
A Large-Scale Empirical Study on Industrial
Fake Apps

Chongbin Tang∗, Sen Chen∗, Lingling Fan∗, Lihua Xu†, Yang Liu‡, Zhushou Tang§, Liang Dou∗
∗East China Normal University, China †New York University Shanghai, China
‡Nanyang Technological University, Singapore §Pwnzen Infotech Inc., China

Abstract—While there have been various studies towards
Android apps and their development, there is limited discussion
of the broader class of apps that fall in the fake area. Fake
apps and their development are distinct from official apps and
belong to the mobile underground industry. Due to the lack of
knowledge of the mobile underground industry, fake apps, their
ecosystem and nature still remain in mystery.

To fill the blank, we conduct the first systematic and com-
prehensive empirical study on a large-scale set of fake apps.
Over 150,000 samples that fake the top 50 popular apps are
collected and extensively measured. In this paper, we present
discoveries from three different perspectives, namely fake sample
characteristics, quantitative study on fake samples and fake au-
thors’ developing trend. Moreover, valuable domain knowledge,
like fake apps’ naming tendency and fake developers’ evasive
strategies, is then presented and confirmed with case studies,
demonstrating a clear vision of fake apps and their ecosystem.

Index Terms—Android app, Fake app, Empirical study

I. INTRODUCTION

With the growing attention of mobile markets, Android has
accounted for 85.9% of global market share [1]. Over 1.5
million apps were released within 2017 alone. Along with
the booming of Android markets is the flourish of the mobile
underground industry. Fake apps, i.e., apps without official
certificates, account for a major part of such underground
industry. Specifically, we consider fake apps as those who
simulate the corresponding official ones or look almost the
same as their official correspondences, with ultimate goal to
elicit download or manifest malicious behaviors. Early obser-
vation reveals fake apps come in two different forms. The first
category is called imitators, a group of apps with similar
names or functionalities to their official correspondences so
that users are fooled to download them. While imitators are
just similar to official apps, imposters [2] refer to the
category of apps that have exactly the same metadata with
their official correspondences, for example, they may have the
same names, icons, or version numbers, some of the imposters
are even made by repackaging official apk files directly.

Such fake apps pose significant problems to not only the
official developers’ interest but also the end users’ right. For
example, when users try to search an app for installation in
market, multiple fake apps with similar names or icons will
be retrieved at the same time. As a result, the user experience

Chongbin Tang and Sen Chen are co-first authors.
Lingling Fan and Liang Dou are the corresponding authors.
Emails: chongbin.tang@stu.ecnu.edu.cn, ecnuchensen@gmail.com

of app searching and downloading is greatly affected by the
fake apps in real world.

Even worse, as the doorsill to develop an app has been set
low, the cost to develop a fake app is much lower than what it
takes to develop a desktop program, providing an ideal hotbed
for the underground industry to thrive on [3]. Moreover, the
flexibility of Android app implementation [4] contributes the
fake apps’ complexity.

Despite the ubiquity, little is known about fake apps and
their ecosystem – their common characteristics, the number
of fake apps at large, their production process and speed,
and their evasive strategies, etc. Most research studies to date
show greater interests on malware detection techniques [5]–
[8]. To the best of authors’ knowledge, there exists no work
in understanding fake apps, and their ecosystem.

Similarly, we witness the same deficiency in industry. Most
attention in analysis and threat reports focuses on malicious
apps while neglecting the fake apps [9]. On the other hand,
the knowledge gained from desktop era regarding malicious or
fake software are of less use, due to differences in operating
system properties [10].

In this paper, we focus on conducting a large-scale empirical
study on fake apps and measuring the data on different
dimensions. Our goal is to systematically investigate the
characteristics of fake apps from different perspectives, as well
as quantitative analysis on fake apps. Moreover, we aim to
further unveil the developing trend of fake authors to help
fake app detection and shine light on the fake apps’ ecosystem
nature for both academia and industry.

Conducting such study is not easy: (1) To conduct a fair and
representative study, it is essential to obtain appropriate sub-
jects that are both accessible and wildly accepted; (2) To draw
convincing conclusions, large-scale data is indispensable [11],
[12]; (3) To provide scalable measurement, efficient analysis
methodology must be taken [13], [14].

To address the aforementioned challenges, we first ob-
tain representative objects according to an authoritative rank-
ing provided by online big data analysis service provider
Analysys1; We then collaborate with our industrial part-
ner, Pwnzen Infotech Inc.2, one of the leading security
companies in China, and collect over 150,000 data entries.
Among them, 52,638 fake samples are identified for further

1https://www.analysys.cn/
2http://pwnzen.com/

analyzing; In order to work with the large-scale data, both
traditional dynamic and static analysis are not feasible. Instead,
we sought to common industrial practice, analyzing subjects’
metadata. We identify and extract 8 metadata items to support
our comprehensive measurement.

In summary, we make the following main contributions:
• The first comprehensive empirical study on Android

fake apps at a finer granularity. To the best of our
knowledge, we are the first to provide the empirical study
on fake apps. We measure the fake apps from three
different perspectives, allowing examining its nature at
a finer granularity.

• A large-scale quantitative measurements on fake apps
in the industry. We collected more than 150,000 data
entries to carry out this study to dig out valuable insights
or suggestions for the industry.

• An observation on the fakes of the most popular apps
in the real world. We conducted our study based on the
top 50 popular apps in China and their fake apps. As these
apps are some of the most popular app in the real world
and their counterfeits, we consider our study objects to
be representative enough.

• Findings on fake apps’ characteristics based on real
cases. Discoveries and conclusions emerged from our
measurement are further supported by real-world case
studies.

II. ANDROID APP CERTIFICATE

Signature scheme is an important scheme in Android se-
curity, certificate is its essential component. Logging the
information of its owner (the developer), every certificate is
unique. The functionality of certificates is two-fold: (1) To
inform the target device whom the developer of an apk file is.
(2) To provide tamper-proof to some certain degree.

