Large-Scale Analysis of Framework-Specific Exceptions in
Android Apps

Lingling Fan!, Ting Su?*, Sen Chen!, Guozhu Meng>?
Yang Liu?, Lihua Xu'*, Geguang Pu**, Zhendong Su’

School of Computer Science and Software Engineering, East China Normal University, China
2School of Computer Science and Engineering, Nanyang Technological University, Singapore
3SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China
“Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China
SDepartment of Computer Science, University of California, Davis, USA
{ecnujanefan, tsuletgo,ecnuchensen}@gmail.com,{gzmeng, yangliu}@ntu.edu.sg
Ihxu@cs.ecnu.edu.cn,ggpu@sei.ecnu.edu.cn,su@cs.ucdavis.edu

ABSTRACT

Mobile apps have become ubiquitous. For app developers, it is a
key priority to ensure their apps’ correctness and reliability. How-
ever, many apps still suffer from occasional to frequent crashes,
weakening their competitive edge. Large-scale, deep analyses of
the characteristics of real-world app crashes can provide useful
insights to guide developers, or help improve testing and analysis
tools. However, such studies do not exist — this paper fills this gap.
Over a four-month long effort, we have collected 16,245 unique ex-
ception traces from 2,486 open-source Android apps, and observed
that framework-specific exceptions account for the majority of these
crashes. We then extensively investigated the 8,243 framework-
specific exceptions (which took six person-months): (1) identifying
their characteristics (e.g., manifestation locations, common fault
categories), (2) evaluating their manifestation via state-of-the-art
bug detection techniques, and (3) reviewing their fixes. Besides the
insights they provide, these findings motivate and enable follow-up
research on mobile apps, such as bug detection, fault localization
and patch generation. In addition, to demonstrate the utility of
our findings, we have optimized Stoat, a dynamic testing tool, and
implemented ExLocator, an exception localization tool, for Android
apps. Stoat is able to quickly uncover three previously-unknown,
confirmed/fixed crashes in Gmail and Google+; ExLocator is capa-
ble of precisely locating the root causes of identified exceptions in
real-world apps. Our substantial dataset is made publicly available
to share with and benefit the community.

CCS CONCEPTS
« Software and its engineering — Software testing and de-
bugging;

*Ting Su, Lihua Xu and Geguang Pu are the corresponding authors. Lingling Fan and
Ting Su contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5638-1/18/05...$15.00
https://doi.org/10.1145/3180155.3180222

KEYWORDS
Empirical study, mobile app bugs, testing, static analysis

ACM Reference Format:

Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang
Pu, Zhendong Su. 2018. Large-Scale Analysis of Framework-Specific Excep-
tions in Android Apps. In ICSE ’18: ICSE ’18: 40th International Conference
on Software Engineering , May 27-June 3, 2018, Gothenburg, Sweden. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3180155.3180222

1 INTRODUCTION

Mobile applications have gained great popularity in recent years.
For example, Google Play, the most popular Android market, has
over three million apps, and more than 50,000 apps are continuously
published on it each month [6]. To ensure competitive edge, app
developers and companies strive to deliver high-quality apps. One
of their primary concerns is to prevent fail-stop errors, such as app
crashes from occuring in release versions.

Despite the availability of off-the-shelf testing platforms (e.g.,
Roboelectric [76], JUnit [50], Appium [7]), and static checking tools
(e.g., Lint [31], FindBugs [23], SonarQube [82]) [51, 53], many re-
leased apps still suffer from crashes — two recent efforts [63, 85]
discovered hundreds of previously unknown crashes in popular
and well-tested commercial apps. Moreover, researchers have con-
tributed a line of work [3, 5, 10, 17, 43, 44, 60, 61, 63, 83-85, 88, 91]
to detect app crashes, but none of them have investigated the root
causes. It leaves developers unaware of how to avoid and fix these
bugs, and hinders the improvement of bug detection, fault localiza-
tion [48, 66, 81, 90], and fixing [25] techniques. As observed by our
investigation on 272,629 issues from 2,174 Android apps hosted on
Github and Google Code, developers are unable to resolve nearly
40% reported crashes,! which greatly compromises app quality.

This situation underlines the importance of characterizing a
large number of diverse real-world app crashes and investigating
how to effectively detect and fix them. However, such a study is
difficult and yet to be carried out, which has motivated this work.

When an app crashes, the Android runtime system will dump
an exception trace that provides certain clues of the issue (e.g., the
exception type, message, and the invoked methods). Each excep-
tion can be classified into one of three categories — application
exception, framework exception, and library exception — based on

IFiltered by the keywords “crash” or “exception” in their issue descriptions.

ICSE *18, May 27-June 3, 2018, Gothenburg, Sweden

which architecture layer threw the exception. In particular, our
study focuses on framework exceptions, which account for major-
ity of app crashes (affecting over 75% of the projects), as revealed
by our investigation in Section 4.1.

We face two key challenges in carrying out the study. The first is
the lack of comprehensive dataset. To enable crash analysis, we need
a comprehensive set of crashes from a large number of real-world
apps. Ideally, for each crash, it includes exception trace, buggy
source code, bug-triggering inputs, and the patches (if exists). How-
ever, to the best of our knowledge, no such dataset is publicly
available. Despite open-source project hosting platforms maintain
issue repositories, such as Github, our investigation reveals only
a small set of crash issues (16%) are accompanied with exception
traces. Among them, even if the issue is closed, it is not necessar-
ily associated with the buggy code version. The second concerns
difficulties in crash analysis. Analyzing crashes needs understand-
ing of the application logic as well as the Android framework (or
libraries). It is also necessary to cross-validate the root causes (e.g.,
reproducing crashes, investigating knowledge from developers).
However, no reliable tool exists that can facilitate our analysis.

To overcome these challenges and conduct this study, we made
substantial efforts. We have collected 16,245 unique exception traces
from 2,486 open-source Android apps by (1) mining their issue
repositories hosted on Github and Google Code; and (2) applying
state-of-the-art app testing tools (Monkey [34], Sapienz [63], and
Stoat [85]) on their recent versions (corresponding to 4,560 exe-
cutables) to complement the mined data. The whole data collection
process took four months. We identified 8,243 unique framework
exceptions, and spent nearly six person-months carefully inves-
tigating these crashes by examining the source code of apps and
the Android framework, fixes from developers, bug reports from
testing tools, and technical posts on Stack Overflow. We aim to
answer the following research questions:

e RQ1: Compared with other exception categories, are framework
exceptions recurring that affect most Android apps?

