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ABSTRACT
Mobile apps have become ubiquitous. For app developers, it is a
key priority to ensure their apps’ correctness and reliability. How-
ever, many apps still su�er from occasional to frequent crashes,
weakening their competitive edge. Large-scale, deep analyses of
the characteristics of real-world app crashes can provide useful
insights to guide developers, or help improve testing and analysis
tools. However, such studies do not exist — this paper �lls this gap.
Over a four-month long e�ort, we have collected 16,245 unique ex-
ception traces from 2,486 open-source Android apps, and observed
that framework-speci�c exceptions account for the majority of these
crashes. We then extensively investigated the 8,243 framework-
speci�c exceptions (which took six person-months): (1) identifying
their characteristics (e.g., manifestation locations, common fault
categories), (2) evaluating their manifestation via state-of-the-art
bug detection techniques, and (3) reviewing their �xes. Besides the
insights they provide, these �ndings motivate and enable follow-up
research on mobile apps, such as bug detection, fault localization
and patch generation. In addition, to demonstrate the utility of
our �ndings, we have optimized Stoat, a dynamic testing tool, and
implemented ExLocator, an exception localization tool, for Android
apps. Stoat is able to quickly uncover three previously-unknown,
con�rmed/�xed crashes in Gmail and Google+; ExLocator is capa-
ble of precisely locating the root causes of identi�ed exceptions in
real-world apps. Our substantial dataset is made publicly available
to share with and bene�t the community.
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1 INTRODUCTION
Mobile applications have gained great popularity in recent years.
For example, Google Play, the most popular Android market, has
over three million apps, and more than 50,000 apps are continuously
published on it each month [6]. To ensure competitive edge, app
developers and companies strive to deliver high-quality apps. One
of their primary concerns is to prevent fail-stop errors, such as app
crashes from occuring in release versions.

Despite the availability of o�-the-shelf testing platforms (e.g.,
Roboelectric [76], JUnit [50], Appium [7]), and static checking tools
(e.g., Lint [31], FindBugs [23], SonarQube [82]) [51, 53], many re-
leased apps still su�er from crashes — two recent e�orts [63, 85]
discovered hundreds of previously unknown crashes in popular
and well-tested commercial apps. Moreover, researchers have con-
tributed a line of work [3, 5, 10, 17, 43, 44, 60, 61, 63, 83–85, 88, 91]
to detect app crashes, but none of them have investigated the root
causes. It leaves developers unaware of how to avoid and �x these
bugs, and hinders the improvement of bug detection, fault localiza-
tion [48, 66, 81, 90], and �xing [25] techniques. As observed by our
investigation on 272,629 issues from 2,174 Android apps hosted on
Github and Google Code, developers are unable to resolve nearly
40% reported crashes,1 which greatly compromises app quality.

This situation underlines the importance of characterizing a
large number of diverse real-world app crashes and investigating
how to e�ectively detect and �x them. However, such a study is
di�cult and yet to be carried out, which has motivated this work.

When an app crashes, the Android runtime system will dump
an exception trace that provides certain clues of the issue (e.g., the
exception type, message, and the invoked methods). Each excep-
tion can be classi�ed into one of three categories — application
exception, framework exception, and library exception — based on
1Filtered by the keywords “crash” or “exception” in their issue descriptions.
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which architecture layer threw the exception. In particular, our
study focuses on framework exceptions, which account for major-
ity of app crashes (a�ecting over 75% of the projects), as revealed
by our investigation in Section 4.1.

We face two key challenges in carrying out the study. The �rst is
the lack of comprehensive dataset. To enable crash analysis, we need
a comprehensive set of crashes from a large number of real-world
apps. Ideally, for each crash, it includes exception trace, buggy
source code, bug-triggering inputs, and the patches (if exists). How-
ever, to the best of our knowledge, no such dataset is publicly
available. Despite open-source project hosting platforms maintain
issue repositories, such as Github, our investigation reveals only
a small set of crash issues (16%) are accompanied with exception
traces. Among them, even if the issue is closed, it is not necessar-
ily associated with the buggy code version. The second concerns
di�culties in crash analysis. Analyzing crashes needs understand-
ing of the application logic as well as the Android framework (or
libraries). It is also necessary to cross-validate the root causes (e.g.,
reproducing crashes, investigating knowledge from developers).
However, no reliable tool exists that can facilitate our analysis.

To overcome these challenges and conduct this study, we made
substantial e�orts.We have collected 16,245 unique exception traces
from 2,486 open-source Android apps by (1) mining their issue
repositories hosted on Github and Google Code; and (2) applying
state-of-the-art app testing tools (Monkey [34], Sapienz [63], and
Stoat [85]) on their recent versions (corresponding to 4,560 exe-
cutables) to complement the mined data. The whole data collection
process took four months. We identi�ed 8,243 unique framework
exceptions, and spent nearly six person-months carefully inves-
tigating these crashes by examining the source code of apps and
the Android framework, �xes from developers, bug reports from
testing tools, and technical posts on Stack Over�ow. We aim to
answer the following research questions:

• RQ1: Compared with other exception categories, are framework
exceptions recurring that a�ect most Android apps?
• RQ2:What are the common faults made by developers that cause
framework exceptions?
• RQ3: What is the current status of bug detection techniques on
detecting framework exceptions? Are they e�ective?
• RQ4: How do developers �x framework exceptions? Are there any
common practices? What are the di�culties for �xing?

Through answering the above questions, we aim to characterize
Android app crashes (caused by framework exceptions in particular)
and provide useful �ndings to developers as well as researchers. For
example, our investigation reveals framework exceptions are indeed
recurring. Moreover, they require more �xing e�orts (on average
4 days per exception) but have lower issue closing rate (only 53%)
than application exceptions (67%). Through careful inspection, we
distilled 11 common faults that developers are most likely to make,
yet have not been well-investigated by previous work [18, 45, 92].

We further evaluate the detection abilities of current dynamic
testing and static analysis techniques on framework exceptions.
We are surprised to �nd static analysis tools are almost completely
ine�ective (only gives correct warnings on 4 out of total 77 excep-
tion instances), although there are some plausible ways to improve
them. Dynamic testing tools, as expected, can reveal framework

exceptions, but still far from e�ective on certain fault categories.
Their testing strategies have a big impact on the detection ability.
In addition, we �nd most exceptions can be �xed by four common
practices with small patches (less than 20 code lines), but developers
still face several challenges during �xing.