Due to the uniqueness, on one hand, it’s not hard to
understand the certificate’s first function. On the other hand,
it’s tamper-proof ability is implemented through a multiple-
step-verification mechanism. During the signing process, the
digest of the app content will be calculated. And then, a
signing block, or a folder for verification will be calculated
using the digest and the developer’s certificate. Wherever the
content is changed after signing, there will be an unmatch
between the digest and the actual content, and thus such apk
files are refused to be installed on the devices.

Naturally, if one fake developer modifies and repackages
an existing app, in order to keep the consistency, he has to
replace the original certificate with his own certificate and sign
the apk file again. By checking certificates, we can easily find
out the repackaged apk files (i.e. some of the imposters),
let alone the other imposters and imitators which are
totally developed by fake developers.

III. OVERVIEW AND DATA COLLECTION

A. Workflow of Our Study

Fig. 1 shows the workflow of our study, which can be
divided into two main phases: (1) Data Collection, which

collects fake apps from all sorts of app markets based on the
maintained official certificates, as well as the metadata of apps
(e.g., package names and app names). Our collaboration with
Pwnzen allows us to have access to raw data from most of the
mainstream Android markets. We focus on collecting the fakes
of the top 50 popular apps in the real world; (2) Large-scale
Empirical Study, which measures the collected fake apps from
several perspectives: the characteristics of fake apps, as well
as the quantitative analysis of fake apps. We also aim to unveil
the developing trend of fake authors to help fake app detection
and shine light on the nature of the fake apps’ ecosystem for
both academia and industry.

B. Data Collection
Although the research community is in great need of both a

comprehensive dataset on Android fake apps from industry and
an effective approach to retrieving and collecting fake apps at
scale from industry, little has been done to fulfill the need. In
this paper, we make the first attempt to systematically collect
data from industry.
Collection Method. Obtaining an ample set of data is a
challenging task, new app samples and updates need to be
continuously crawled from various Android markets. The
challenge here is two-fold: (1) Obtaining a large number of
samples from different markets separately is no easy task; (2)
A certificate identifier is needed to tell fake apps from official
ones.

To address challenge (1), we collaborate with our industry
partner and leverage the Pwnzen platform3 to conduct sample
crawling from markets and build a sample database; to
meet challenge (2), we pre-download the latest samples of
our target apps to extract their official certificate information
and construct a certificate identifier.

More specifically, during the database construction phase,
we clusters samples by certificate hash, package names or app
names. When the database receives queries, it returns sample
clusters with the corresponding package names, app names,
certificate hash, etc, in form of sample metadata entries. Since
fake samples usually have similar names to the official ones,
we collect fake apps by using app names from official apps.
To achieve this, we first extract the package names of our pre-
downloaded samples. These package names are later sent to
the sample database for query (i.e., step 1 marked in Fig. 1).
And then, for each metadata entry returned from step 2, we
check if it is official using the certificate identifier. If true and
that sample is confirmed as one of our target app (step 3 in
the figure), namely, it has the same package name to one of
the inputs, its name will be recorded (step 4) and used for
further query (back to step 1). If false, that sample would be
marked as a fake one (step 5), its metadata will be utilized for
large-scale measurement. For each app, once all of the official
names have been used for query, the data collection on it is
finished.
Collected Dataset. Here is a bird eye’s view to the data we
collected: we chose the top 50 popular apps from Analysys’s

3https://www.appscan.io/

4

Package Name /
App Name

Sample Database

Fake Apps

Certificate Identifier

Target Apps
with Official Certificates

Pspt. A: Fake Sample Characteristics
Pspt. B: Quantitative Study on Fake Samples
Pspt. C: Developing Trend

(a) Data Collection (b) Large-scale Empirical Study

App Stores

…
2

1 3 5

Fig. 1: Workflow of our study (Pspt refers to perspective)

ranking, within 11 app categories, as our target apps. Since
apps may change their names over time, we recorded 198 app
names from the 50 apps to mine fake samples. Among the 50
apps, we failed to find any samples from the following three
apps: OPPO AppStore, Huawei AppStore, and MI AppStore,
because they are developed by cellphone manufacturers and
are not provided to other app markets. This is also the reason
why three apps are popular – they are preinstalled into every
single device produced by their manufacturers. Thus we finally
obtained 47 target apps in total. With the 47 target apps, we
retrieve 138,106 distinct samples in total, 69,614 of which
are official samples of our target apps, 52,638 samples lack
registered certificates. For each sample, we retrieve 8 data
items as metadata: Sample SHA1, Certificate SHA1, Package
Name, Package Size, Version Number, Retrieved Time, and
Source. Among them, Sample SHA1 and Certificate SHA1
are the hash code for APK files and certificates under SHA1
algorithm respectively. Retrieve Time tells when the sample
was crawled from app store and Source tells which store the
sample is from.

Empirical study is then applied to these metadata, especially
to those of fake apps, to gain us a more comprehensive
understanding on fake apps’ nature and characteristics, and
the behaviors of fake app authors.

IV. LARGE-SCALE EMPIRICAL STUDY AND DISCOVERIES

With the large-scale dataset ready, we can further conduct
a comprehensive empirical study to acquire the nature of fake
apps as well as understanding their ecosystem. To effectively
measure different facades of fake apps, We define three per-
spectives, namely Fake Sample Characteristics, Quantitative
Study on Fake Samples, and Developing Trend. Next, we’ll
describe each perspective in detail.

A. Fake Sample Characteristics

To reveal the strategy the fake app authors are employing,
or how they bypass app markets’ security scheme, fake sample
characteristics have to be understood. As such, we conduct our
measurement in terms of certificates and basic information like
app names, package names and package sizes.