® RQ2: What are the common faults made by developers that cause
framework exceptions?

e RQ3: What is the current status of bug detection techniques on
detecting framework exceptions? Are they effective?

e RQ4: How do developers fix framework exceptions? Are there any
common practices? What are the difficulties for fixing?

Through answering the above questions, we aim to characterize
Android app crashes (caused by framework exceptions in particular)
and provide useful findings to developers as well as researchers. For
example, our investigation reveals framework exceptions are indeed
recurring. Moreover, they require more fixing efforts (on average
4 days per exception) but have lower issue closing rate (only 53%)
than application exceptions (67%). Through careful inspection, we
distilled 11 common faults that developers are most likely to make,
yet have not been well-investigated by previous work [18, 45, 92].

We further evaluate the detection abilities of current dynamic
testing and static analysis techniques on framework exceptions.
We are surprised to find static analysis tools are almost completely
ineffective (only gives correct warnings on 4 out of total 77 excep-
tion instances), although there are some plausible ways to improve
them. Dynamic testing tools, as expected, can reveal framework

L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su

exceptions, but still far from effective on certain fault categories.
Their testing strategies have a big impact on the detection ability.
In addition, we find most exceptions can be fixed by four common
practices with small patches (less than 20 code lines), but developers
still face several challenges during fixing.

Our findings enables several follow-up research, e.g., bug de-
tection, fault localization, and patch generation for android apps.
To demonstrate the usefulness of our findings, we have optimized
Stoat, a dynamic testing tool, and implemented ExLocator, an excep-
tion localization tool, for android apps. The results are promising:
Stoat quickly revealed 3 previously unknown bugs in Gmail and
Google+; ExLocator is able to precisely localize the root causes of
identified exceptions in real apps.

To summarize, this paper makes the following contributions:

o To our knowledge, we conducted the first large-scale study to
characterize framework-specific exceptions in Android apps, and
identified 11 common fault categories that developers are most
likely to make. The results provide useful insights for developers
and researchers.

e Our study evaluated the state-of-the-art exception detection
techniques, and identified common fixing practices of framework
exceptions. The findings shed light on proposing more effective
bug detection and fixing techniques.

o Our findings enable several follow-up research with a large-scale
and reusable dataset [21] that contains 16,245 unique exception
traces from 2,486 open-source apps. Our prototype tools also
demonstrate the usefulness of our findings.

2 PRELIMINARY
2.1 Existing Fault Study

Researchers have investigated Android and Symbian OSes’ fail-
ures [62] and Windows Phone app crashes [75]. As for the bugs of
Android apps, a number of studies exist in different aspects: perfor-
mance [55], energy [11], fragmentation [89], memory leak [78, 79],
GUI failures [1, 4], resource usage [54, 56], API stability [64], se-
curity [20, 65] and etc. However, none of them focus on functional
bugs, which are also critical to user loyalty and app success. Our
work focuses on this scope.

One of the first attempts at classifying functional bugs is from
Hu et al. [45]. They classify 8 bug types from 10 apps. Other ef-
forts [18, 92], however, have different goals: Coelho et al. [18] ana-
lyze exceptions to investigate the bug hazards of exception-handling
code (e.g., cross-type exception wrapping), Zaeem et al. [92] study
bugs to generate testing oracles for a specific set of bug types. None
of them give a comprehensive analysis, and the validity of their con-
clusions are unclear. Therefore, to our knowledge, we are the first
to investigate Android app crashes, and give an in-depth analysis.

Our study focuses on the framework-specific exceptions (frame-
work exception for short throughout the paper) that can crash apps,
i.e., those exceptions thrown from methods defined in the Android
framework due to an app’s violation of constraints enforced by
the framework. Note we do not consider the framework excep-
tions caused by the bugs of the framework itself. We do not analyze
application exceptions (leave this as our future work) and library ex-
ceptions (since different apps may use different third-party libraries
whose analysis requires other information).

Large-Scale Analysis of Framework-Specific Exceptions in Android Apps

2.2 Exception Model in Android

Android apps are implemented in Java, and thus inherit Java’s excep-
tion model. Java has three kinds of exceptions. (1) RuntimeException,
the exceptions that are thrown during the normal operation of the
Java Virtual Machine when the program violates the semantic con-
straints (e.g., null-pointer references, divided-by-zero errors). (2)
Error, which represents serious problems that a reasonable ap-
plication should not try to catch (e.g., OutOfMemeoryError). (3)
Checked Exception (all exceptions except (1) and (2)), these ex-
ceptions are required to be declared in a method or constructor’s
throws clause (statically checked by compilers), and indicate the
conditions that a reasonable client program might want to catch.
For RuntimeException and Error, the programmers themselves
have to handle them at runtime.

Figure 1 shows an example of RuntimeException trace. The bot-
tom part represents the root exception, i.e., NumberFormatException,
which indicates the root cause of this exception. Java uses excep-
tion wrapping, i.e., one exception is caught and wrapped in another
(in this case, the RuntimeException of the top part), to propagate
exceptions. Note the root exception can be wrapped by multiple
exceptions, and the flow from the bottom to the top denotes the
order of exception wrappings. An exception signaler is the method
(invalidReal in this case) that throws the exception, which is the
first method call under the root exception declaration .

java.lang.RuntimeException: Unable to resume activity {*}:
java.lang.NumberFormatException: Invalid double: “”
at android.app.ActivityThread.performResumeActivity(...)

Caused by: java.lang.NumberFormatException: Invalid double:*”
at java.lang.StringToReal.invalidReal(StringToReal.java:63)
at java.lang.StringToReal.parseDouble(StringToReal.java:248)

Figure 1: An example of RuntimeException trace

3 OVERVIEW

Figure 2 shows the overview of our study. We select F-droid [41]
apps as our subjects (Section 3.1), and use two methods, i.e., mining
issue repositories and applying testing tools, to collect exception
traces (Section 3.2). We investigate exception traces and other re-
sources (e.g., Android documentation, app source code, Stack Over-
flow posts) to answer RQ1~RQ4 (Section 4). This study enables
several follow-up research detailed in Section 5.