Our �ndings enables several follow-up research, e.g., bug de-
tection, fault localization, and patch generation for android apps.
To demonstrate the usefulness of our �ndings, we have optimized
Stoat, a dynamic testing tool, and implemented ExLocator, an excep-
tion localization tool, for android apps. The results are promising:
Stoat quickly revealed 3 previously unknown bugs in Gmail and
Google+; ExLocator is able to precisely localize the root causes of
identi�ed exceptions in real apps.

To summarize, this paper makes the following contributions:
• To our knowledge, we conducted the �rst large-scale study to
characterize framework-speci�c exceptions in Android apps, and
identi�ed 11 common fault categories that developers are most
likely to make. The results provide useful insights for developers
and researchers.
• Our study evaluated the state-of-the-art exception detection
techniques, and identi�ed common �xing practices of framework
exceptions. The �ndings shed light on proposing more e�ective
bug detection and �xing techniques.
• Our �ndings enable several follow-up research with a large-scale
and reusable dataset [21] that contains 16,245 unique exception
traces from 2,486 open-source apps. Our prototype tools also
demonstrate the usefulness of our �ndings.

2 PRELIMINARY
2.1 Existing Fault Study
Researchers have investigated Android and Symbian OSes’ fail-
ures [62] and Windows Phone app crashes [75]. As for the bugs of
Android apps, a number of studies exist in di�erent aspects: perfor-
mance [55], energy [11], fragmentation [89], memory leak [78, 79],
GUI failures [1, 4], resource usage [54, 56], API stability [64], se-
curity [20, 65] and etc. However, none of them focus on functional
bugs, which are also critical to user loyalty and app success. Our
work focuses on this scope.

One of the �rst attempts at classifying functional bugs is from
Hu et al. [45]. They classify 8 bug types from 10 apps. Other ef-
forts [18, 92], however, have di�erent goals: Coelho et al. [18] ana-
lyze exceptions to investigate the bug hazards of exception-handling
code (e.g., cross-type exception wrapping), Zaeem et al. [92] study
bugs to generate testing oracles for a speci�c set of bug types. None
of them give a comprehensive analysis, and the validity of their con-
clusions are unclear. Therefore, to our knowledge, we are the �rst
to investigate Android app crashes, and give an in-depth analysis.

Our study focuses on the framework-speci�c exceptions (frame-
work exception for short throughout the paper) that can crash apps,
i.e., those exceptions thrown from methods de�ned in the Android
framework due to an app’s violation of constraints enforced by
the framework. Note we do not consider the framework excep-
tions caused by the bugs of the framework itself. We do not analyze
application exceptions (leave this as our future work) and library ex-
ceptions (since di�erent apps may use di�erent third-party libraries
whose analysis requires other information).
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2.2 Exception Model in Android
Android apps are implemented in Java, and thus inherit Java’s excep-
tionmodel. Java has three kinds of exceptions. (1) RuntimeException,
the exceptions that are thrown during the normal operation of the
Java Virtual Machine when the program violates the semantic con-
straints (e.g., null-pointer references, divided-by-zero errors). (2)
Error, which represents serious problems that a reasonable ap-
plication should not try to catch (e.g., OutOfMemeoryError). (3)
Checked Exception (all exceptions except (1) and (2)), these ex-
ceptions are required to be declared in a method or constructor’s
throws clause (statically checked by compilers), and indicate the
conditions that a reasonable client program might want to catch.
For RuntimeException and Error, the programmers themselves
have to handle them at runtime.

Figure 1 shows an example of RuntimeException trace. The bot-
tom part represents the root exception, i.e., NumberFormatException,
which indicates the root cause of this exception. Java uses excep-
tion wrapping, i.e., one exception is caught and wrapped in another
(in this case, the RuntimeException of the top part), to propagate
exceptions. Note the root exception can be wrapped by multiple
exceptions, and the �ow from the bottom to the top denotes the
order of exception wrappings. An exception signaler is the method
(invalidReal in this case) that throws the exception, which is the
�rst method call under the root exception declaration .

java.lang.RuntimeException: Unable to resume activity {*}: 
java.lang.NumberFormatException: Invalid double: “”

at android.app.ActivityThread.performResumeActivity(…)
….

Caused by: java.lang.NumberFormatException: Invalid double:“”
at java.lang.StringToReal.invalidReal(StringToReal.java:63) 
at java.lang.StringToReal.parseDouble(StringToReal.java:248)
….

Figure 1: An example of RuntimeException trace

3 OVERVIEW
Figure 2 shows the overview of our study. We select F-droid [41]
apps as our subjects (Section 3.1), and use two methods, i.e., mining
issue repositories and applying testing tools, to collect exception
traces (Section 3.2). We investigate exception traces and other re-
sources (e.g., Android documentation, app source code, Stack Over-
�ow posts) to answer RQ1⇠RQ4 (Section 4). This study enables
several follow-up research detailed in Section 5.

3.1 App Subjects
We choose F-droid, the largest repository of open-source Android
apps, as the source of our study subjects, since it has three important
characteristics: (1) F-droid contains a large set of apps. At the time
of our study, it has more than 2,104 unique apps and 4,560 di�erent
app versions, and maintains their metadata (e.g., source code links,
release versions). (2) The apps have diverse categories (e.g., Internet,
Personal, Tools), covering di�erent maturity levels of developers,
which are the representatives of real-world apps. (3) All apps are
open-source and hosted on Github, Google Code, SourceForge and
etc, which makes it possible for us to access their source code and
issue repositories for analysis.

3.2 Data Collection
Table 1 summarizes the statistics of the collected exception traces.
We also collect other data for analysis from Stack Over�ow and
static analysis tools. The details are explained as follows.