Certificate serves as the identifier for developers. The nature
of the certificate, namely, whether each fake app has a unique
certificate, is likely to be essential to fake apps’ evasive

TABLE I: Statistics on fake samples and their certificates

of samples 1-5 6-10 11-50 51-100 More than 100

of certificates 8252 525 531 71 80

technique. On the other hand, we believe repackaged apps,
as a kind of imposters, are widespread in our dataset.
Measurement on basic information of fake apps, such as
package names and package sizes, helps us determine how
repackaged apps are distributed, since repackaging an app
does not change any of its basic information (i.e. the app
name, package name, version code, etc.) unless it’s done
intentionally.

To this end, we have some hypotheses as below:
Hypo 1.1: Most of these fake samples have their correspond-
ing unique certificates. In other words, most fake certificates
and fake samples have a one-to-one relation.
Hypo 1.2: A large portion of fake samples have the same app
names/package names/apk sizes as those in official samples.

To verify our hypotheses as well as to gain knowledge to
fake sample individuals, we propose the following research
questions in this subsection.
RQ 1.1: What’s the relationship between the number of fake
samples and their certificates? That is, how many fake samples
does one certificate usually link to?
RQ 1.2: How do fake apps imitate official apps? That is, how
similar are the names/package names/apk sizes of fake samples
compared to those of official samples?
Answer to RQ 1.1. 76% of these fake certificates are linked
to merely one or two fake samples, and the number of fake
examples a certificate links to is various from 1 to 1,374. We
count the number of certificates which link to different sample
number in table I.

This discovery partly matches our assumption that most of
these fake samples have their corresponding unique certifi-
cates. We consider this as a strategy to bypass app markets’
security scheme, as even if one fake sample is exposed, other
fake samples developed by the same developer will not be
implicated directly. Nevertheless, when reviewing certificates
linked with multiple fake samples, we find some very surpris-
ing findings that we will expound in Section V.
Answer to RQ 1.2. According to our statistical result, only
243 out of 52,638 samples (less than 0.5%) use official

(a) App name (b) Package name (c) Size

Fig. 2: Statistic on app attributes

package names, all the rest fake samples (more than 99.5%)
use their own package names. In the rest 52,395 samples,
14,089 different package names were found. But does this
mean fake samples are all using package names that are totally
different from the official ones? Could they be using package
names that are similar to their official correspondences?

To figure out the similarity, we utilize edit distance [15],
a distance definition widely applied in natural language pro-
cessing (NLP): Given two strings a and b, the edit distance
d(a, b) is the minimum-weight series of edit operations that
transform a into b. In our case, edit operations refer to either
to append, to delete or to change a character. For instance, the
edit distance between string “fake” and “official” is 7, while
between “jingdong” and “jindeng”, this value becomes 2. For
every fake package name from a fake sample, we compute its
edit distance to the official package name of its original.

Fig. 2 is consist of three violin plots,4 representing our
statistics on app names, package names and package sizes,
respectively. In each “violin”, the white dot represents the
median, the thick bar in the middle represents the interquartile
range while the thin bar represents 95% confidence interval.

Fig. 2a shows the statistic information on app names of
official samples, fake samples, and the edit distance between
them. Both the white dot in “Official” violin and the one
in “Fake” violin are at a similar level near the value “6”,
which means the average length of app names of both official
samples and fake samples are close to each other. The overall
distribution of these two data groups have similar bodies,
signals that they are also similar as well. What’s more, the
median value of edit distance is low (“2” on y-axes), meaning
that half of the fake apps get their names by modifying less
than 3 characters from the corresponding official apps’ names.
This is a proof indicating that most fake apps are using a
similar name to an official name. At the same time, we notice
that some fake apps have pretty long names (there is one with a
name of 146-character-long length). Many of those outliers are
samples uploaded by fake authors, maybe for testing purpose
to explore the vetting mechanism. The other purpose is to

4https://en.wikipedia.org/wiki/Violin plot/

associate users’ search keywords as far as possible.
Fig. 2b shows the result on package names. Like the plots in

Fig. 2a, the difference between the average length of package
names of official apps and the average length of package
names of fake apps is still tiny (they are of value “23” and
“20”, respectively). Nonetheless, the median of edit distance
between them is explicitly higher (“16” on y-axes), which
means it takes averagely 16 times modification to turn a fake
package name to an official package name and vice versa.
Thus, we infer that fake apps tend to use self-defined package
names.

Fig. 2c reports package size information. To better represent
the trend, we eliminated some outliers: samples that are larger
than 150MB (851 in 69,614 official samples (about 1%) and
447 in 52,638 fake samples (less than 1%), most of which
are from game category). The figure shows that the median
number of fake samples’ size is around 5MB, while half of the
official apps have a size greater than 18MB, meaning that fake
apps are more likely to be (1) developed by their owners but
not originated from repackaging official apps, (2) malicious
apps, for malicious apps are usually in small sizes.

In short, Fig. 2 tells that fake apps (1) prefer to use a similar
(or even same) name to an official app’s name, but they have
their own package names and (2) are usually of a small size.

To a large extent, we owe the first point to the incomplete-
ness of the information the app store displays on apps. In
most app stores, when users browse an app’s detail page, they
can only see the app’s name, description, user comments and
ratings which are positive for leading users to download that
app. However, technical information rarely appears. In some
app markets, users don’t even know how large an apk file is.

Remark 1: Most certificates link with only a number of
fake apps, which is highly possible to be a fake developers’
evasive strategy. Moreover, we observe that fake apps do
tend to use official app names or names alike. Nonetheless,
fake apps and official apps are not resemble in terms of
package names or apk sizes, disclosing that repackaged
apps are not mainstream in fake apps.

B. Quantitative Study on Fake Samples

It is valid to assume that fake app developers are driven by
profits, hence there is a likelihood that the number of fake app
is correlated to their source market, popularity and categories.
In addition, the update frequency can be taken in as a factor,
too. Accordingly, we hypothesize the following factors may
influence the number of fake samples of an app:
Hypo 2.1: The rate of fake samples is related to the number
of apps a market contains.
Hypo 2.2: The number of fake apps are closely related to how
popular an app is.
Hypo 2.3: Update frequency effects the number of fake
samples.
Hypo 2.4: Category is a factor influencing the fake sample
number.