3.1 App Subjects

We choose F-droid, the largest repository of open-source Android
apps, as the source of our study subjects, since it has three important
characteristics: (1) F-droid contains a large set of apps. At the time
of our study, it has more than 2,104 unique apps and 4,560 different
app versions, and maintains their metadata (e.g., source code links,
release versions). (2) The apps have diverse categories (e.g., Internet,
Personal, Tools), covering different maturity levels of developers,
which are the representatives of real-world apps. (3) All apps are
open-source and hosted on Github, Google Code, SourceForge and
etc, which makes it possible for us to access their source code and
issue repositories for analysis.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

3.2 Data Collection

Table 1 summarizes the statistics of the collected exception traces.
We also collect other data for analysis from Stack Overflow and
static analysis tools. The details are explained as follows.

Table 1: Statistics of collected crashes

Approach #Projects #Crashes #Unique Crashes
Hosting Platforms 2174 7764 6588
(Github/Google Code) (2035/137) (7660/104) (6494/94)

Testing Tools 2104 13271 9722
(Monkey/Sapienz/Stoat) (4560 versions) (3758/4691/4822) (3086/4009/3535)
Total 2486 (1792 overlap) 21035 16245

Github and Google Code. We collected exception traces from
Github and Google Code since they host over 85% (2,174/2,549)
F-droid apps. To automate data collection, we implemented a web
crawler to automatically crawl the issue repositories of these apps,
and collected the issues that contain exception traces. In detail,
the crawler visits each issue and its comments to extract valid
exception traces. Additionally, it utilizes Github and Google Code
APIs to collect project information such as package name, issue id,
number of comments, open/closed time. We took about two weeks
and successfully scanned 272,629 issues from 2,174 apps, and finally
mined 7,764 valid exception traces (6,588 unique) from 583 apps.
Automated Testing Tools. We set up as follows: (1) We chose three
state-of-the-art Android app testing tools with different testing
techniques: Google Monkey [34] (random testing), Sapienz (search-
based testing), and Stoat (model-based testing). (2) We selected
all the recent release versions (total 4,560 versions of 2,104 apps,
each app has 1~3 recent release versions) maintained by F-droid as
testing subjects. Each tool is configured with default setting and
given 3 hours to thoroughly test each version on a single Android
emulator. Each emulator is configured with KitKat Android OS
(SDK 4.3.1, API level 18). The evaluation is deployed on three phys-
ical machines (64-bit Ubuntu/Linux 14.04). Each machine runs 10
emulators in parallel. (3) We collect coverage data by Emma [77] or
JaCoCo [42] to enable the testing of Sapienz and Stoat.

The evaluation took four months, and finally detected total 13,271
crashes (9,722 unique). In detail, Monkey detected 3,758 crashes
(3,086 unique), Sapienz 4,691 crashes (4,009 unique), Stoat 4,822
crashes (3,535 unique). During testing, we record each exception
trace with bug-triggering inputs, screenshots and detection time
and efc, to help our analysis. Further. we find the issue repositories
of Github/Google Code only record 545 unique crashes for these
recent versions, which accounts for only 5.6% of those detected
by testing tools. This indicates these detected exception traces can
effectively complement the mined exceptions.

Stack Overflow. According to exception traces mined from the
two sources above, we also collect the most relevant posts on Stack
Overflow by searching posts with key word “Android”, exception
types and detailed descriptions. We record information like create
time, number of answers, question summary. We mined totally
15,678 posts of various exceptions.

Static Analysis Tools. We also collect data from four state-of-the-
art static analysis tools (Lint, PMD, FindBugs, SonarQube), which
either serves as a plug-in of Android Studio or supports Android
projects. We apply each tool on apps to collect potential bugs,
warnings or code smells for in-depth analysis.

ICSE *18, May 27-June 3, 2018, Gothenburg, Sweden

Android doc.
& Java spec.

stackoverflow E@

Lava

L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su

Project source code

L, v Exception category
v Exception-prone module

RQ1

1
1
1
1
(Monkey, Sapienz, Stoat) H Y A4 A4
= — 1| Exception Category|
Ej - “\a| crash i Analysis
7 |
1

reports
S~—

Root Cause
Analysis T

crash issues &

v Taxonomy of crash
™ |v Root cause pattern

Eb Proof of
Concept
RQ2 :
i

=y Apks

comments E‘% +

—
N~~———

Bug Detection i,
\8—' Crawling —| Fixing Tool Evaluation
Projects 4 —

=Y

(a) Data Collection

Bug Fixing i,
Analysis

(b) Crash Analysis

Exception Traces
Buggy source code

’

v Detection capabilities |rQ3 '
v Detection cost 1

' S ——
v Fixing pattern RQ4 i Crash Benchmark
v Fixing effort H

1

1

1

'

(c) Application

Bug-triggering inputs
Exception fixes
Stack Overflow posts

Figure 2: Overview of our study and its applications

4 EMPIRICAL STUDY
4.1 ROQ1: Exception Categories

Exception Categories. To investigate app crashes, we group their
exception traces into three different categories according to their
exception signalers. In detail, we refer to Android-18 API documen-
tation [26] and use the rules below (adopted by prior work [18]) to
categorize exceptions: (1) Application Exception: the signaler is from
the app itself (identified by the app’s package name). (2) Frame-
work Exception: the signaler is from the Android framework, i.e.,
from these packages: “android.*”, “com.android.*”, “java.*”,
and “javax.*”. (3) Library Exception: the signaler is from the core
libraries reused by Android (e.g., “org.apache.*”, “org. json.x”,
“org.w3c.*” and etc) or third-party libraries used by the app.

