
ApkTool, AndroGuard, Soot10 and FlowDroid [43]. ApkTool
is a tool for reverse engineering Android apk files, which can
decode the apk file and generate the decompiled resources,
which contains manifest etc., and smali files. AndroGuard is
a python tool, which can not only decode the resources but
also disassemble bytecode to Java source code. Also, with the
help of AndroGuard, we can easily generate the call graph and
data flow graph for an Android app. Soot is a Java optimization
framework, which can be used with FlowDroid to extract the
call graph.
Performance comparison of feature types. Nowadays, An-
droid attacks are discovered to be more and more sophisti-
cated. Consequently, Google is still improving the defense
mechanism of Android OS. Most newly detected attacks

9https://github.com/androguard/androguard/
10https://github.com/Sable/soot/

are not limited to hijack the basic system components, and
some of them are triggered by the behaviors among app
components. Thus, The behaviors in Android apps become
a significant characteristic. Therefore, malware detection with
full-scale information graphs may have more semantics than
that with weak semantic information like permissions and
API calls, etc. Moreover, from the aspect of attacks, it is
more difficult to evade malicious behaviors under semantic
features. For example, a call graph represents calling relations
between subroutines in the source code. Data flow graph
is a graph not only represents calling relations, but also
provides information about the inputs and outputs of each
entity. Inter-component Communication Graph (ICCG) [33]
is a graph provides the communications between components
and threads inside Android applications and the components
itself. The communications contain Intent, Message, Binder
and Persistent storage, which construct the run-time inner
relations of Android application.

Apart from the above graph-related feature types. Per-
mission, intent filter, uses-feature are components defined in
Manifest.xml, which provide essential information about the
application. Permissions are related to the privacy of an An-
droid user, which are the most important part of Android OS
defense mechanism. Each Android app requests the relative
permission before accessing sensitive user data or certain
system feature. Therefore, the principle of a large number of
attacks is focusing on bypass the permission checking, while
invoking some sensitive components on devices. Intent filter
contains a message object which used to request actions from
the application component by developers. Basic actions, like
sending SMS or reading the pictures, etc., are defined in their
related Intents. Request these actions are the only way to
perform a system level action or modify a basic configuration
on devices, while an attack occurs. Uses-feature defines the
basic hardware features, like Wi-Fi hardware features and
Bluetooth hardware features, etc., for each Android application
component.

For example, considering a spy application, the core idea
of it should be monitoring the camera, microphone, etc.
Hence, the attacks often hide in some components, which have
hardware access defined in uses-feature. Otherwise, it is unable
to access the target hardware without them. API calls represent
the API calling information existed in the application, which
provides the name of API call and the corresponding package
name. Opcode sequences provide a whole map of opcode
functions for the entire application.

Since mobile device is often performance-sensitive, to pro-
vide detection service on a mobile device directly, we take
the performances of different feature types into consideration.
As a result, we analyze the processing and analyzing time
for each of the potential input features on both server-side
and mobile device to decide the feature type selection. The
result in Fig. 3 shows the time consuming of most full-scale
information graphs are too large for our performance-sensitive
approach on mobile device. For instance, the processing and
analyzing time of DFG takes more 196.87 seconds on 50MB



TABLE III
DIFFERENT PERFORMANCES OF FEATURE CATEGORIES

Feature Categories Accuracy (%) Precision (%) Recall (%)
Manifest Properties 77.65% 77.47% 77.47%
API Calls 92.00% 92.00% 92.00%
Opcode Sequences 94.79% 94.79% 94.79%
Manifest Properties & Opcode Sequences 95.66% 95.66% 95.66%
Manifest Properties & API Calls 90.37% 90.37% 90.37%
API Calls & Opcode Sequences 95.48% 95.48% 95.48%
Manifest Properties & API Calls & Opcode Sequences 96.87% 96.87% 96.87%