Correspondingly, we define our research questions as fol-
lows:
RQ 2.1: Where are these fake samples mainly from?
RQ 2.2: Does the popularity of an app affect the number of
its fake samples?
RQ 2.3: Does an app’s update frequency influence its fake
sample’s number?
RQ 2.4: Is the number of fake samples related to the app’s
category?
Answer to RQ 2.1. Fig. 3 shows the samples’ origin. From
the left subplot, Baidu App Store not only provides the
largest sample number among all 31 different app sources,
but is also the source where most fake samples are from.
Fake sample rates are displayed on the right subplot. Although
both Baidu App Store [16] and Hiapk [17] hold a fake
sample rate of about 40%, the number of fake samples from
Baidu App Store exceeds Hiapk to a great extent due
to its dominant total sample number. Although no connection
between the number of fake samples and market can be found
from our data, we notice that the relationship between apps
and markets may affect the fake rate. This is well supported
by the low fake rate of Myapp [18] – the app market provided
by Tencent, which is also the 12 out of 50 developers in
our target apps.
Answer to RQ 2.2. Intuitively, the more popular an app is,
the more possible it would get shammed, for fake developers
would mislead users to download their apps to gain profits.

Note that each app has different amount of samples (in-
cluding official samples and fake samples), processing our
measurement directly based on the number of fake samples
is incorrect. To counteract this bias, each fake count should
be regularize into a fake sample rate, the rate of fake samples
in all collected samples of an app.

Next, we employ a metric called Pearson product-moment
correlation coefficient (PPMCC) to reveal relativeness between
an app’s fake sample number and its popularity, which uses
the regularized fake sample rates and monthly activeness indi-
cators (MAI) obtained from Analysys [19]. This value ranges
from -1 to 1, the closer the PPMCC value is to 0, the weaker
correlation between the two factors is indicated. Surprisingly,
according to our data, the value of PPMCC between this two

factors is 0.246, revealing that the fake sample number and an
app’s popularity only hold their relativeness on a weak level,
which does not match our expectation.
Answer to RQ 2.3. We assume the update frequency is related
to the number of fake samples of an app, for updates can
usually help keep a software from being attack. The higher
the update frequency is, the safer an app is supposed to be.

To estimate the average update frequency of our target
apps, the time when an app’s official sample was crawled and
when its latest official samples were crawled is marked. The
difference between them is then divided by the number of that
app’s existing version to obtain an update frequency, with unit
day/version.

The result PPMCC value of 0.084 shows that the connection
between an app’s update frequency and its fake sample rate
barely exists. We attribute this result to two reasons: (1)
The high update frequency (10 days/version on average for
apps in our dataset) indicates app developers may not fix
security issues in per update, weakening the function of update
frequency as a security indicator. (2) A large portion of fake
samples in our dataset are not derived from repackaging. To
this end, fake developers can produce fakes regardless of how
well the official apps are protected.
Answer to RQ 2.4. Some categories are potentially more prof-
itable than others. A report from the app marketing company
LIFTOFF [20] forecasts gaming to be the next most billable
area.

Our 50 target apps are divided into 11 categories according
to their functionalities, Table II shows these categories and
their corresponding fake sample rate. In the same category,
the difference between apps on fake rate lies in an acceptable
range. Without doubt, entertainment related categories like
Game and Social Network attract more fake samples.
Another field, Online shopping, has also gained special
love from fake developers because online shopping is rapidly
developing in China. Relatively, Productivity is not that
attractive to fake developers, the average fake sample rate of
this filed is only 4.05%. Apps in these four categories are
marked in bold in the table.

The result matches the observation in our daily life, people
always tend to use mobile devices for entertainment instead
of business purpose. It’s pretty interesting to discover that the
number of fake samples in a way reflects how people use their
phone in their daily lives.

Remark 2: As revealed by statistics, the number of samples
returned from an app store does not imply a fake rate.
Additionally, the relationship between apps and market
itself influences the number of fake samples from that
market. To our surprise, an app’s update frequency is not
tightly correlated with its fake rate. We owe this to the fact
that apps are updated too frequently and that repackaged
samples are of minority in our dataset. We further observe
that “category” as a factor has greater influence on the
number of fake samples of an app than “popularity” and
“update frequency”.

TABLE II: Our target app and their related statistics

Name Category MAI (Monthly
Activeness Indicator)

Update Frequency
(day/version) #Total #Fake Fake Sample

Rate
Avg Fake Latency

(day)