Table 2: Statistics of the exceptions from Github and Google
Code grouped by their signalers (M: Median)

Exception Issue Fixin,
C P #Projects Occurences #Types Duration g
ategory Rate
M (Q1/Q3)
App 268 (45.8%) 1552(23.6%) 88 (34%) 2(0/17) 67%
Framework 441 (75.3%) 3350 (50.8%) 127 (50%) 4 (1/30) 53%
Library 253 (43.2%) 1686 (25.6%) 132 (52%) 3 (1/16) 57%

Table 2 classifies the exceptions from Github and Google Code
according to the above rules, and shows the number of their affected
projects, occurrences, number of exception types, issue durations
(the days during the issue was opened and closed), and the fixed
issue rate (the percentage of closed issues). From the table, we
observe two important facts: (1) Framework exceptions are more
pervasive and recurring. It affects 75.3% projects, and occupies 50.8%
exceptions. (2) Framework exceptions require more fixing effort. On
average, it takes 2 more times effort (see column 5) to fix a frame-
work exception than an application exception

These facts are reasonable. First, most apps heavily use APIs
provided by Android Development Framework (ADF) to achieve
their functionalities. ADF enforces various constraints to ensure
the correctness of apps, however, if violated, apps may crash and
throw exceptions. Second, fixing application exceptions is relatively
easy since developers are familiar with the code logic. However,
when fixing framework exceptions, they have to understand and
locate the constraints they violate, which usually takes longer.
Locations of Framework Exception Manifestation. To further
understand framework exceptions, we group them by the class

names of their signalers. In this way, we get more than 110 groups.
To distill our findings, we further group these classes into 17 mod-
ules. A module is used to achieve either one general purpose or
stand-alone functionality from the perspective of developers. We
group the classes that manage the Android application model,
e.g., Activities, Services, into App Management (corresponding to
android.app. *); the classes that manage app data from content
provider and SQLite into Database (android.database. *); the classes
that provide basic OS services, message passing and inter-process
communication into OS (android. os. *). Other modules include
Widget (UI widgets), Graphics (graphics tools that handle UI draw-
ing), Fragment (one special kind of activity), WindowsManager
(manage window display) and etc.

300
234 555

200
100
0
o
2

Figure 3: Exception-proneness of Android modules for
framework exceptions (M. refers to Management)

Unique Projects

O & & @ &

N @

X &
'

Figure 3 shows the exception-proneness of these modules across
all apps. We find App Management, Database and OS are the top
3 exception-prone modules. In App Management, the most com-
mon exceptions are ActivityNotFound (caused by no activity is
found to handle the given intent) and I1legalArgument (caused by
improper registering/unregistering Broadcast Receiver in the
activity’s callbacks) exceptions. Although Activity, Broadcast
Receiver and Service are the basic building blocks of apps, sur-
prisingly, developers make the most number of mistakes on them.

As for Database, the exceptions of SQLite (e.g., SQLiteException,
SQLiteDatabaselocked, CursorIndexOutOfBounds) account for
the majority, which reflects the various mistakes of using SQLite. In
0S, SecurityException, I1legalArgument, NullPointer are the
most common ones. As for the other modules, there are also interest-
ing findings: (1) improper use of ListView with Adapter throws a
large number of I1legalState exception (account for 47%) in Wid-
get; (2) improper use of Bitmap causes OutOfMemoryError (48%)

Large-Scale Analysis of Framework-Specific Exceptions in Android Apps

in Graphics; (3) improper handling callbacks of Fragment brings
IllegalState (85%) in Fragment; improper showing or dismissing
dialogs triggers BadTokens (25%) in WindowManager.

Answer to RQ1: Framework exceptions are pervasive, among
which App Management, Database and OS are the three most
exception-prone modules for developers.

4.2 RQ2: Taxonomy of Framework Exceptions

This section investigates framework exceptions. We classify them
into different categories by their root causes. Root cause, from the
view of developers, is the initial cause of the exception.
Exception Buckets. Following the common industrial practice, we
group framework exceptions into different buckets. Each bucket
contains the exceptions that share the similar root cause. To achieve
this, we use the exception type, message and signaler to approxi-
mate the root cause. For example, the exception in Figure 1 is labeled
as (NumberFormatException, “invalid double”, invalidReal). Fi-
nally, we get 2,016 buckets, and find the exceptions from the top
200 buckets have occupied over 80% of all exceptions. The remain-
ing 20% buckets have only 5 exceptions or fewer in each of them.
Therefore, we focus on the exceptions of the top 200 buckets.
Analysis Methods. We randomly select a number of exceptions
from each bucket, and use three complementary resources to fa-
cilitate root cause analysis: (1) Exception-Fix Repository. We set up
a repository that contains pairs of exceptions and their fixes. In
particular, (i) from 2,035 Android apps hosted on Github, we mined
284 framework exception issues that are closed with corresponding
patches. To set up this mapping, we checked each commit message
by identifying the keywords “fix”/“resolve”/“close” and the issue id.
(i) We also manually checked the remaining issues to include valid
ones that are missed by the keyword rules. We finally got 194 valid
issues. We investigate each exception trace and its patch to under-
stand the root causes. (2) Exception Instances Repository. From the
9,722 exceptions detected by testing tools, we filtered out the frame-
work exceptions, and mapped each of them with its exception trace,
source code version, bug-triggering inputs and screenshots. When
an exception type under analysis is not included or has very few
instances in the exception-fix repository, we refer to this repository
to facilitate analysis by using available reproducing information.
(3) Technical Posts. For each exception type, we referred to the posts
from Stack Overflow collected in Section 3.2 when needing more
information from developers and cross-validate our understanding.
Taxonomy. We analyzed 86 exception types? (covering 84.6% of all
framework exceptions), and finally distilled 11 common faults that
developers are most likely to make. Table 3 lists them by the order
of closing rate from highest to lowest. We explain them as follows.
e Component Lifecycle Error. Android apps are comprised of dif-
ferent components. Each component is required to follow a pre-
scribed lifecycle paradigm, which defines how the component is
created, used and destroyed [39]. For example, Activity provides
a core set of six callbacks to allow developers to know its cur-
rent state. If developers improperly handle the callbacks or miss
state checking before some tasks, the app can be fragile consid-
ering the complex environment interplay (e.g., device rotation,