Table 1: Statistics of collected crashes
Approach #Projects #Crashes #Unique Crashes

Hosting Platforms
(Github/Google Code)

2174
(2035/137)

7764
(7660/104)

6588
(6494/94)

Testing Tools
(Monkey/Sapienz/Stoat)

2104
(4560 versions)

13271
(3758/4691/4822)

9722
(3086/4009/3535)

Total 2486 (1792 overlap) 21035 16245

Github and Google Code. We collected exception traces from
Github and Google Code since they host over 85% (2,174/2,549)
F-droid apps. To automate data collection, we implemented a web
crawler to automatically crawl the issue repositories of these apps,
and collected the issues that contain exception traces. In detail,
the crawler visits each issue and its comments to extract valid
exception traces. Additionally, it utilizes Github and Google Code
APIs to collect project information such as package name, issue id,
number of comments, open/closed time. We took about two weeks
and successfully scanned 272,629 issues from 2,174 apps, and �nally
mined 7,764 valid exception traces (6,588 unique) from 583 apps.
Automated Testing Tools.We set up as follows: (1)We chose three
state-of-the-art Android app testing tools with di�erent testing
techniques: Google Monkey [34] (random testing), Sapienz (search-
based testing), and Stoat (model-based testing). (2) We selected
all the recent release versions (total 4,560 versions of 2,104 apps,
each app has 1⇠3 recent release versions) maintained by F-droid as
testing subjects. Each tool is con�gured with default setting and
given 3 hours to thoroughly test each version on a single Android
emulator. Each emulator is con�gured with KitKat Android OS
(SDK 4.3.1, API level 18). The evaluation is deployed on three phys-
ical machines (64-bit Ubuntu/Linux 14.04). Each machine runs 10
emulators in parallel. (3) We collect coverage data by Emma [77] or
JaCoCo [42] to enable the testing of Sapienz and Stoat.

The evaluation took fourmonths, and �nally detected total 13,271
crashes (9,722 unique). In detail, Monkey detected 3,758 crashes
(3,086 unique), Sapienz 4,691 crashes (4,009 unique), Stoat 4,822
crashes (3,535 unique). During testing, we record each exception
trace with bug-triggering inputs, screenshots and detection time
and etc, to help our analysis. Further. we �nd the issue repositories
of Github/Google Code only record 545 unique crashes for these
recent versions, which accounts for only 5.6% of those detected
by testing tools. This indicates these detected exception traces can
e�ectively complement the mined exceptions.
Stack Overflow. According to exception traces mined from the
two sources above, we also collect the most relevant posts on Stack
Over�ow by searching posts with key word “Android”, exception
types and detailed descriptions. We record information like create
time, number of answers, question summary. We mined totally
15,678 posts of various exceptions.
Static Analysis Tools. We also collect data from four state-of-the-
art static analysis tools (Lint, PMD, FindBugs, SonarQube), which
either serves as a plug-in of Android Studio or supports Android
projects. We apply each tool on apps to collect potential bugs,
warnings or code smells for in-depth analysis.
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Figure 2: Overview of our study and its applications

4 EMPIRICAL STUDY
4.1 RQ1: Exception Categories
Exception Categories. To investigate app crashes, we group their
exception traces into three di�erent categories according to their
exception signalers. In detail, we refer to Android-18 API documen-
tation [26] and use the rules below (adopted by prior work [18]) to
categorize exceptions: (1) Application Exception: the signaler is from
the app itself (identi�ed by the app’s package name). (2) Frame-
work Exception: the signaler is from the Android framework, i.e.,
from these packages: “android.*”, “com.android.*”, “java.*”,
and “javax.*”. (3) Library Exception: the signaler is from the core
libraries reused by Android (e.g., “org.apache.*”, “org.json.*”,
“org.w3c.*” and etc) or third-party libraries used by the app.

Table 2: Statistics of the exceptions from Github and Google
Code grouped by their signalers (M: Median)
Exception
Category #Projects Occurences #Types

Issue
Duration
M (Q1/Q3)

Fixing
Rate

App 268 (45.8%) 1552 (23.6%) 88 (34%) 2 (0/17) 67%
Framework 441 (75.3%) 3350 (50.8%) 127 (50%) 4 (1/30) 53%
Library 253 (43.2%) 1686 (25.6%) 132 (52%) 3 (1/16) 57%

Table 2 classi�es the exceptions from Github and Google Code
according to the above rules, and shows the number of their a�ected
projects, occurrences, number of exception types, issue durations
(the days during the issue was opened and closed), and the �xed
issue rate (the percentage of closed issues). From the table, we
observe two important facts: (1) Framework exceptions are more
pervasive and recurring. It a�ects 75.3% projects, and occupies 50.8%
exceptions. (2) Framework exceptions require more �xing e�ort. On
average, it takes 2 more times e�ort (see column 5) to �x a frame-
work exception than an application exception

These facts are reasonable. First, most apps heavily use APIs
provided by Android Development Framework (ADF) to achieve
their functionalities. ADF enforces various constraints to ensure
the correctness of apps, however, if violated, apps may crash and
throw exceptions. Second, �xing application exceptions is relatively
easy since developers are familiar with the code logic. However,
when �xing framework exceptions, they have to understand and
locate the constraints they violate, which usually takes longer.
Locations of Framework Exception Manifestation. To further
understand framework exceptions, we group them by the class

names of their signalers. In this way, we get more than 110 groups.
To distill our �ndings, we further group these classes into 17 mod-
ules. A module is used to achieve either one general purpose or
stand-alone functionality from the perspective of developers. We
group the classes that manage the Android application model,
e.g., Activities, Services, into App Management (corresponding to
android.app.*); the classes that manage app data from content
provider and SQLite intoDatabase (android.database.*); the classes
that provide basic OS services, message passing and inter-process
communication into OS (android.os.*). Other modules include
Widget (UI widgets), Graphics (graphics tools that handle UI draw-
ing), Fragment (one special kind of activity), WindowsManager
(manage window display) and etc.
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Figure 3: Exception-proneness of Android modules for
framework exceptions (M. refers to Management)

Figure 3 shows the exception-proneness of these modules across
all apps. We �nd App Management, Database and OS are the top
3 exception-prone modules. In App Management, the most com-
mon exceptions are ActivityNotFound (caused by no activity is
found to handle the given intent) and IllegalArgument (caused by
improper registering/unregistering Broadcast Receiver in the
activity’s callbacks) exceptions. Although Activity, Broadcast
Receiver and Service are the basic building blocks of apps, sur-
prisingly, developers make the most number of mistakes on them.

As forDatabase, the exceptions of SQLite (e.g., SQLiteException,
SQLiteDatabaseLocked, CursorIndexOutOfBounds) account for
the majority, which re�ects the various mistakes of using SQLite. In
OS, SecurityException, IllegalArgument, NullPointer are the
most common ones. As for the other modules, there are also interest-
ing �ndings: (1) improper use of ListView with Adapter throws a
large number of IllegalState exception (account for 47%) inWid-
get; (2) improper use of Bitmap causes OutOfMemoryError (48%)
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in Graphics; (3) improper handling callbacks of Fragment brings
IllegalState (85%) in Fragment; improper showing or dismissing
dialogs triggers BadTokens (25%) inWindowManager.
Answer to RQ1: Framework exceptions are pervasive, among
which App Management, Database and OS are the three most
exception-prone modules for developers.