application and even 17.96 seconds on 5MB application on
average. In our approach, the detection should be performed
in a reasonable period comparing to the application installing
time, users cannot buy it if the reacting time takes too long.
Other features processing and analyzing time costs are quite
limited, compared with the average application installing time.
Consider the time cost of API calls. 5MB application only
takes 2.92 seconds and 50MB application takes 5 seconds.
Comparing to the full-scale graphs, like DFG and CG, the time
cost of opcode sequences, API calls, and manifest properties
are more acceptable. Therefore, we decide to accept there 3
kinds of feature types as our model inputs.
Accuracy comparison of feature categories. As shown in
Table III, to find out the correlation between selected features,
we list 7 feature categories to investigate their corresponding
accuracy. Consequently, we train 7 test models with both single
feature type and combined feature types as inputs. For each
test model input, we trained them with our convolution neural
network. The only difference between them is we remove
the embedding layer, while the input only contains manifest
properties and API calls vector. We divide our dataset, which
contains 21,499 malware and 21,499 benign applications, into
three parts, 70% of them are configured as training data,
other 30% are split into validating and testing set. Table III
shows the model results of each input configuration. The
results show the accuracy of combined features model is
obviously higher than any single feature models. However,
the accuracy of manifest properties & API calls categories
is larger than the manifest properties-based model, but it is
smaller than the accuracy of API calls-based model. Actually,
the feature category of manifest properties is always used to
detect Android malware. Consequently, the malware attackers
intent to evade some of the features such as adding good
features in Manifest file to attempt to bypass classifiers. So this
kind of feature type has some interference effects. Considering
both the 3 feature types (i.e., manifest properties, API calls,
and opcode sequences) combined model and the combination
of the manifest property features and opcode sequences have
a better result than the single feature models. We finally select
the 3 features combined model, which has the best result,
as our detection model. There are some reasons that the 3
feature types-based model has better performance than others.
For example, the selected category has more semantics than
other categories, and some combinations of different features
across these three feature types may trigger and reflect the

TABLE IV
PERFORMANCES OF MOBIDROID

Devices Quantization Accuracy Preparation
Time (s)

Prediction
Time (s)

Nexus 6 No 97.35% 16.60 9.35
Yes 97.35% 7.23

Nexus 6P No 97.35% 13.56 6.54
Yes 97.35% 4.20

sophisticated malicious behaviors.

D. Effectiveness Evaluation of MobiDroid

Accuracy and time cost on mobile device. To evaluate the
response time of our mobile detection system, MobiDroid, we
measure both feature preprocessing and prediction time for
both quantized and non-quantized DL models on our Android
devices (i.e., Nexus 6 and Nexus 6P).

The preprocessing time consists of raw data processing and
features analyzing time for each feature. Raw data processing
is the first step, which decodes the application into resource
files and smali files with ApkTool. This step costs more
than 80% of the prepossessing time. Because we have to
run ApkTool, which is a .jar package, on a JVM instead
of the original Android package compiling environment, the
performance of the processing still has a lot of space to be
optimized, if we have an implementation of decoding tool on
Android. Analyzing time contains the time cost for generating
manifest property and API call vector and opcode sequences
from the decoded features. The predicting time is the time
measured from loading inputs to get the result.

The test data contains 2,000 randomly selected applications,
half of them are malware, the others are benign applications. In
Table IV, by comparing quantized and non-quantized models,
the result of prediction time shows that quantization reduces a
lot of time cost (i.e., 16.60 vs. 13.56). Meanwhile, the accuracy
of our test remains unchanged (i.e., 97.35% accuracy). The
prediction time is also acceptable for mobile users (i.e., less
than 10 seconds).
Comparison between DL and ML on mobile device.
In addition, to show the strengths of our mobile malware
detection system, MobiDroid, we investigate a similar mobile
end malware detection approach which based on the machine
learning algorithm (i.e., SVM). The result in Table V shows
our approach can gain a much better accuracy with both Man-
ifest Properties (77.65% vs. 65.00%) and API calls (92.00%



TABLE V
COMPARISON BETWEEN MOBIDROID AND ML CLASSIFIER UNDER

DIFFERENT FEATURE CATEGORIES

Systems Feature Categories Accuracy (%)

MobiDroid Manifest Properties 77.65%
API Calls 92.00%

ML Classifier Manifest Properties 65.00%
API Calls 88.00%

vs. 88.00%) as input than the approach by machine learning-
based approach. As a result of the unfixed-length and content
of opcode sequences, we cannot apply the machine learning
algorithm on this kind of feature type directly.