2 After the investigation on a number of NullPointerExceptions, we find most of
them are triggered by null object references. So we did not continue to analyze them.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

class DataRetrieverTask extends AsyncTask<String, ...> {
private BankEditActivity context;
protected Void doInBackground(final String... args) {
. //update bank info via the remote server
}
protected void onPostExecute(final Void unused) {
. //show the update progress
AlertDialog.Builder builder = new AlertDialog.Builder(context);
. //set dialog message
AlertDialog alert = builder.create();
+ if(!context.isFinishing()) {
alert.show();
+ }
1}

Figure 4: An Example of Lifecycle Error

... // Once a sync is request, a new AsyncTask is fired-off
private class NoteSyncTask extends AsyncTask<Void,Void,...>{
protected LoginStatus doInBackground(Void... voids) {
... // check local note status
dbHelper.updateNote(note.getId(), remoteNote, note);
1}
... // the method of dbHelper
int updateNote(long id, CloudNote remoteNote, ...) {
SQLiteDatabase db = this.getWritableDatabase();
... //backup local notes, take a while
db.update(table_notes, values, ...);
- db.close();
}

Figure 5: An Example of Concurrency Error
private List<Geocache> cachelList = new ArraylList<>();
private CachelListAdapter adapter =

... // adapter binds cachelList and ListView

new AsyncTask<Void, Void, Void>() {
protected Void doInBackground(final Void... params){
//run in the background thread
final Set<Geocache> cachelListTmp = ... //query database
if (CollectionUtils.isNotEmpty(cacheListTmp)){
cachelist.clear();
cachelist.addAll(cacheListTmp);
-}
1}

Figure 6: An Example of UI Update Error

network interrupt). Bankdroid [12] (Figure 4) is an app for pro-
viding service of Swedish banks. The app uses a background thread
DataRetrieverTask to perform data retrieval, and pops up a dialog
when the task is finished. However, if the user edits and updates a
bank from BankEditActivity (which starts DataRetrieverTask),
during which he presses the back button, the app will crash when
the updates finish. The reason is that the developers fail to check
BankEditActivity’s state (in this case, destroyed) after the task
is finished. The bug triggers a BadTokenException and was fixed
in revision 8b31cd3 [13]. Besides, Fragment [28], a reusable class
implementing a portion of Activity, has much more complex
lifecycle. It provides a core set of 12 callbacks to manage its state
transition, which makes lifecycle management more challenging,
e.g., state loss of Fragments, attachment loss from its activity.

e Concurrency Error. Android system provides such concurrent
programming constructs as AsyncTask and Thread to execute in-
tensive tasks. However, improper handling concurrent tasks may
bring data race [14] or resource leak [54], and even cause app
crashes. Nextcloud Notes [71] (Figure 5), a cloud-based notes-taking
app that automatically synchronizes local and remote notes, when
the app attempts to re-open an already-closed database [72]. The
exception can be reproduced by executing these two steps repeat-
edly: (1) open any note from the list view; (2) close the note as
quickly as possible by pressing back-button. The app creates a new

ICSE *18, May 27-June 3, 2018, Gothenburg, Sweden

public class GSMService extends LocationBackendService{
protected Thread worker = null;
... //start the service
worker = new Thread() {
public void run() {
+ Looper.prepare();
final PhoneStatelistener listener =
new PhoneStatelistener() {
... //callbacks to monitor phone state change

1

worker.start();

¥

Figure 7: An Example Violating Framework Constraints

NoteSyncTask every time when a note sync is requested, which
connects with the remote sever and updates the local database by
calling updateNote (). However, when there are multiple update
threads, such interleaving may happen and crash the app: Thread
A is executing the update, and Thread B gets the reference of the
database; Thread A closes the database after the task is finished,
and Thread B tries to update the closed database. The develop-
ers fixed this exception by leaving the database unclosed (since
SQLiteDatabase already implemented thread-safe database access
mechanism) in revision aala972 [73].

e UI Update Error. Each Android app owns a Ul thread, which is
in charge of dispatching events and rendering user interface. To
ensure good responsiveness, apps should offload intensive tasks
to background threads. However, many developers fail to keep
in mind that Android UI toolkit is not thread-safe and one should
not manipulate UI from a background thread [37]. cgeo [15] (Fig-
ure 6) is a popular full-featured client for geocaching. When re-
freshing cachelList (cachelList is associated with a ListView via
an ArrayAdapter), the developers query the database and sub-
stitute this list with new results (via clear() and addAl11()) in
doInbackground. However, the app crashes when the list is re-
freshed. The reason is that cachelList is maintained by the UL
thread, which internally checks the equality of item counts be-
tween ListView and cachelList. But when a background thread
touches cachelist, the checking will fail and an exception will
be thrown. The developer realized this, and fixed it by moving the
refreshing operations into onPostExecute, which instead runs in
the UI thread (in revision déb4e4d [16]).

e Framework Constraint Error. Android framework enforces var-
ious constraints for app development. For example, Handler is
part of Android framework for managing threads, which allows to
send and process messages or runnable objects associated with a
thread’s message queue [29]. Each Handler instance must be associ-
ated with a single thread and the message queue of this thread®. Other-
wise, a runtime exception will be thrown. Local-GSM-Backend [57]
(Figure 7), a popular cell-tower based location lookup app, uses
a thread worker to monitor the changes of telephony states via
PhoneStatelListener. However, the developers are unaware that
PhoneStateListener internally maintains a Handler instance to
deliver messages [36], and thus requires setting up a message loop
in worker. They later fixed it by calling Looper#prepare() (in
revision 07e4a759 [58]). Other constraints include performance

3A thread by default is not associated with a message queue; to create it,
Looperttprepare() should be called in the thread [32].

L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su

public void onCreate(SQLiteDatabase db) {
. //create database tables
db.execSQL(CREATE_FRIENDS_TABLE);

}
public void onUpgrade(SQLiteDatabase db, int oldVersion,
int newVersion) {
// upgrade database
if (oldVersion < 5) { ... }
if (oldVersion < 6) {
- db.execSQL("create table temp_table as
select * from " + TABLE_FRIENDS);
- db.execSQL("drop table " + TABLE_FRIENDS);
+ db. execSQL(CREATE_FRIENDS_TABLE);

b3

Figure 8: An Example of Database Management Error

consideration (avoid performing network operations in the main UL
thread [35], permission consideration (require run-time permission
grant for dangerous permissions [38] since Android 6.0, otherwise
SecurityException) and etc.