4.2 RQ2: Taxonomy of Framework Exceptions
This section investigates framework exceptions. We classify them
into di�erent categories by their root causes. Root cause, from the
view of developers, is the initial cause of the exception.
Exception Buckets. Following the common industrial practice, we
group framework exceptions into di�erent buckets. Each bucket
contains the exceptions that share the similar root cause. To achieve
this, we use the exception type, message and signaler to approxi-
mate the root cause. For example, the exception in Figure 1 is labeled
as (NumberFormatException, “invalid double”, invalidReal). Fi-
nally, we get 2,016 buckets, and �nd the exceptions from the top
200 buckets have occupied over 80% of all exceptions. The remain-
ing 20% buckets have only 5 exceptions or fewer in each of them.
Therefore, we focus on the exceptions of the top 200 buckets.
Analysis Methods. We randomly select a number of exceptions
from each bucket, and use three complementary resources to fa-
cilitate root cause analysis: (1) Exception-Fix Repository. We set up
a repository that contains pairs of exceptions and their �xes. In
particular, (i) from 2,035 Android apps hosted on Github, we mined
284 framework exception issues that are closed with corresponding
patches. To set up this mapping, we checked each commit message
by identifying the keywords “�x”/“resolve”/“close” and the issue id.
(ii) We also manually checked the remaining issues to include valid
ones that are missed by the keyword rules. We �nally got 194 valid
issues. We investigate each exception trace and its patch to under-
stand the root causes. (2) Exception Instances Repository. From the
9,722 exceptions detected by testing tools, we �ltered out the frame-
work exceptions, and mapped each of them with its exception trace,
source code version, bug-triggering inputs and screenshots. When
an exception type under analysis is not included or has very few
instances in the exception-�x repository, we refer to this repository
to facilitate analysis by using available reproducing information.
(3) Technical Posts. For each exception type, we referred to the posts
from Stack Over�ow collected in Section 3.2 when needing more
information from developers and cross-validate our understanding.
Taxonomy. We analyzed 86 exception types2 (covering 84.6% of all
framework exceptions), and �nally distilled 11 common faults that
developers are most likely to make. Table 3 lists them by the order
of closing rate from highest to lowest. We explain them as follows.
• Component Lifecycle Error. Android apps are comprised of dif-
ferent components. Each component is required to follow a pre-
scribed lifecycle paradigm, which de�nes how the component is
created, used and destroyed [39]. For example, Activity provides
a core set of six callbacks to allow developers to know its cur-
rent state. If developers improperly handle the callbacks or miss
state checking before some tasks, the app can be fragile consid-
ering the complex environment interplay (e.g., device rotation,
2After the investigation on a number of NullPointerExceptions, we �nd most of
them are triggered by null object references. So we did not continue to analyze them.

class DataRetrieverTask extends AsyncTask<String, ...> {
private BankEditActivity context;
protected Void doInBackground(final String... args) {    
... //update bank info via the remote server

}
protected void onPostExecute(final Void unused) {
... //show the update progress
AlertDialog.Builder builder = new AlertDialog.Builder(context);
... //set dialog message
AlertDialog alert = builder.create();

+ if(!context.isFinishing()) {
alert.show();

+ }
}}

Figure 4: An Example of Lifecycle Error
... // Once a sync is request, a new AsyncTask is fired-off

private class NoteSyncTask extends AsyncTask<Void,Void,...>{

protected LoginStatus doInBackground(Void... voids) {

... // check local note status

dbHelper.updateNote(note.getId(), remoteNote, note); 

}}

... // the method of dbHelper

int updateNote(long id, CloudNote remoteNote, ...) {

SQLiteDatabase db = this.getWritableDatabase();

... //backup local notes, take a while

db.update(table_notes, values, ...);

- db.close();

}

Figure 5: An Example of Concurrency Error
private List<Geocache> cacheList = new ArrayList<>();
private CacheListAdapter adapter =   

... // adapter binds cacheList and ListView
new AsyncTask<Void, Void, Void>() {
protected Void doInBackground(final Void... params){

//run in the background thread
final Set<Geocache> cacheListTmp = ... //query database

- if (CollectionUtils.isNotEmpty(cacheListTmp)){
- cacheList.clear();
- cacheList.addAll(cacheListTmp);
- }

}}

Figure 6: An Example of UI Update Error

network interrupt). Bankdroid [12] (Figure 4) is an app for pro-
viding service of Swedish banks. The app uses a background thread
DataRetrieverTask to perform data retrieval, and pops up a dialog
when the task is �nished. However, if the user edits and updates a
bank from BankEditActivity (which starts DataRetrieverTask),
during which he presses the back button, the app will crash when
the updates �nish. The reason is that the developers fail to check
BankEditActivity’s state (in this case, destroyed) after the task
is �nished. The bug triggers a BadTokenException and was �xed
in revision 8b31cd3 [13]. Besides, Fragment [28], a reusable class
implementing a portion of Activity, has much more complex
lifecycle. It provides a core set of 12 callbacks to manage its state
transition, which makes lifecycle management more challenging,
e.g., state loss of Fragments, attachment loss from its activity.
• Concurrency Error. Android system provides such concurrent
programming constructs as AsyncTask and Thread to execute in-
tensive tasks. However, improper handling concurrent tasks may
bring data race [14] or resource leak [54], and even cause app
crashes. Nextcloud Notes [71] (Figure 5), a cloud-based notes-taking
app that automatically synchronizes local and remote notes, when
the app attempts to re-open an already-closed database [72]. The
exception can be reproduced by executing these two steps repeat-
edly: (1) open any note from the list view; (2) close the note as
quickly as possible by pressing back-button. The app creates a new
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public class GSMService extends LocationBackendService{ 
protected Thread worker = null;
... //start the service
worker = new Thread() {        

public void run() {
+ Looper.prepare();

final PhoneStateListener listener = 
new PhoneStateListener() {
... //callbacks to monitor phone state change    

};
}       
worker.start();