Remarks: The feature types of manifest properties, API
calls, and opcode sequences have a better time performance
(i.e., less than 10 seconds) than DFG and CG. The combi-
nation of feature types including manifest properties, API
calls, and opcode sequences achieves a better detection
accuracy (i.e., over 97%) than other combinations. Com-
pared with machine learning-based approach, MobiDroid
performs a better detection accuracy on mobile platform.

V. LIMITATIONS AND THREATS TO VALIDITY

In this section, we introduce the limitations of our approach
and the threats to validity in this paper.
Limitations. Due to the limited application dataset, Mo-
biDroid has a similar limitation as to other deep neural
network-based malware detection ideas. Considering a new
malware family detected, the situation may be that only a few
malware in this family are confirmed in a long period. Thus,
there are not many new malware can be used as part of the
training dataset. If the proportion of this new family is quite
limited in dataset, there may have an uncertain training result,
which makes MobiDroid difficult to be applied as the first-
order protection to against the new detected malware family.
Threats to validity. There are several threats may influence
our validity. Currently, the most important threat is the hard-
ware performance of the deployed device. Considering our
experiment result in Table III, we apply our mobile malware
detection system on two devices (i.e., Nexus 6 and Nexus
6P). Nexus 6 and Nexus 6P are two Android smartphones
presented by Google in 2014 and 2015. We can consider their
hardware performance as an average among Android devices.
The preparation and prediction time on Nexus 6P is 13.56 and
4.2 seconds on average and the time on Nexus 6 is 16.6 and
7.23 seconds. Considering a worse case, if the device, which
we want to deploy MobiDroid has an old hardware spec, the
time cost may grow to an unacceptable number. However, the
newest Android devices provide GPU support to TensorFlow-
lite. With the performance promotion by GPU support added,
the speed of depth computing11 in Google camera can be
improved for 10 times on Pixel 3. Thus, in the future, the

11https://ai.googleblog.com/2018/11/learning-to-predict-depth-on-pixel-3.
html

performance of Android device will not be a threat to our
approach.

VI. RELATED WORK

In this section, we will summarize the current work about
malware detection. Generally, traditional techniques adopt
static analysis and dynamic analysis to classify benign ap-
plications and malware applications.

Some techniques are proposed based on analyzing the XML
files from the APK file. C.-Y. Huang et al. [2] classify the
benign data and malware data using the permission informa-
tion in manifest and files structure as features. Similarly, Z.
Aung et al. [3] also consider the permission. Differently, they
concentrate on the permission requires in the source code, not
only the static permission information in the manifest file. E.
Chin et al. [12] propose ComDroid, which detects malware by
analyzing the manifest file.

There are also some techniques which are based on the
API analysis [54]. L. Deshotels [4] et al. classify the be-
nign/malware applications based on the frequency of API calls.
M. Zhang et al. [5] develop a classifier, DroidSIFT, which
is based on the API dependency graphs. D. Arp et al. [7]
propose Drebin, which is a classifier using features from both
of XML files and API calls. In addition, Drebin can be used
in the mobile end solution. Y. Zhongyang et al. [11] introduce
DroidAlarm, which analyzes the inter-procedural call graphs
constructed by the relationship between permissions and the
interface to identify attacks. L. K. Yan et al. [20] propose
DroidScope, which generates semantic information from API
call traces and Dalvik opcode traces. D.-J. Wu et al. [8]
propose the technique, DroidMat, to detect malware with API
traces, intent, communication and some other the life-cycle
information.