® Database Management Error. Improper manipulating database
columns/tables causes many exceptions. Besides this, improper data
migration for version updates is another major reason. Atarashii [8]
(Figure 8) is a popular app for managing the reading and watching
of anime. When the user upgrades from v1.2 to v1.3, the app crashes
once started. The reason is that the callback onCreate() is only
called if no old version database file exists, so the new database
table friends is not successfully created when upgrading. Instead,
onUpgrade() is called, it crashes the app because the table friends
does not exist (fixed in revision b311ec3 [9]).

e API Updates and Compatibility. Android system is evolving
fast. API updates and implementation (e.g., SDKs, core libraries)
changes can affect the robustness of apps. Device fragmentation [89]
aggravates this problem. For example, Service should be started ex-
plicitly since Android 5.0; the change of the comparison contract of
Collections#sort() [47] since JDK 7 crashes several apps since
the developers are unaware of this.

e Memory/Hardware Error. Android devices have limited resources
(e.g., memory). Improper using of resources may bring exceptions.
For example, OutOfMemoryError occurs if loading too large Bitmaps;
RuntimeException appears whenMediaRecorder#stop() is called
but no valid audio/video data is received.

® XML Design Error. Android supports Ul design and resource
configuration in the form of XML files. Although IDE tools have
provided much convenience, mistakes still exist, e.g., misspelling
custom UI control names, forgetting to escape special characters
(e.g., “$”, “%”) in string texts, failing to specify correct resources in
colors.xml and strings.xml.

e API Parameter Error. Developers make this type of mistakes
when they fail to consider all possible input contents or formats,
and feed malformed inputs as the parameters of APIs. For example,
they tend to directly use the results from SharedPreference or
database queries without any checking.

® Resource Not Found Error. Android apps heavily use external
resources (e.g., databases, files, sockets, third-party apps and li-
braries) to accomplish tasks. Developers make this mistake when
they ignore checking their availability before use.

¢ Indexing Error. Indexing error happens when developers access
data, e.g., database, string, and array, with a wrong index value. One

Large-Scale Analysis of Framework-Specific Exceptions in Android Apps

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 3: Statistics of 11 common fault categories, and the evaluation results of static analysis tools on them, sorted by closing

rate in descending order.

Category (Name for short) Occurrence #S.0. posts #Instance Tt Tm dBungsanC g;%s SonarQube }Czil(::mg
API Updates and Compatibility (API) 68 60 7 - - - - 93.3%
XML Layout Error (XML) 122 246 4 1 - - - 93.2%
API Parameter Error (Parameter) 820 819 6 - - - - 88.5%
Framework Constraint Error (Constraint) 383 1726 12 3 - - - 87.7%
Others (Java-specific errors) 249 4826 10 - - - - 86.1%
Index Error (Index) 950 218 4 - - - - 84.1%
Database Management Error (Database) 128 61 3 - - - - 76.8%
Resource-Not-Found Error (Resource) 1303 7178 5 - - - - 75.3%
UI Update Error (UI) 327 666 3 - - - - 75.0%
Concurrency Error (Concurrency) 372 263 7 - - - - 73.5%
Component Lifecycle Error (Lifecycle) 608 1065 11 - - - - 58.8%
Memory/Hardware Error (Memory) 414 792 3 - - - - 51.6%

typical example is the CursorIndexOutOfBounds exception caused
by accessing database with incorrect cursor index.

In Table 3, column 2 and 3, respectively, counts the occurrences of
each category and the number of Stack Overflow posts on discussing
these faults; column 4 shows the number of distinct exception types
of each category (total 75 instances). We find that (1) Besides the
“trivial" errors such as Resource-Not-Found Error, Index Error and
API Parameter Error, app developers are more likely to make An-
droid specific errors, e.g., Lifecycle Error, Memory/Hardware Error,
Android Framework Constraint Error. (2) developers also discuss
more on Android Framework Constraint Error, Lifecycle Error and
API Parameter Error. Additionally, we find existing mutation opera-
tors [19, 52] designed for detecting app bugs can cover only a few of
these 75 instances. Deng et al.’s 11 operators [19] can only detect 2
instances (the remaining ones detect Ul and event handling failures
instead of fatal crashes); MDroid+ [52] proposes 38 operators, but
can only cover 8 instances.

Answer to RQ2: We distilled 11 fault categories that explain why
framework exceptions are recurring. Among them, developers make
more mistakes on Lifecycle Error, Memory/Hardware Error and
Android Framework Constraint Error. Existing mutation operators
are inadequate for detecting these errors.

4.3 RQ3: Auditing Bug Detection Tools

Dynamic testing and static analysis are the two main avenues to
help detect software bugs. This section investigates the detection
abilities of these two techniques on framework exceptions (catego-
rized in Section 4.2). In particular, we select three state-of-the-art
testing tools, i.e., Monkey, Sapienz, and Stoat; and four static analy-
sis tools widely used by android developers [53], i.e., Lint, FindBugs,
PMD, and SonarQube. Lint, developed by Google, detects code struc-
tural problems, and scans for android-specific bugs [27]. PMD uses
defect patterns to detect bad coding practices. FindBugs, provided
as a plugin in Android Studio, also enforces various checking rules,
and adopts control- and data-flow analysis to scan potential bugs
(e.g., null-pointer dereferences). SonarQube is a continuous code
quality platform that provides bug reports for suspicious code.

Static Analysis Tools. We randomly select 75 distinct exception
instances (corresponding to column 4 in Table 3) from Github that
cover all manifestations of root faults, and checkout the correspond-
ing buggy code version to investigate how many of them can be

detected by static analysis tools. Our investigation finds static tools
specialize in detecting bad practices, code smells, and potential bugs
that may lead to severe errors, but with a mass of false alarms.