}

Figure 7: An Example Violating Framework Constraints

NoteSyncTask every time when a note sync is requested, which
connects with the remote sever and updates the local database by
calling updateNote(). However, when there are multiple update
threads, such interleaving may happen and crash the app: Thread
A is executing the update, and Thread B gets the reference of the
database; Thread A closes the database after the task is �nished,
and Thread B tries to update the closed database. The develop-
ers �xed this exception by leaving the database unclosed (since
SQLiteDatabase already implemented thread-safe database access
mechanism) in revision aa1a972 [73].
• UI Update Error. Each Android app owns a UI thread, which is
in charge of dispatching events and rendering user interface. To
ensure good responsiveness, apps should o�oad intensive tasks
to background threads. However, many developers fail to keep
in mind that Android UI toolkit is not thread-safe and one should
not manipulate UI from a background thread [37]. cgeo [15] (Fig-
ure 6) is a popular full-featured client for geocaching. When re-
freshing cacheList (cacheList is associated with a ListView via
an ArrayAdapter), the developers query the database and sub-
stitute this list with new results (via clear() and addAll()) in
doInbackground. However, the app crashes when the list is re-
freshed. The reason is that cacheList is maintained by the UI
thread, which internally checks the equality of item counts be-
tween ListView and cacheList. But when a background thread
touches cacheList, the checking will fail and an exception will
be thrown. The developer realized this, and �xed it by moving the
refreshing operations into onPostExecute, which instead runs in
the UI thread (in revision d6b4e4d [16]).
• Framework Constraint Error. Android framework enforces var-
ious constraints for app development. For example, Handler is
part of Android framework for managing threads, which allows to
send and process messages or runnable objects associated with a
thread’s message queue [29]. Each Handler instance must be associ-
ated with a single thread and the message queue of this thread3. Other-
wise, a runtime exception will be thrown. Local-GSM-Backend [57]
(Figure 7), a popular cell-tower based location lookup app, uses
a thread worker to monitor the changes of telephony states via
PhoneStateListener. However, the developers are unaware that
PhoneStateListener internally maintains a Handler instance to
deliver messages [36], and thus requires setting up a message loop
in worker. They later �xed it by calling Looper#prepare() (in
revision 07e4a759 [58]). Other constraints include performance

3A thread by default is not associated with a message queue; to create it,
Looper#prepare() should be called in the thread [32].

public void onCreate(SQLiteDatabase db) {
... //create database tables     
db.execSQL(CREATE_FRIENDS_TABLE);

}
public void onUpgrade(SQLiteDatabase db, int oldVersion, 
int newVersion) {
// upgrade database
if (oldVersion < 5) { ... }
if (oldVersion < 6) {

- db.execSQL("create table temp_table as 
select * from " + TABLE_FRIENDS);

- db.execSQL("drop table " + TABLE_FRIENDS);
+ db.execSQL(CREATE_FRIENDS_TABLE);

...
}}

Figure 8: An Example of Database Management Error

consideration (avoid performing network operations in the main UI
thread [35], permission consideration (require run-time permission
grant for dangerous permissions [38] since Android 6.0, otherwise
SecurityException) and etc.
• Database Management Error. Improper manipulating database
columns/tables causes many exceptions. Besides this, improper data
migration for version updates is another major reason. Atarashii [8]
(Figure 8) is a popular app for managing the reading and watching
of anime. When the user upgrades from v1.2 to v1.3, the app crashes
once started. The reason is that the callback onCreate() is only
called if no old version database �le exists, so the new database
table friends is not successfully created when upgrading. Instead,
onUpgrade() is called, it crashes the app because the table friends
does not exist (�xed in revision b311ec3 [9]).
• API Updates and Compatibility. Android system is evolving
fast. API updates and implementation (e.g., SDKs, core libraries)
changes can a�ect the robustness of apps. Device fragmentation [89]
aggravates this problem. For example, Service should be started ex-
plicitly since Android 5.0; the change of the comparison contract of
Collections#sort() [47] since JDK 7 crashes several apps since
the developers are unaware of this.
•Memory/Hardware Error. Android devices have limited resources
(e.g., memory). Improper using of resources may bring exceptions.
For example, OutOfMemoryError occurs if loading too large Bitmaps;
RuntimeException appearswhen MediaRecorder#stop() is called
but no valid audio/video data is received.
• XML Design Error. Android supports UI design and resource
con�guration in the form of XML �les. Although IDE tools have
provided much convenience, mistakes still exist, e.g., misspelling
custom UI control names, forgetting to escape special characters
(e.g., “$”, “%”) in string texts, failing to specify correct resources in
colors.xml and strings.xml.
• API Parameter Error. Developers make this type of mistakes
when they fail to consider all possible input contents or formats,
and feed malformed inputs as the parameters of APIs. For example,
they tend to directly use the results from SharedPreference or
database queries without any checking.
• Resource Not Found Error. Android apps heavily use external
resources (e.g., databases, �les, sockets, third-party apps and li-
braries) to accomplish tasks. Developers make this mistake when
they ignore checking their availability before use.
• Indexing Error. Indexing error happens when developers access
data, e.g., database, string, and array, with a wrong index value. One
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Table 3: Statistics of 11 common fault categories, and the evaluation results of static analysis tools on them, sorted by closing
rate in descending order.

Category (Name for short) Occurrence #S.O. posts #Instance Static Tools Closing
RateLint FindBugs PMD SonarQube

API Updates and Compatibility (API) 68 60 7 - - - - 93.3%
XML Layout Error (XML) 122 246 4 1 - - - 93.2%
API Parameter Error (Parameter) 820 819 6 - - - - 88.5%
Framework Constraint Error (Constraint) 383 1726 12 3 - - - 87.7%
Others (Java-speci�c errors) 249 4826 10 - - - - 86.1%
Index Error (Index) 950 218 4 - - - - 84.1%
Database Management Error (Database) 128 61 3 - - - - 76.8%
Resource-Not-Found Error (Resource) 1303 7178 5 - - - - 75.3%
UI Update Error (UI) 327 666 3 - - - - 75.0%
Concurrency Error (Concurrency) 372 263 7 - - - - 73.5%
Component Lifecycle Error (Lifecycle) 608 1065 11 - - - - 58.8%
Memory/Hardware Error (Memory) 414 792 3 - - - - 51.6%

typical example is the CursorIndexOutOfBounds exception caused
by accessing database with incorrect cursor index.