WeChat* SocialNetwork 91.2K 6.4 9248 6447 69.7% 12.1
QQ* SocialNetwork 54.6K 10.7 11167 3780 33.8% 9.2
iQiyi Video 53.5K 6.4 7586 3481 45.9% 9.3
Alipay Life 48.1K 10.2 983 231 23.5% 10.1
Taobao* OnlineShopping 47.5K 7.0 6003 3010 50.1% 8.1
TencentVideo Video 47.3K 6.3 1429 68 4.8% 10.7
Youku Video 40.9K 7.3 2058 262 12.7% 6.7
Weibo* SocialNetwork 39.2K 5.3 5947 2715 45.7% 5.7
WiFiMasterKey SystemTool 36.4K 3.1 4808 2999 62.4% 3.0
SougouInput SystemTool 33.3K 11.0 898 40 4.5% 21.8
MobileBaidu Information 32.4K 11.1 15651 3514 22.5% 12.8
TencentNews Information 28.7K 8.5 1051 11 1.0% 8.9
QQBrowser Information 27.8K 5.6 1369 43 3.1% 11.6
Toutiao Information 27.4K 4.4 3538 179 5.1% 5.6
Myapp AppStore 27K 11.4 2419 266 11.0% 11.6
Kwai Video 24.4K 3.2 8273 4270 51.6% 3.5
WeSecure SystemTool 24.2K 8.7 2463 1340 54.4% 8.7
Amap Life 24K 6.5 1225 51 4.2% 13.1
KugouMusic Music 23K 8.6 1313 122 9.3% 12.2
QQMusic Music 21.7K 9.4 1132 65 5.7% 14.6
BaiduMap Life 21.3K 8.8 2609 1438 55.1% 15.3
TikTok Video 19.4K 11.1 317 12 3.8% 8.3
JD* OnlineShopping 18.5K 10.9 5000 2377 47.5% 12.3
UCBrowser Information 16.7K 7.4 4232 1624 38.4% 7.0
360Security SystemTool 15.4K 12.4 3670 1423 38.8% 19.1
TencentKaraoke Music 14.7K 21.1 618 215 34.8% 17.3
MeiTuan Life 13K 8.0 4752 1415 29.8% 6.9
Pinduoduo* OnlineShopping 12.9K 6.6 2327 551 23.7% 7.8
ArenaofValor* Game 12.5K 15.5 2350 1319 56.1% 12.3
MeiTuXiuXiu Camera 12.4K 5.4 1705 784 46.0% 5.8
VigoVideo Video 12.2K 11.9 410 16 3.9% 9.6
MojiWeather Life 12K 4.2 10081 7093 70.4% 4.7
DiDi Life 11.8K 8.6 943 117 12.4% 7.0
HuaweiAppStore AppStore 11.8K N/A 0 0 0.0% N/A
HappyElements* Game 11.2K 19.7 2406 1738 72.2% 20.6
KuwoMusicPlayer Music 11K 2.9 3778 69 1.8% 4.2
iXigua Video 11K 11.5 866 100 11.5% 8.8
OPPOAppStore AppStore 10.8K N/A 0 0 0.0% N/A
CleanMaster SystemTool 9.9K 10.3 1803 388 21.5% 13.5
360CleanDroid SystemTool 9.6K 17.3 327 8 2.4% 8.5
360Zhushou AppStore 9.2K 7.6 1616 137 8.5% 8.4
TencentWiFiManager SystemTool 8.8K 19.5 1636 658 40.2% 15.7
XunfeiInput SystemTool 8.6K 6.0 1451 8 0.6% 10.1
BaiduAppSearch AppStore 8.2K 11.4 3849 437 11.4% 14.5
MiAppStore AppStore 7.8K N/A 0 0 0.0% N/A
WPSOffice* Productivity 7.4K 6.0 1152 69 6.0% 7.8
BeautyCam Camera 7.1K 5.3 1600 691 43.2% 6.3
NeteaseCloudMusic Music 7K 10.5 616 6 1.0% 12.2
NeteaseNews Information 6.7K 7.0 1441 93 6.5% 5.0
QQMail* Productivity 6.6K 16.4 520 11 2.1% 10.4
* Detailed descriptions are given in Answer to RQ 2.4

C. Developing Trend

In order to figure out fake apps’ characteristics or behavior
patterns over time, we propose the following research ques-
tions:
RQ 3.1 After a new version of an official app is published, how
long do fake developers take to publish a new fake sample?
In other words, how soon will these copycats appear?
RQ 3.2 How long can a fake app’s certificate survive?
RQ 3.3 Is there a changing pattern of fake samples over time?
Answer to RQ 3.1. We compute this latency and show its

distribution in Fig. 6.
Due to various reasons, it is hardly possible to retrieve the

complete updating timeline for every single official app in our
study, yet we approximately reproduce them with our data.
Firstly, we categorized all the official samples by their origins,
and further categorized samples in each origin by version
number. After that, for each app and each version the samples
are sorted by the date they were crawled, so by extracting the
crawled date of the first sample in each version, we can obtain
the earliest date a version is released. Lastly, by combining

Fig. 3: Number of samples collected from different markets

Fig. 4: Numer of fake samples collected per quarter

and sorting the release dates of different versions according
to different apps, we can reproduce the updating timelines of
our target apps.

To find out the release latency of a fake app, all the dates
on the timeline of the corresponding official app are compared
in order to find out the smallest negative difference which
we define as the release latency. Fig. 6 shows that most fake
samples are published with the latency shorter than 20 days.
According to our statistics, 60% of fake samples show up in 6
days after a new version of the official app is published. This
reveals a truth that fake developers are swift in action.
Answer to RQ 3.2. Fig. 5 shows the distribution of the time
a fake certificate can survive in markets. In the left density
distribution subplot, x-axes is the latency and y-axes shows
the probability density of data at corresponding x value. The
total area under the curve is 1, and the area under two y values
y1 and y2 is the probability of their corresponding value x1
and x2 account for in data. For example, in Fig. 5, the area
beneath curve between 0 to 200 on x-axes is close to 0.8,
which means nearly 80% of certificates only survive for no
more than 200 days.

To judge how long a fake certificate can survive is similar
to how we calculate the update frequency of an app, the
first time and the last time a fake sample from the same
certificate gets crawled are marked. The time when a sample
was crawled from a market might be different from the time
when it is available in the market, but our crawler downloads

Fig. 5: Fake certificate survival time distribution

new samples from different markets by days and we also use
days as the unit in our measurement, so we can approximately
regard this two values as the same one.

As shown in Fig. 5, the distribution of fake certificate
survival time shows that almost all the fake certificates live
a short life, which means most fake certificates only show up
in a short period of time. This can be explained by a scheme
that most markets have. Once an app is found malicious or
illegal, the market would stop that specific developer from
uploading more samples by refusing to receive samples with
the same certificate. There are also a number of certificates
which can survive for a long time. According to the figure,
some fake certificates even traverse the whole study interval.
We will conduct a case study on this phenomenon in Section
V.
Answer to RQ 3.3. Fig. 4 shows the number of fake sam-
ples collected per quarter since the fourth quarter of 2015.
Although a large number of new fake samples get released in
every quarter, the figure shows a tendency that the total number
of fake apps on markets is gradually decreasing by years. Note
that our statistics only focus on fake samples, consequently
this phenomenon does not indicate the underground industry
is turning down. Instead, we suppose this is possibly caused
by the reform of fake apps.