Another line of research is conducted based on the program
analysis (e.g., control flow graph), which is more expensive
than the XML-based and API-based approach. However, the
result tends to be more precise. Narayanan et al. [18] present
an online SVM classifier, which uses the control flow graph
generated from the source code as input. W. Enck et al. [21]
propose TaintDroid, which is a taint analysis tool for Android
applications. It detects the leakages with the data flow analysis
on target sensitive data. G. Z. Meng et al. [32] propose
a deterministic symbolic automaton (DSA) based detection
system, in which DSA contains the corresponding components
of the target application. Furthermore, they develop a system,
DroidEcho, which detects attacks with the inter-component
communication graphs (ICCG). ICCG provides both the call
graphs and sensitive data flow in applications. In addition,
some CFG-based static analysis [55]–[57] could be useful to
capture more fine-grained features for detecting malware.

Deep learning has achieved great success in many applica-
tions, there exist also a lot of neural network based approaches.
Z. Yuan [28] et al. provide Droid-detector, which performs on
a deep belief network, W. Yu [29] et al. present a malware
detection system, which uses permission and API call traces
as input. N. McLaughlin [30] et al. use the convolution neural



network in detection. The raw opcode sequences of target
applications are used as the input feature. Kim [52] et al.
present a malware detection framework based on multiple
neural networks. Every network has a single feature input and
output score. The final detection result is a combination of all
the models. K. Xu [53] et al. proposed DeepRefiner, which is
an efficient two layer malware detection system. They involved
XML features as the first layer to perform a fast detection first.
At the end of the first layer, if it cannot promise the result with
a high rate, it will use some more complicated features, like
bytecode information, etc., in the second layer to determine
whether the target is a malware.

In addition, there are still some other techniques. A. De-
montis et al. [19] propose an algorithm to mitigates attacks
like malware data manipulation. T. Blsing et al. [22] introduce
AASandbox, which performs detection with combination in-
formation of both static and dynamic analysis. A. Shabtai et
al. [23] and A.-D. Schmidt et al. [24] provide the abnormalities
identification systems, which use run-time device information,
such as CPU usage etc.. J. Sun et al. [17] train a machine
learning based classifier, which use the distance of keywords
to detect the malware. L. Lu et al. [13], P. P. F. Chan et al. [14],
K. Lu et al. [15] and F. Wei et al. [16] focus on detecting
vulnerable components, which may hijack the applications.
W. Zhou et al. [9] provide a malware detection system,
DroidMoss, which uses hash comparison to detect repacked
Apks. M. Grace et al. [6] propose RiskRanker, which performs
detection via analyzing specific application behaviors.

Existing techniques mainly focus on detecting malware on
the server side based on the information from the APK file and
the source code. However, with the rapid development of AI
chips on mobile devices, the research about malware detection
on the mobile side is still rare and on demand. Different from
the existing techniques, this paper performs the first study
on the malware detection performances with various feature
categories on the mobile side.

Recently, some deep learning testing techniques [58]–[64],
which are used to test the quality of deep neuron networks,
have been proposed. We will adopt such techniques to testing
the trained model based on different features in the future.

VII. CONCLUSION AND FUTURE WORK

This paper presents MobiDroid, a performance-sensitive
Android malware detection system on the mobile platform.
It consists of two parts. The first server-side part is designed
for feature dictionary generation and deep neural network
training. The second mobile end part applies the trained model
and dictionary in a mobile detection system. Meanwhile, a
conversion and quantization phase is performed as a middle
adaptation for the trained model between two parts. According
to the effectiveness of selected features and the efficiency
of feature extraction, MobiDroid can provide a reliable (i.e.,
over 97% detection accuracy) and fast reactive (i.e., less
than 10 seconds) detection service on mobile device directly.
To validate the efficiency and reliability, we evaluate our

MobiDroid on two real mobile devices and make a comparison
to machines learning-based approach.

In the future, we will extend our current work from three
directions. Due to the limitations we mentioned in section V,
we would like to improve our system against new detected
malware families by updating our training dataset timely.
Another potential improvement is to improve the run-time
performance of mobile detection system, which can bring the
user a better user experience. We will also consider extending
our feature selection method to provide more application
information and increase feature semantics.

ACKNOWLEDGMENTS

This research was supported (in part) by the National
Research Foundation, Prime Ministers Office, Singapore
under its National Cybersecurity R&D Program (Award
No. NRF2018NCR-NCR005-0001), National Satellite of
Excellence in Trustworthy Software System (Award No.
NRF2018NCR-NSOE003-0001) administered by the National
Cybersecurity R&D Directorate, and JSPS KAKENHI Grant
19H04086, and Qdai-jump Research Program NO.01277.