As shown in Table 3, FindBugs, PMD, and SonarQube fail to
report any warnings on these bugs. Lint only identifies 4 out of 75
bugs, which include one XML error (the resource file “string.xml”
contains an illegal character “$”) and three framework constraint
errors (duplicate resource ids within a layout file; Fragment cannot
be instantiated; using the wrong AppCompat method). In addition,
although these tools claim to support android projects, we have
not found any android-specific rules in FindBugs and SonarQube,
and only three android rules [74] in PMD. Lint defines 281 android
rules [27] but detects only a few bugs. Therefore, the current static
analysis tools focus more on basic Java defects, and much less
effective in detecting framework exceptions of Android apps.
Dynamic Testing Tool. We apply testing tools on each app (total
2,104) with the same configuration in Section 3.2. As we observed,
they can detect many framework exceptions. To understand their
abilities, we use two metrics?. (1) detection time (the time to detect
an exception). Since one exception may be found multiple times, we
use the time of its first occurrence. (2) Occurrences (how many times
an exception is detected during a specified duration). Figure 9 and
Figure 10, respectively, show the detection time and occurrences of
exceptions by each tool grouped by the fault categories.

Figure 9 shows concurrency errors are hard to detect for all
three tools (requiring longer time). But for other fault categories,
the time varies on different tools. For example, Sapienz is better
at database errors (since Sapienz implements a strategy, i.e., fill
strings in EditTexts, and then click “OK” instead of “Cancel” to
maximize code coverage, which is more likely to trigger database
operations); Monkey and Sapienz are better at lifecycle errors (since
both of them emit events very quickly without waiting the previous
ones to take effect, e.g., open and quickly close an activity without
waiting the activity finishes its task). Figure 10 shows it is easy for
three tools to detect API compatibility, Resource-Not-Found and
XML errors since the occurrences of these errors are much more
than those of the others. But for other categories, e.g., Concurrency,
Lifecyle, Memory, UI update errors, all of three tools are far from

“We have not presented the results of trace length, since we find the three tools cannot
dump the exact trace that causes a crash. Instead, they output the whole trace, which
cannot reflect their detection abilities.

ICSE *18, May 27-June 3, 2018, Gothenburg, Sweden

200

150

100

Detection Time (min)
o
2
8

u—re
U

API —Imh
XML [

Constraint H T }——
Concurrency ——{Inmml———i
Database ———)
Resource [HI———twowomm
Memory ——E———
Index —II——
Lifecycle HEIE———«
Others HEZ I ——
parameter H_ | }———
Index
Lifecycle —Emmm———
Others I l——
Parameter LT F——1

Database
Resource

XML E=— - -
° g
Constraint fI__}———
APl I -
Concurrency —I L mml———
Memory EE—— -

(a) Monkey (b) Sapienz

200

150

100

@
&

o

Constraint we -

AP HI
Concurrency ——m———

Index — [———

Lifecycle

Resource [l——twes wee v o+

Memory [E—

Database

(c) Stoat

Others HEE I —
Parameter ___ [}———

Figure 9: Detection time of exceptions by each tool

..

Ul e
i

XML » =

L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su

(a) gBittorrent-Controller revision 8de2@af
Cursor cursor = contentResolver.query(...);
- cursor.moveToFirst();
+ if(cursor != null & cursor.moveToFirst()) {
int columnIndex = cursor.getColumnIndex(filePath);
. // get the result from the cursor
+)

(b) WordPress revision df3392f
public class AbstractFragment extends Fragment{
protected void showError(int messageId) {
+ if(!isAdded()) { return; }
FragmentTransaction ft = getFragmentManager()...
... //commit a transaction to show a dialog

1}

(c) MTA-Fare-Buster revision dbaeldf

140

120

+
4

140

120

-

v v
+

-

v +
+ ot 9
v 9 o ¢ ‘.
& 100 100 ¢ 1! 5 100 + 7
c + +
Q g0 ¢ 80 P W, ;
5 + 3 +
g 60 4 ; 60 + MERLE 60 505
+
O ¢ . vty 40 ‘:"‘ 40 t . i
+ +
L alli ‘l;é. g 7L ll:ii. 511 Ep
+
[)
o & —ElLz 0 ol = o ARIESCHTY
EA2OLOAXOV 5SS I EF2002>2X 0V 5= EF2002>2X 005
£a 3 232255 cEagg8ssggss Eagp8csilss
F<cR8ECESTgT = S<cac52c928% = m(:@~c’u§°’m
£ 993ESosg X 5 So3Ecosg X 5 923 ECSOSE
b ESQe-9005F b ESQ8-005 ? ECRFOT005%
c 558s =Y¢ c 558 =Y¢ c 5g8s =g
o o8¢ J & o of8¢% J & S ofgf J
O g =X O g a O g a
(&)] (@]

@
3
8

(a) Monkey (b) Sapienz (c)

Figure 10: Occurrences of exceptions by each tool

effective regardless of their testing strategies. The main reason is
that these errors contain non-determinism (interact with threads).
After an in-depth inspection, we find that some Database errors
are hard to trigger because the app has to construct an appropriate
database state (e.g., create a table or insert a row, and fill in specific
data) as the precondition of the bug, which may take a long time. As
for Framework Constraint errors, some exceptions require special
environment interplay. For example, InstantiationException of
Fragment can only be triggered when a Fragment (without an empty
constructor) is destroyed and recreated. To achieve this, a testing
tool needs to change device rotation at an appropriate timing (when
the target Fragment is on the screen), or pause and stop the app by
switching to another one, and stay there for a long time (let Android
OS kill the app), and then return back to the app. Concurrency bugs
are hard to trigger since they usually need right timings of events.

Answer to RQ3: Existing static analysis tools are ineffective in
detecting framework exceptions. Dynamic testing tools are still
far from effective in detecting database, framework constraint and
CONCUrTency errors.

4.4 RQ4: Fixing Patterns and Efforts

This section uses the exception-fix repository constructed in RQ2
(194 instances) to investigate the common practices of developers
to fix framework exceptions. We categorize their fixing strategies
by (1) the types of code modifications (e.g., modify conditions, reor-
ganize/move code, tweak implementations); (2) the issue comments
and patch descriptions. We finally summarized 4 common fix pat-
terns, which can resolve over 80% of the issues.