On one hand, as stricter review schemes and stronger
protection systems are applied on app stores, it’s inevitable
that fake apps in this study, become harder and harder to
get on the shelf. On the other hand, the new generation of
malicious software, such as ransomware [21] is impacting

Fig. 6: Fake latency overall distribution

the underground industry. Compare to fake apps, the new
malicious apps are not only hard to defend (due to the
innovative or even state-of-the-art techniques they utilize) but
also extremely profitable. Wannacry, a ransomware which was
first spotted in the 2nd quarter of 2017, conquered tens of
thousands of devices in a couple of weeks, which directly
pulled up Bitcoin’s price like a rocket [22]. Afterward, in
the first quarter of 2018, a burst of cryptomining malware on
phones emerged [23]. This may be the reason why the number
of fake samples suffers two suddenly drops in the second
quarter of 2017 and the first quarter of 2018, respectively.

Remark 3: Fake apps can be produced in a relatively short
time, and the dropping number of fake samples by years
suggests that they are mired in recession. Besides, only a
few fake certificates survive for a long time, confirming
that markets’ protection schemes do work to some extent.

V. CASE STUDY AND DISCUSSION

In this section, we present some samples in our dataset, not
only to firm our findings but also to provide more valuable
insights.
Case study 1. Fake certificate with multiple malicious imita-
tors and imposters

We manually review the samples signed by the certificate
with SHA1 “61ed377e85d386a8dfee6b864bd85b0bfaa5af81”,
the certificate with the most number of fake samples among
our fake certificate set (i.e., 1,374 fake samples). On top of
that, this certificate is also one of the certificates survive the
longest time (nearly 3 years) and is still active.

Originally, we presume this certificate to belong to a benign
app which passes the verification of analysts in Pwnzen, since
the number of samples it links to even exceeds the number
of official samples of some apps. The truth is, however, after
manually review, we found all the 1,374 samples linked with
this certificate are typical fake samples, in form of either
imitators or imposters, covering 79% (37 out of 47) of our
target apps. Some of its samples can even be organized in
version order, which means the developer does track official
apps to update its fake versions as maintenance.

We display some of the samples singed by this certificate in
Table III, they are all reported to be malicious (i.e., Ad-ware,
spyware or Trojan) on VIRUSTOTAL [24], a famous online
antivirus engine. So far the samples related to our target apps
have already been showing up in 20 markets including the
leading ones like Myapp and Qihoo 360 Market. What’s

TABLE III: Some samples signed by
“61ed377e85d386a8dfee6b864bd85b0bfaa5af81”

Name Package Name Size

QQ Talk net.in1.smart.qq 465.8 KB
QQ com.h 8.2 MB
LoveWeChat com.lovewechat 368.4 KB
WeChat com.tencen1.mm 22.1 MB
UC Mini com.uc.browser.en 2.1 MB
UC Browser com.UCMobile.microsoft 21.3 MB
Clean Master com.blueflash.kingscleanmaster 972.0 KB
WiFi Master Key com.snda.wifilocating 5.9 MB

more, Baidu App Store keeps receiving apps with this
certificate from 2015 to recently – its latest “product” was
put on shelf on September 15th, 2018.

To this end, we can draw the following conclusions: (1)
Even the leading app markets (and the top developers) are
unqualified in detecting malicious apps. (2) Existing app
markets lack information exchange on defending attacks from
underground industry.
Case study 2. Fake samples in different gaming apps

Gaming apps in our target app list (i.e. ArenaofValor and
HappyElements) attract a number of fake samples. To figure
out what do these samples look like, we randomly downloaded
some of the fake samples of the 2 gaming apps (7 samples for
each) and installed them on our testing device. Fig. 7 shows
how these samples look like on a real Android phone, official
apps are marked with green frames. Apparently, fake samples
have either a similar name or a similar icon to official ones.

We even ran these apps on our device. Screenshots were
captured when we ran one of the fake samples (see Fig. 9)
and the official sample (Fig. 8). As a result, we found that 4
fake samples of HappyElements are actually games that are
similar to the official one (one is a repackaged app with high
confidence), 2 are raiders on the game and the last one crashed
when it was launched. 3 out of the 4 fake games pop up alert
windows in the game to require users for In-App purchase,
which is very possible to cause unwilling cost. All 7 samples
are reported to be malicious on VIRUSTOTAL [24].

Fake samples on ArenaofValor, in contrast, barely have
functionalities like the official one. 3 of those samples are
wallpaper setters and the rest 4 are simply puzzle games.
Virustotal reports 6 out of the 7 samples as malware, the last
one is claimed as potentially unwanted program (PUP).

We determine it is the difficulty to imitate the official app’s
functionality that brings about this phenomenon. The core
implementation of multiplayer online battle arena (MOBA)
games like ArenaofValor is much more complicated than
that in HappyElements. What it costs to develop a complex
game like ArenaofValor is exorbitant for a fake devel-
oper. Therefore, we can infer another reason why apps in
productivity category gain a low fake sample rate: Unlike
games, on one hand, productivity tools are less likely to have
peripheral products (like wallpaper setter mentioned above);
On the other hand, the inevitably laborious developing proce-
dure also prevents the tools themselves from being shammed.