In Table 3, column 2 and 3, respectively, counts the occurrences of
each category and the number of StackOver�ow posts on discussing
these faults; column 4 shows the number of distinct exception types
of each category (total 75 instances). We �nd that (1) Besides the
“trivial" errors such as Resource-Not-Found Error, Index Error and
API Parameter Error, app developers are more likely to make An-
droid speci�c errors, e.g., Lifecycle Error, Memory/Hardware Error,
Android Framework Constraint Error. (2) developers also discuss
more on Android Framework Constraint Error, Lifecycle Error and
API Parameter Error. Additionally, we �nd existing mutation opera-
tors [19, 52] designed for detecting app bugs can cover only a few of
these 75 instances. Deng et al.’s 11 operators [19] can only detect 2
instances (the remaining ones detect UI and event handling failures
instead of fatal crashes); MDroid+ [52] proposes 38 operators, but
can only cover 8 instances.
Answer to RQ2:We distilled 11 fault categories that explain why
framework exceptions are recurring. Among them, developers make
more mistakes on Lifecycle Error, Memory/Hardware Error and
Android Framework Constraint Error. Existing mutation operators
are inadequate for detecting these errors.

4.3 RQ3: Auditing Bug Detection Tools
Dynamic testing and static analysis are the two main avenues to
help detect software bugs. This section investigates the detection
abilities of these two techniques on framework exceptions (catego-
rized in Section 4.2). In particular, we select three state-of-the-art
testing tools, i.e., Monkey, Sapienz, and Stoat; and four static analy-
sis tools widely used by android developers [53], i.e., Lint, FindBugs,
PMD, and SonarQube. Lint, developed by Google, detects code struc-
tural problems, and scans for android-speci�c bugs [27]. PMD uses
defect patterns to detect bad coding practices. FindBugs, provided
as a plugin in Android Studio, also enforces various checking rules,
and adopts control- and data-�ow analysis to scan potential bugs
(e.g., null-pointer dereferences). SonarQube is a continuous code
quality platform that provides bug reports for suspicious code.
Static Analysis Tools. We randomly select 75 distinct exception
instances (corresponding to column 4 in Table 3) from Github that
cover all manifestations of root faults, and checkout the correspond-
ing buggy code version to investigate how many of them can be

detected by static analysis tools. Our investigation �nds static tools
specialize in detecting bad practices, code smells, and potential bugs
that may lead to severe errors, but with a mass of false alarms.

As shown in Table 3, FindBugs, PMD, and SonarQube fail to
report any warnings on these bugs. Lint only identi�es 4 out of 75
bugs, which include one XML error (the resource �le “string.xml”
contains an illegal character “$”) and three framework constraint
errors (duplicate resource ids within a layout �le; Fragment cannot
be instantiated; using the wrong AppCompat method). In addition,
although these tools claim to support android projects, we have
not found any android-speci�c rules in FindBugs and SonarQube,
and only three android rules [74] in PMD. Lint de�nes 281 android
rules [27] but detects only a few bugs. Therefore, the current static
analysis tools focus more on basic Java defects, and much less
e�ective in detecting framework exceptions of Android apps.
Dynamic Testing Tool. We apply testing tools on each app (total
2,104) with the same con�guration in Section 3.2. As we observed,
they can detect many framework exceptions. To understand their
abilities, we use two metrics4. (1) detection time (the time to detect
an exception). Since one exception may be found multiple times, we
use the time of its �rst occurrence. (2) Occurrences (howmany times
an exception is detected during a speci�ed duration). Figure 9 and
Figure 10, respectively, show the detection time and occurrences of
exceptions by each tool grouped by the fault categories.

Figure 9 shows concurrency errors are hard to detect for all
three tools (requiring longer time). But for other fault categories,
the time varies on di�erent tools. For example, Sapienz is better
at database errors (since Sapienz implements a strategy, i.e., �ll
strings in EditTexts, and then click “OK” instead of “Cancel” to
maximize code coverage, which is more likely to trigger database
operations); Monkey and Sapienz are better at lifecycle errors (since
both of them emit events very quickly without waiting the previous
ones to take e�ect, e.g., open and quickly close an activity without
waiting the activity �nishes its task). Figure 10 shows it is easy for
three tools to detect API compatibility, Resource-Not-Found and
XML errors since the occurrences of these errors are much more
than those of the others. But for other categories, e.g., Concurrency,
Lifecyle, Memory, UI update errors, all of three tools are far from

4We have not presented the results of trace length, since we �nd the three tools cannot
dump the exact trace that causes a crash. Instead, they output the whole trace, which
cannot re�ect their detection abilities.
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Figure 9: Detection time of exceptions by each tool

Figure 10: Occurrences of exceptions by each tool

e�ective regardless of their testing strategies. The main reason is
that these errors contain non-determinism (interact with threads).

After an in-depth inspection, we �nd that some Database errors
are hard to trigger because the app has to construct an appropriate
database state (e.g., create a table or insert a row, and �ll in speci�c
data) as the precondition of the bug, which may take a long time. As
for Framework Constraint errors, some exceptions require special
environment interplay. For example, InstantiationException of
Fragment can only be triggeredwhen a Fragment (without an empty
constructor) is destroyed and recreated. To achieve this, a testing
tool needs to change device rotation at an appropriate timing (when
the target Fragment is on the screen), or pause and stop the app by
switching to another one, and stay there for a long time (let Android
OS kill the app), and then return back to the app. Concurrency bugs
are hard to trigger since they usually need right timings of events.

Answer to RQ3: Existing static analysis tools are ine�ective in
detecting framework exceptions. Dynamic testing tools are still
far from e�ective in detecting database, framework constraint and
concurrency errors.

4.4 RQ4: Fixing Patterns and E�orts
This section uses the exception-�x repository constructed in RQ2
(194 instances) to investigate the common practices of developers
to �x framework exceptions. We categorize their �xing strategies
by (1) the types of code modi�cations (e.g., modify conditions, reor-
ganize/move code, tweak implementations); (2) the issue comments
and patch descriptions. We �nally summarized 4 common �x pat-
terns, which can resolve over 80% of the issues.
• Re�ne Conditional Checks. Missing checks on API parameters,
activity states, index values, database/SDK versions, external re-
sources can introduce unexpected exceptions. Developers usually

(a) qBittorrent-Controller revision 8de20af
Cursor cursor = contentResolver.query(...);

- cursor.moveToFirst();
+ if( cursor != null && cursor.moveToFirst()) {  

int columnIndex = cursor.getColumnIndex(filePath);  
... // get the result from the cursor

+ }

(b) WordPress revision df3392f
public class AbstractFragment extends Fragment{  
protected void showError(int messageId) {

+ if(!isAdded()) { return; }
FragmentTransaction ft = getFragmentManager()...
... //commit a transaction to show a dialog

}}

(c) MTA-Fare-Buster revision dba01df
String input = amountOnCard.getText().toString();

+ if (input.equals("")) {
+ amountOnCard.setText(...); //set default value
+ }

float amountOnCardValue=Float.valueOf(input.toString());  
...