REFERENCES

[1] D.Arp, M.Spreitzenbarth, M.Hubner, H.Gascon, and K.Rieck. Drebin:
Effective and explainable detection of Android malware in your pocket.
NDSS, 2014

[2] C.-Y. Huang et al, Performance evaluation on permission-based detection
for Android malware, in Advances in Intelligent Systems and Appli-
cations (Smart Innovation, Systems and Technologies), vol. 2. Berlin,
Germany: Springer, 2013, pp. 111120.

[3] Z. Aung et al, Permission-based Android malware detection, Int. J. Sci.
Technol. Res., vol. 2, no. 3, pp. 228234, 2013.

[4] L. Deshotels et al, DroidLegacy: Automated familial classification of
Android malware, in Proc. ACM SIGPLAN Program Protection Reverse
Eng. Workshop, 2014, Art. no. 3.

[5] M. Zhang et al, Semantics-aware Android malware classification using
weighted contextual API dependency graphs, in Proc. ACM Conf.
Comput. Commun. Secur. (CCS), 2014, pp. 11051116.

[6] M. Grace et al, RiskRanker: Scalable and accurate zero-day Android
malware detection, in Proc. ACM 10th Int. Conf. Mobile Syst., Appl.,
Service (Mobisys), 2012, pp. 281294.

[7] D. Arp et al, DREBIN: Effective and explainable detection of Android
malware in your pocket, in Proc. Netw. Distrib. Syst. Secur. Symp.
(NDSS), vol. 14, 2014, pp. 2326

[8] D.-J. Wu et al, DroidMat: Android malware detection through manifest
and API calls tracing, in Proc. 7th Asia Joint Conf. Inf. Secur. (Asia
JCIS), Aug. 2012, pp. 6269.

[9] W. Zhou et al, Detecting repackaged smartphone applications in third-
party Android marketplaces, in Proc. ACM Conf. Data Appl. Secur.
Privacy, 2012, pp. 317326.

[10] S. Hao et al, PUMA: Programmable UI-automation for large-scale
dynamic analysis of mobile apps, in Proc. ACM Int. Conf. Mobile Syst.,
Appl., Services (MobiSys), 2014, pp. 204217.

[11] Y. Zhongyang et al, DroidAlarm: An allsided static analysis tool for
Android privilege-escalation malware, in Proc. 8th ACM SIGSAC Symp.
Inf., Comput. Commun. Secur., 2013, pp. 353358.

[12] E. Chin et al, Analyzing interapplication communication in Android, in
Proc. 9th Int. Conf. Mobile Syst., Appl., Services, 2011, pp. 239252.

[13] L. Lu et al, CHEX: Statically vetting Android apps for component
hijacking vulnerabilities, in Proc. ACM Conf. Comput. Commun. Secur.,
2012, pp. 229240.

[14] P. P. F. Chan et al, DroidChecker: Analyzing Android applications for
capability leak, in Proc. ACM Conf. Secur. Privacy Wireless Mobile
Netw., 2012, pp. 125136.

[15] K. Lu et al, Checking more and alerting less: Detecting privacy leakages
via enhanced data-flow analysis and peer voting, in Proc. Netw. Distrib.
Syst. Secur. Symp. (NDSS), 2015, pp. 4:14:15.



[16] F. Wei et al, AmAndroid: A precise and general inter-component data
flow analysis framework for security vetting of Android apps, in Proc.
ACM Conf. Comput. Commun. Secur., 2014, pp. 13291341.

[17] J. Sun et al, Malware on Android smartphones using keywords vector
and SVM, in Proc. IEEE/ACIS 16th Int. Conf. Comput. Inf. Sci., May
2017, pp. 833838.

[18] A. Narayanan et al, Adaptive and scalable Android malware detection
through Online learning, in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2016, pp. 24842491.

[19] A. Demontis et al., Yes, machine learning can be more secure! A case
study on Android malware detection, IEEE Trans. Dependable Secure
Comput., to be published.