TABLE IV: Suspicious samples with official certificates

Name Sample SHA1 Doubtful Point

iQiyi b86c55a509e8293b24138b166e9ff410f39e84b5 Signed by certificate from another developer (360Zhushou)
360Zhushou 2bb43c53b86d204d0040a8af6cb2a09cf9e93bb7 Suspicious package name (com.kuyou.sdbgj.baidu)
Youku XL Cracked b55b7ef189d649aeb03443c5d1ab57c9031d624e Suspicious word in app name (“Cracked”)

Fig. 7: Two games
and their fakes

Fig. 8: Real
HappyElements

Fig. 9: Fake
HappyElements

Case study 3. Suspicious samples with official certificate
Case study 1 gives us a perfect example on counterintuitive

data in our data set. In order to find out whether or not resem-
ble cases exist in our official samples, we manually reviewed
them and noticed a weird entry when sorting out the sample
log, a sample claims itself to be “cracked” in its app name.
Furthermore, we checked (1) if strange word (e.g., “cracked”)
appears in our official samples’ names, (2) whether or not an
official app is signed by an official certificate from another
developer, and (3) if one official sample has a suspicious
package name. Eventually we acquired 17 suspicious official
samples, listed in table IV are samples in each of these three
kinds . VIRUSTOTAL reports that only 2 of the 17 samples are
benign, 2 are PUP and the other 13 samples are all malicious.

Despite the possibility that these certificates were somehow
leaked to the underground industry, it is more likely that
some attackers penetrated the protection scheme. As far back
as December 2017, Google had confirmed and revealed a
backdoor on V1 signature scheme (CVE-2017-13156) [25],
by which hackers can inject any content into an apk at will
without modifying its certificate information. An alternative
solution, V2 signature scheme, has been launched at least one
year before that. In order to confirm if these apps are using the
risky V1 scheme, we used a tool, APKSIGNER, provided by
Google to verify which signature schemes these samples are
using. It ends up that all 17 samples are using V1 signature
scheme. With actually knowing that V1 is no longer safe,
developers still refuse to embrace the safer scheme, which
is really disappointing.

VI. RELATED WORK

Empirical study on grayware. Andow et al. [2] proposed a
study of grayware, in which 9 types of greyware are defined
and triaged from data retrieved from google play. We referred
the definition on imposter from this article.

Empirical studies on malware ecosystem. 46 malware sam-
ples on various platforms are dissected to gain understanding
on their incentive system as in a survey conducted by Felt et
al. [26]. Meanwhile, several strategies are proposed by them
to defend again these type of malware. Zhou and Jiang [27]
gathered over 1,200 malware samples across major Android
malware families, systematically characterizing their different
natures including installation methods, activation mechanisms
and how the payload is carried out. These researches help
expand practitioners’ horizon in terms of malicious app’s
behavior, but the insight they provide may not suit fake app
identification well.
Repackage detection. Prior work on repackage detection
generally falls into five categories. The first one is based
on apps’ instruction sequences, which uses fuzzy hashing
techniques to extract the digest of apps, then calculates sim-
ilarity between every two digests [28], [29]. The second one
is based on semantic information. CLANdroid [30] detects
similar apps through analyzing five semantic anchors (e.g.,
identifiers and Android APIs). The third kind leverages lib
detection methods. CodeMatch [31] filters out libraries used
in apps then compares the hash of their remnant. Wukong [32]
detects repackage apps in two steps, but that it processes the
second step by using a counting-based code clone detection
approach, instead of hash. ViewDroid [33] picks out repackage
apps by rebuilding and comparing the viewgraph of different
apps, belongs to the forth kind which makes use of visualizes
information. The fifth kind applies graph theory on measuring
app similarity. DNADroid [34] calculate apps’ similarity based
on program dependency graph (PDG), while AnDarwin [35]
builds semantic vectors with PDG extracted from every meth-
ods. Centroid [36] even constructs 3D-control-flow-graph (3D-
CFG) for each method in an app and see how alike the centroid
in different apps are.

Each of these approaches has its own advantages and
drawbacks, from the perspective of scalability and accuracy,
which are beyond the topic in this article. One common they
all do share, however, are that the verification step, without
any exception, is based on certificate system. Once the illegal
developers poison data with legal certificates through apps
with vulnerable signature scheme, even the state of the art
detecting approach can do nothing about it.

VII. CONCLUSION

In this paper we first introduce the concept of fake apps,
and study specifically towards these apps. To the best of our
knowledge, we are the first to conduct a comprehensive empir-
ical study on a large-scale fake apps. To better understand the
ecosystem nature of this type of apps, we obtained more than
150,000 data entries from real-world markets, observed and
measured the fake samples among this dataset from several

dimensions including certificate information, app size, app
name and package name, time factor and so on.

Through our measurements we gain valuable experience on
fake apps from several perspectives, findings like fake sam-
ples’ naming tendency and fake developers’ evasive strategies
are inferred. To support our findings, we further present a few
study cases which provide us a more detailed look into fake
apps to back our discoveries on fake app ecosystem.

We hope the lessons learned in this article are informative
and helpful for mobile security practitioners in both academia
and industry to improve the status quo. Future work can be
processed with the following concerns: (1) Introducing icon
detection into the investigation so that broader samples and
higher accuracy can be accessed; (2) Collecting more data all
over the world to examine how global the problem is; (3)
Applying malice detection or even behavior analysis to the
samples for qualitative analysis. As for developers, we advise
them to protect their code by obfuscation or encryption, and
to use the latest apk signature scheme. Phantasmagorical and
mysterious as the fake apps seem to be, countermeasures will
be eventually found as we catch up on their nature.

ACKNOWLEDGEMENT

This research is funded by NSFC Grant 61502170, and the
Science and Technology Commission of Shanghai Municipal-
ity (No. 18511106202 and No. 18511103802), NTU Research
Grant NGF-2017-03-033 and NRF Grant CRDCG2017-S04.