® Refine Conditional Checks. Missing checks on API parameters,
activity states, index values, database/SDK versions, external re-
sources can introduce unexpected exceptions. Developers usually

String input = amountOnCard.getText().toString();
+ if (input.equals("")) {
+ amountOnCard.setText(...); //set default value
+)
float amountOnCardValue=Float.valueOf(input.toString());

Figure 11: Example fixes by adding conditional checks

// MozStumbler revision 6adbfe5
public class ServiceBroadcastReceiver extends BroadcastReceiver{
public void onReceive(Context context, Intent intent) {
String action = intent.getAction();
. // handle the intent

if (mMainActivity != null) {
mMainActivity.updateUI();

+ mMainActivity.runOnUiThread(new Runnable() {

+ public void run() {

+ mMainActivity.updateUI();

+ }

+ 1M

1}

Figure 12: Example fixes by moving code into correct thread

fix them via adding appropriate conditional checks. For example,
Figure 11 (a) checks cursor index to fix CursorIndexOutOfBound,
Figure 11 (b) checks the state of the activity attached by a Frag-
ment to fix I1legalState, and Figure 11 (c) checks the input of an
EditText to fix NumberFormat. We find most of exceptions from
Parameter Error, Indexing Error, Resource Error, Lifecycle Error, and
API Error can be fixed by this strategy.

® Move Code into Correct Thread. Messing up Ul and background
threads may incur severe exceptions. The common practice to fix
such problems is to move related code into correct threads. Figure 12
fixes CalledFromWrongThread by moving the code of modifying
UI widgets back to the Ul thread (via Activity#runOnUiThread())
that creates them. Similar fixes include moving the showings of
Toast or AlertDialog into the Ul thread instead of the background
thread since they can only be processed in the Looper of the UL
thread [24, 67]. Additionally, moving extensive tasks (e.g., network
access, database query) into background thread can resolve such
performance exceptions as NetworkOnMainThread and “Applica-
tion Not Responding" (ANR) [30].

e Work in Right Callbacks. Inappropriate handling lifecycle call-
backs of app components (e.g., Activity, Fragment, Service) can
severely affect the robustness of apps. The common practice to
fix such problems is to work in the right callback. For example, in
Activity, putting BroadcastReceiver’s register and unregister
into onStart() and OnStop() or onResume () and OnPause () can
avoid I1legalArgument; and committing a FragmentTransaction

Large-Scale Analysis of Framework-Specific Exceptions in Android Apps

140 IR 120
+ +
120‘ $ + + 100 .
+
S100 ¢ ¢ ‘ e 2 g '
T ¥ .)
£ 80 ¢ H S .t 4
A . 2 60
a 60 $ > +
)] = ‘]
2 T 40
2 40 5 $
- +
20 T !
b Bele
0 o,] =
Ea s yesgeLssd Ea s 8csgLese
f<5S85223£¢8 % E<5S5E825£8 %
@ ECg 30 lile) 1%} EC 30 o0
§ 38¢= 57§ § 388z 5§
6 goc s S gox 8
o o
(a) Issue duration (b) Changed line

Figure 13: Fixing Effort

before the activity’s state has been saved (i.e., before the callback
onSavelnstanceState()) can avoid state loss exception [59, 80].

e Adjust Implementation Choices. To resolve other exceptions,
developers have to adjust the implementation or do code refactor-
ing. For example, to fix OutOfMemory caused by loading Bitmap, the
common practice is to optimize memory usage by resizing the orig-
inal bitmap [33]; to fix data race exceptions, the common practice is
to adopt mutex locks (e.g., add synchronized to allow the execution
of only one active thread) or back up the shared data [70].

To further understand the characteristics of developer fixes, we
group these issues by their root causes, and compute three metrics:
(1) Issue Duration, which indicates how long the developers took to
fix the issue (Figure 13(a)); (2) Number of Changed Code Lines, i.e.,
the number of code lines® the developers changed to fix this issue
(Figure 13(b)); and (3) Issue Closing Rate, i.e., how many issues have
been closed (the last column in Table 3). We can see that the fixes for
Parameter Error, Indexing Error, Resource Error, and Database Error
require fewer code changes (most patches are less than 20 lines).
Because most of them can be fixed by refining conditional checks.
We also note UI Error, Concurrency Error, and Memory/Hardware
Error require larger code patches.

Further, by investigating the discussions and comments of de-
velopers when fixing, we find three important reasons that reveal
the difficulties they face.

o Difficulty of Reproducing and Validation. One main difficulty
is how to reproduce exceptions and validate the correctness of
fixes [68]. Most users do not report complete reproducing steps/in-
puts and other necessary information (e.g., exception trace, device
model, code version) to developers. Even if the exception trace is
provided, reproducing such exceptions as non-deterministic ones
(e.g., concurrency errors) is rather difficult. In such cases, after fixing
the issue, they choose to leave it for the app users to validate before
closing the issue. As shown in Figure 13 and Table 3, concurrency
errors have longer issue durations and lower fixing rate.

o Inexperience with Android System. A good understanding of
Android system is essential to correctly fix exceptions. As the clos-
ing rates in Table 3 indicate, developers are more confused by
Memory/Hardware Error, Lifecycle Error, Concurrency Error, and

5To reduce “noises”, we exclude comment lines (e.g., “//..7), annotation lines (e.g.,
“@Override”), unrelated code changes (e.g., “import **”, the code for new features).

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

UI Error. We find some developers use simple try-catch or compro-
mising ways (e.g., use commitAllowingStateLoss to allow activity
state loss) as workarounds. However, such fixes are often fragile.
e Fast Evolving APIs and Features. Android is evolving fast. As
reported, on average, 115 API updates occur each month [64]. More-
over, feature changes are continuously introduced. However, these
updates or changes may make apps fragile when the platform they
are deployed is different from the one they were built; and the devel-
opers are confused when such issues appear. For example, Android
6.0 introduces runtime permission grant — If an app uses danger-
ous permissions, developers have to get permissions from users at
runtime. However, we find several developers choose to delay the
fixing since they have not fully understand this new feature.

Answer to RQ4: Refining conditional checks, using correct thread
types, working in the right callbacks, adjusting implementation
choices are the 4 common fix practices. Memory/Hardware, Life-
cycle, Concurrency, and Ul update Error are more difficult to fix.

4.5 Discussion

Through this study, we find: (1) Besides the trivial errors,