Figure 11: Example �xes by adding conditional checks

// MozStumbler revision 6adbfe5
public class ServiceBroadcastReceiver extends BroadcastReceiver{  

public void onReceive(Context context, Intent intent) {
String action = intent.getAction();
... // handle the intent
if (mMainActivity != null) {

- mMainActivity.updateUI();
+ mMainActivity.runOnUiThread(new Runnable() {
+ public void run() {
+ mMainActivity.updateUI();
+ }
+ });

}}}

Figure 12: Example �xes by moving code into correct thread

�x them via adding appropriate conditional checks. For example,
Figure 11 (a) checks cursor index to �x CursorIndexOutOfBound,
Figure 11 (b) checks the state of the activity attached by a Frag-
ment to �x IllegalState, and Figure 11 (c) checks the input of an
EditText to �x NumberFormat. We �nd most of exceptions from
Parameter Error, Indexing Error, Resource Error, Lifecycle Error, and
API Error can be �xed by this strategy.
•Move Code into Correct Thread. Messing up UI and background
threads may incur severe exceptions. The common practice to �x
such problems is to move related code into correct threads. Figure 12
�xes CalledFromWrongThread by moving the code of modifying
UI widgets back to the UI thread (via Activity#runOnUiThread())
that creates them. Similar �xes include moving the showings of
Toast or AlertDialog into the UI thread instead of the background
thread since they can only be processed in the Looper of the UI
thread [24, 67]. Additionally, moving extensive tasks (e.g., network
access, database query) into background thread can resolve such
performance exceptions as NetworkOnMainThread and “Applica-
tion Not Responding" (ANR) [30].
•Work in Right Callbacks. Inappropriate handling lifecycle call-
backs of app components (e.g., Activity, Fragment, Service) can
severely a�ect the robustness of apps. The common practice to
�x such problems is to work in the right callback. For example, in
Activity, putting BroadcastReceiver’s register and unregister
into onStart() and OnStop() or onResume() and OnPause() can
avoid IllegalArgument; and committing a FragmentTransaction



Large-Scale Analysis of Framework-Specific Exceptions in Android Apps ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 13: Fixing E�ort

before the activity’s state has been saved (i.e., before the callback
onSaveInstanceState()) can avoid state loss exception [59, 80].
• Adjust Implementation Choices. To resolve other exceptions,
developers have to adjust the implementation or do code refactor-
ing. For example, to �x OutOfMemory caused by loading Bitmap, the
common practice is to optimize memory usage by resizing the orig-
inal bitmap [33]; to �x data race exceptions, the common practice is
to adopt mutex locks (e.g., add synchronized to allow the execution
of only one active thread) or back up the shared data [70].

To further understand the characteristics of developer �xes, we
group these issues by their root causes, and compute three metrics:
(1) Issue Duration, which indicates how long the developers took to
�x the issue (Figure 13(a)); (2) Number of Changed Code Lines, i.e.,
the number of code lines5 the developers changed to �x this issue
(Figure 13(b)); and (3) Issue Closing Rate, i.e., how many issues have
been closed (the last column in Table 3). We can see that the �xes for
Parameter Error, Indexing Error, Resource Error, and Database Error
require fewer code changes (most patches are less than 20 lines).
Because most of them can be �xed by re�ning conditional checks.
We also note UI Error, Concurrency Error, and Memory/Hardware
Error require larger code patches.

Further, by investigating the discussions and comments of de-
velopers when �xing, we �nd three important reasons that reveal
the di�culties they face.
•Di�culty of Reproducing and Validation. One main di�culty
is how to reproduce exceptions and validate the correctness of
�xes [68]. Most users do not report complete reproducing steps/in-
puts and other necessary information (e.g., exception trace, device
model, code version) to developers. Even if the exception trace is
provided, reproducing such exceptions as non-deterministic ones
(e.g., concurrency errors) is rather di�cult. In such cases, after �xing
the issue, they choose to leave it for the app users to validate before
closing the issue. As shown in Figure 13 and Table 3, concurrency
errors have longer issue durations and lower �xing rate.
• Inexperience with Android System. A good understanding of
Android system is essential to correctly �x exceptions. As the clos-
ing rates in Table 3 indicate, developers are more confused by
Memory/Hardware Error, Lifecycle Error, Concurrency Error, and

5To reduce “noises", we exclude comment lines (e.g., “//...”), annotation lines (e.g.,
“@Override”), unrelated code changes (e.g., “import *.*”, the code for new features).

UI Error. We �nd some developers use simple try-catch or compro-
mising ways (e.g., use commitAllowingStateLoss to allow activity
state loss) as workarounds. However, such �xes are often fragile.
• Fast Evolving APIs and Features. Android is evolving fast. As
reported, on average, 115 API updates occur each month [64]. More-
over, feature changes are continuously introduced. However, these
updates or changes may make apps fragile when the platform they
are deployed is di�erent from the one they were built; and the devel-
opers are confused when such issues appear. For example, Android
6.0 introduces runtime permission grant — If an app uses danger-
ous permissions, developers have to get permissions from users at
runtime. However, we �nd several developers choose to delay the
�xing since they have not fully understand this new feature.
Answer toRQ4: Re�ning conditional checks, using correct thread
types, working in the right callbacks, adjusting implementation
choices are the 4 common �x practices. Memory/Hardware, Life-
cycle, Concurrency, and UI update Error are more di�cult to �x.

4.5 Discussion
Through this study, we �nd: (1) Besides the trivial errors, developers
are most likely to introduce Lifecycle, Memory/Hardware, Concur-
rency, and UI update errors, which requires more �xing e�orts.
(2) Bug detection tools need more enhancement. Static analysis
tools could integrate new rules especially for UI update, Lifecycle,
Framework Constraint errors. Testing tools could integrate speci�c
testing strategies to detect these errors. (3) To counter framework
exceptions, developers should gain more understanding on Android
system; di�erent supporting tools should be developed to reproduce
exceptions for debugging, locate their root causes for �xing, and
check API compatibility across di�erent SDKs.

Linares-Vásquez et al. [52] also investigated android app bugs
very recently, but our study signi�cantly di�ers from theirs. We
focuses on framework exceptions and give a comprehensive, deep
analysis, including exception manifestations, root causes, abilities
of existing bug analysis tools, and �xing practices. While they focus
on designing mutation operators from existing bugs, and their 38
operators only cover 8 out of 75 instances distilled by our study. We
believe our results can further improve existing mutation operators.