[20] L. K. Yan et al, DroidScope: Seamlessly reconstructing the OS and
Dalvik semantic views for dynamic Android malware analysis, in Proc.
21st USENIX Secur. Symp., 2012, pp. 569584.

[21] W. Enck et al., TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones, ACM Trans. Comput.
Syst., vol. 32, no. 2, p. 5, 2014.

[22] T. Blsing et al, An Android application sandbox system for suspicious
software detection, in Proc. 5th Int. Conf. Malicious Unwanted Softw.
(MALWARE), Oct. 2010, pp. 5562.

[23] A. Shabtai et al, Andromaly: A behavioral malware detection framework
for Android devices, J. Intell. Inf. Syst., vol. 38, no. 1, pp. 161190, 2012.

[24] A.-D. Schmidt et al, Monitoring smartphones for anomaly detection,
Mobile Netw. Appl., vol. 14, no. 1, pp. 92106, 2009.

[25] R. Pascanu et al, Malware classification with recurrent networks, in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015,
pp. 19161920.

[26] O. E. David et al, DeepSign: Deep learning for automatic malware
signature generation and classification, in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Jul. 2015, pp. 18.

[27] J. Saxe et al, Deep neural network based malware detection using two
dimensional binary program features, in Proc. 10th Int. Conf. Malicious
Unwanted Softw. (MALWARE), Oct. 2015, pp. 1120.

[28] Z. Yuan et al, Droiddetector: Android malware characterization and
detection using deep learning, Tsinghua Sci. Technol., vol. 21, no. 1,
pp. 114123, Feb. 2016.

[29] W. Yu et al, Towards neural network based malware detection on
Android mobile devices, in Cybersecurity Systems for Human Cognition
Augmentation. Cham, Switzerland: Springer, 2014, pp. 99117.

[30] N. McLaughlin et al., Deep Android malware detection, in Proc. ACM
Conf. Data Appl. Secur. Privacy (CODASPY), 2017, pp. 301308.

[31] H. Fereidooni et al, ANASTASIA: Android malware detection using
static analysis of applications, in Proc. 8th IFIP Int. Conf. New Technol.,
Mobility Secur., Nov. 2016, pp. 15

[32] Guozhu Meng et al, ”Semantic Modelling of Android Malware for Ef-
fective Malware Comprehension, Detection, and Classification,” in The
International Symposium on Software Testing and Analysis (ISSTA),
Saarbrcken, Germany, 2016, pp. 306–317.

[33] G. Meng et al. ”DroidEcho: an in-depth dissection of malicious behav-
iors in Android applications.” Cybersecurity, 2018, 1(1), 4.

[34] Tang, C. et al. (2019, May). A large-scale empirical study on industrial
fake apps. In Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice (pp. 183-192).
IEEE Press.

[35] Y. Zhou et al, ”Dissecting android malware: Characterization and
evolution.” In 2012 IEEE symposium on security and privacy, 2012,
(pp. 95-109). IEEE.

[36] Schlegel, R. et al. (2011, February). Soundcomber: A Stealthy and
Context-Aware Sound Trojan for Smartphones. In NDSS (Vol. 11, pp.
17-33).

[37] Zhou, Y. et al. (2012, February). Hey, you, get off of my market:
detecting malicious apps in official and alternative android markets. In
NDSS (Vol. 25, No. 4, pp. 50-52).

[38] Zhou, W. et al. (2013, February). Fast, scalable detection of piggybacked
mobile applications. In Proceedings of the third ACM conference on
Data and application security and privacy (pp. 185-196). ACM.

[39] Yan, L. K. et al. (2012). DroidScope: Seamlessly Reconstructing the OS
and Dalvik Semantic Views for Dynamic Android Malware Analysis. In
Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12) (pp. 569-584).

[40] Wu, C. et al. (2014, February). AirBag: Boosting Smartphone Resistance
to Malware Infection. In NDSS.

[41] Tam, K. et al. (2015, February). CopperDroid: Automatic Reconstruction
of Android Malware Behaviors. In NDSS.