REFERENCES

[1] Gartner, “Market Share: Final PCs, ultramobiles and mobile
phones, all countries, 4q17 update,” 2018. [Online]. Avail-
able: https://www.gartner.com/document/3859473?ref=solrAll&refval=
198684736&qid=cd5ac40847050e99f7bf1da724abb25c

[2] B. Andow, A. Nadkarni, B. Bassett, W. Enck, and T. Xie, “A study of
grayware on Google Play,” 2016 IEEE Security and Privacy Workshops
(SPW), pp. 224–233, 2016.

[3] A. I. Wasserman, “Software engineering issues for mobile application
development,” in Proceedings of the FSE/SDP workshop on Future of
software engineering research. ACM, 2010, pp. 397–400.

[4] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu, “Storydroid:
Automated generation of storyboard for Android apps,” in Proceedings
of the 41th ACM/IEEE International Conference on Software Engineer-
ing, ICSE 2019, 2019.

[5] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “Stormdroid: A
streaminglized machine learning-based system for detecting android
malware,” in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security. ACM, 2016, pp. 377–388.

[6] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li, “Automated
poisoning attacks and defenses in malware detection systems: An
adversarial machine learning approach,” computers & security, vol. 73,
pp. 326–344, 2018.

[7] S. Chen, M. Xue, and L. Xu, “Towards adversarial detection of mobile
malware: poster,” in Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking. ACM, 2016, pp.
415–416.

[8] L. Fan, M. Xue, S. Chen, L. Xu, and H. Zhu, “Poster: Accuracy vs. time
cost: Detecting Android malware through pareto ensemble pruning,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 1748–1750.

[9] McAfee, “Mcafee mobile threat report q1, 2018,” 2018.
[Online]. Available: https://www.mcafee.com/enterprise/en-us/assets/
reports/rp-mobile-threat-report-2018.pdf

[10] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
capturing system-wide information flow for malware detection and
analysis,” in Proceedings of the 14th ACM conference on Computer
and communications security. ACM, 2007, pp. 116–127.

[11] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su,
“Large-scale analysis of framework-specific exceptions in android apps,”
Proceedings of the 40th International Conference on Software Engineer-
ing (ICSE), pp. 408–419, 2018.

[12] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and G. Pu, “Efficiently
manifesting asynchronous programming errors in android apps,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering (ASE). ACM, 2018, pp. 486–497.

[13] S. Chen, G. Meng, T. Su, L. Fan, Y. Xue, Y. Liu, L. Xu, M. Xue, B. Li,
and S. Hao, “Ausera: Large-scale automated security risk assessment of
global mobile banking apps,” arXiv preprint arXiv:1805.05236, 2018.

[14] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu, “Are
mobile banking apps secure? what can be improved?” in Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.
ACM, 2018, pp. 797–802.

[15] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp.
707–710.

[16] “Baidu App Store.” [Online]. Available: https://shouji.baidu.com/
[17] “Hiapk.” [Online]. Available: http://apk.hiapk.com/
[18] “Myapp.” [Online]. Available: http://sj.qq.com/myapp/
[19] “Analysys Figure.” [Online]. Available: http://zhishu.analysys.cn/
[20] LIFTOFF, “Mobile Gaming Apps Report,” 2018. [Online]. Avail-

able: https://cdn2.hubspot.net/hubfs/434414/Reports/2018%20Gaming%
20Apps/Liftoff 2018 Mobile Gaming Apps Report Aug.pdf

[21] Wikipedia, “Ransomware,” 2018. [Online]. Available: https://en.
wikipedia.org/wiki/Ransomware

[22] B. Jonas, “Global malware campaign wannacry is affecting
Bitcoin’s price,” 2017. [Online]. Available: https://hacked.com/
global-malware-campaign-wannacry-affecting-bitcoins-price/

[23] Comodo, “Comodo cybersecurity q1 2018 global malware report:
cybercriminals follow the money, cryptominers leap ahead of
ransomware,” 2018. [Online]. Available: https://blog.comodo.com/
comodo-news/comodo-cybersecurity-q1-2018-global-malware-report/

[24] “Virustotal.” [Online]. Available: https://www.virustotal.com/
[25] Google, “Android security bulletindecember 2017,” 2017. [Online].

Available: https://source.android.com/security/bulletin/2017-12-01
[26] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. A. Wagner, “A survey

of mobile malware in the wild,” in SPSM@CCS, 2011.
[27] Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization

and evolution,” 2012 IEEE Symposium on Security and Privacy, pp.
95–109, 2012.

[28] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smart-
phone applications in third-party android marketplaces,” in CODASPY,
2012.

[29] M. Zheng, M. Sun, and J. C. S. Lui, “Droidanalytics : A signature based
analytic system to collect , extract , analyze and associate Android,”
2013.

[30] M. Linares-Vásquez, A. Holtzhauer, and D. Poshyvanyk, “On auto-
matically detecting similar Android apps,” in Program Comprehension
(ICPC), 2016 IEEE 24th International Conference on. IEEE, 2016, pp.
1–10.

[31] L. Glanz, S. Amann, M. Eichberg, M. Reif, B. Hermann, J. Lerch, and
M. Mezini, “Codematch: obfuscation won’t conceal your repackaged
app,” in Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. ACM, 2017, pp. 638–648.

[32] H. Wang, Y. Guo, Z. Ma, and X. Chen, “Wukong: a scalable and accurate
two-phase approach to Android app clone detection,” in Proceedings of
the 2015 International Symposium on Software Testing and Analysis.
ACM, 2015, pp. 71–82.

[33] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “Viewdroid: to-
wards obfuscation-resilient mobile application repackaging detection,”
in WISEC, 2014.

[34] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting
cloned applications on Android markets,” in European Symposium on
Research in Computer Security. Springer, 2012, pp. 37–54.

[35] ——, “Scalable semantics-based detection of similar Android applica-
tions,” in Proc. of ESORICS, vol. 13. Citeseer, 2013.

[36] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on Android markets,” in
Proceedings of the 36th International Conference on Software Engineer-
ing. ACM, 2014, pp. 175–186.