The validity of our study may be subject to some threats. (1)
Representativeness of the subjects. To counter this, we collected all
the subjects (total 2486 apps at the time of our study) from F-Droid,
which the largest database of open-source apps, and covers diverse
app categories. We believe these subjects are the representatives of
real-world apps. (2) Comprehensiveness of app exceptions. To collect
a comprehensive set of exception traces, we mine from Github and
Google Code; and apply testing tools, which leads to total 16,245
exceptions. To our knowledge, this is the largest study for analyzing
Android app exceptions. (3) Completeness/Correctness of exception
analysis. For completeness, (i) we investigated 8,243 framework
exceptions, and carefully inspected all common exception types.
(ii) We surveyed previous work [2, 3, 14, 18, 22, 40, 45, 46, 60, 61, 63,
85, 92] that reported exceptions, and observed all exception types
and patterns were covered by our study. For correctness, we cross-
validated our analysis on each exception type, and also referred to
the patches from developers and Stack Over�ow posts to validate
our analysis. The whole dataset is also made publicly available.
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5 APPLICATIONS OF OUR STUDY
This section discusses the follow-up research motivated by our
�ndings, and also demonstrates usefulness by two prototype tools.

5.1 Benchmarking Android App Exceptions
Our study outputs a large and comprehensive dataset of Android
app exceptions (especially for framework exceptions), which in-
cludes total 16,245 unique app exceptions and 8,243 unique frame-
work exceptions. Each exception is accompanied with buggy code
version, exception trace, error category, and possible �xes. We be-
lieve this dataset can (1) provide an e�ective and reliable basis for
comparing dynamic/static analysis tools; (2) enable the research
on investigating fault localization techniques and give a large set
of exceptions as benchmarks; and (3) enable patch generation by
comparing the exceptions and their �xes.

5.2 Improving Exception Detection
Dynamic testing and static analysis are the two avenues to detect
faults. However, more improvements should be made on both sides.
Dynamic Testing. Enhancing testing tools to detect speci�c er-
rors is very important. For example, (1) Generate meaningful as
well as corner-case inputs to reveal parameter errors. We �nd ran-
dom strings with speci�c formats or characters are very likely
to reveal unexpected crashes. For instance, Monkey detects more
SQLiteExceptions than the other tools since it can generate strings
with special characters like “"” and “%” by randomly hitting the
keyboard. When these strings are used in SQL statements, they can
fail SQL queries without escaping. (2) Enforce environment interplay
to reveal lifecycle, concurrency and UI update errors. We �nd some
special actions, e.g., change device orientations, start an activity
and quickly return back without waiting it to �nish, put the app at
background for a long time (by calling another app) and return back
to it again, can a�ect an app’s internal states and its component
lifecycle. Therefore, these actions can be interleaved with normal
UI actions to e�ectively check robustness. (3) Consider di�erent app
and SDK versions to detect regression errors. We �nd app updates may
introduce unexpected errors. For example, as shown in Figure 8, the
changes of database scheme can crash the new version since the
developers have not carefully managed database migration from the
old version. (4) More advanced testing criteria [49, 86] are desired.
Static Analysis. Incorporating new checking rules into static anal-
ysis tools to enhance their abilities is highly valuable. Through our
study, we �nd it is feasible to check some framework exceptions,
especially for framework constraint, lifecycle and UI update errors.
For example, to warn the potential crash in Figure 7, static analysis
can check whether the task running in the thread uses Handler
to dispatch messages, if it uses, Looper#prepare() must be called
at the beginning of Thread#run(); to warn the potential crash in
Figure 4, static analysis can check whether there is appropriate
checking on activity state before showing a dialog from a back-
ground thread. In fact, there is already some initial work [40] that
implements lifecycle checking on Lint.
Demonstration of Usefulness. We enhanced Stoat [85] with two
strategies: (1) randomly generate inputs with 5 speci�c formats
(e.g., empty string, lengthy string, null) or characters (e.g., “"”, “%”)
to �ll in EditTexts or Intent’s �elds; (2) randomly inject 3 types

of special actions mentioned above into normal UI actions. We
applied Stoat on dozens of most popular apps (e.g., Facebook, Gmail,
Google+, WeChat) from Google Play, and successfully detected
3 previously unknown bugs in Gmail (one parameter error) and
Google+ (one UI update error and one lifecycle error). All of these
bugs were detected in the latest versions at the time of our study,
and have been reported to Google and got con�rmed. However,
these bugs have not been found by Monkey and Sapienz, while
other testing tools, e.g., CrashScope [69] and AppDoctor [46] only
consider 2 and 3 of these 8 enhancement cases, respectively.

5.3 Enabling Exception Localization
We �nd developers usually take days to �x a framework exception.
Thus, automatically locating faulty code and proposing possible
�xes are highly desirable. Our study can shed light on this goal.
Demonstration of Usefulness. We have built a framework excep-
tion localization tool, ExLocator, based on Soot [87], which takes
as input an APK �le and an exception trace, and outputs a report
that explains the root cause of this exception. It currently supports
5 exception types from UI update, Lifecycle, Index, and Framework
Constraint errors (As Figure 13 shows, these errors are more dif-
�cult to �x). In detail, it �rst extracts method call sequences and
exception information from the exception trace, and classi�es the
exception into one of our summarized fault categories, and then uti-
lizes data-/control-�ow analysis to locate the root cause. The report
gives the lines or methods that causes the exception, the description
of the root cause and possible �xing solutions, and closely related
Stack Over�ow posts. We applied our tool on total 27 randomly
selected cases from Github, and correctly locates 25 exceptions out
of 27 (92% precision) by comparing with the patches by develop-
ers. By incorporating additional context information from Android
framework (e.g., which framework classes use Handler), our tool
successfully identi�ed the root causes of the remaining two cases.
However, all previous fault localization work [48, 66, 81, 90] can
only handle general exception types.

6 CONCLUSION
This paper conducts a large-scale analysis of framework exceptions
in Android apps. We constructed a comprehensive dataset that
contains 16,245 unique exception traces. After investigating 8,243
framework exceptions, we identi�ed their characteristics, evaluated
their manifestation via popular bug detection tools, and reviewed
their �xes. Our �ndings enables several follow-up research. We
demonstrated the usefulness of our �ndings by two prototype tools.
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