[42] Rasthofer, S. et al. (2016, February). Harvesting Runtime Values in
Android Applications That Feature Anti-Analysis Techniques. In NDSS.

[43] Arzt, S. et al. (2014). Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. Acm
Sigplan Notices, 49(6), 259-269.

[44] Li, L. et al. (2015, May). Iccta: Detecting inter-component privacy leaks
in android apps. In Proceedings of the 37th International Conference on
Software Engineering-Volume 1 (pp. 280-291). IEEE Press.

[45] Wong, M. Y.,et al. (2016, February). IntelliDroid: A Targeted Input
Generator for the Dynamic Analysis of Android Malware. In NDSS
(Vol. 16, pp. 21-24).

[46] Yang, C. et al. (2014, September). Droidminer: Automated mining
and characterization of fine-grained malicious behaviors in android
applications. In European symposium on research in computer security
(pp. 163-182). Springer, Cham.

[47] Chen, S. et al. (2016, May). Stormdroid: A streaminglized machine
learning-based system for detecting android malware. In Proceedings of
the 11th ACM on Asia Conference on Computer and Communications
Security (pp. 377-388). ACM.

[48] Chen, S. et al. (2018). Automated poisoning attacks and defenses in
malware detection systems: An adversarial machine learning approach.
computers & security, 73, 326-344.

[49] Chen, S. et al. (2016, October). Towards adversarial detection of mobile
malware: poster. In Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking (pp. 415-416). ACM.

[50] Fan, L. et al. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security (pp. 1748-1750). ACM.

[51] Mariconti, E. et al. (2016). Mamadroid: Detecting android malware
by building markov chains of behavioral models. arXiv preprint
arXiv:1612.04433.

[52] Kim, TaeGuen, et al. ”A multimodal deep learning method for Android
Malware detection using various features.” IEEE Transactions on Infor-
mation Forensics and Security 14.3 (2018): 773-788.

[53] K. Xu et al, ”DeepRefiner: Multi-layer Android Malware Detection
System Applying Deep Neural Networks,” 2018 IEEE European Sym-
posium on Security and Privacy (EuroS&P), London, 2018, pp. 473-487.

[54] Li, Li et al, ”Characterising Deprecated Android APIs,” Proceedings of
the 15th International Conference on Mining Software Repositories, pp.
254–264, 2018.

[55] Xie, Xiaofei et al. ”Automatic loop summarization via path dependency
analysis.” IEEE Transactions on Software Engineering (2017).

[56] Xie, Xiaofei et al. ”S-looper: automatic summarization for multipath
string loops.” In Proceedings of the 2015 International Symposium on
Software Testing and Analysis, pp. 188-198. ACM, 2015.

[57] Xie, Xiaofei et al. ”Proteus: Computing disjunctive loop summary via
path dependency analysis.” In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software En-
gineering, pp. 61-72. ACM, 2016

[58] Ma, Lei et al. ”Deepgauge: Multi-granularity testing criteria for deep
learning systems.” In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pp. 120-131. ACM,
2018.

[59] Ma, Lei et al. ”DeepMutation: Mutation Testing of Deep Learning Sys-
tems.” The 29th IEEE International Symposium on Software Reliability
Engineering (ISSRE) (2018).

[60] L. Ma et al. ”DeepCT: Tomographic Combinatorial Testing for Deep
Learning Systems.” 2019 IEEE 26th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER) (2019).

[61] Xie, Xiaofei et al. ”DeepHunter: A Coverage-guided Fuzz Testing
Framework for Deep Neural Networks.” Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA) (2019).

[62] Du, Xiaoning et al. ”DeepStellar: Model-based Quantitative Analysis
of Stateful Deep Learning Systems.” Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
pp.477–487, Tallinn, Estonia,2019.

[63] Xie Xiaofei et al. ”DiffChaser: Detecting Disagreements for Deep Neural
Networks.” Proceedings of the 28th International Joint Conference on
Artificial Intelligence (IJCAI),2019.

[64] Zhang, Jie M. et al. ”Machine Learning Testing: Survey, Landscapes
and Horizons.” arXiv e-prints 1906.10742,2019.


