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ABSTRACT

Mobile banking apps, belonging to the most security-critical app
category, render massive and dynamic transactions susceptible
to security risks. Given huge potential financial loss caused by
vulnerabilities, existing research lacks a comprehensive empirical
study on the security risks of global banking apps to provide useful
insights and improve the security of banking apps.

Since data-related weaknesses in banking apps are critical and
may directly cause serious financial loss, this paper first revisits the
state-of-the-art available tools and finds that they have limited ca-
pability in identifying data-related security weaknesses of banking
apps. To complement the capability of existing tools in data-related
weakness detection, we propose a three-phase automated security
risk assessment system, named Ausera, which leverages static pro-
gram analysis techniques and sensitive keyword identification. By
leveraging Ausera, we collect 2,157 weaknesses in 693 real-world
banking apps across 83 countries, which we use as a basis to conduct
a comprehensive empirical study from different aspects, such as
global distribution and weakness evolution during version updates.
We find that apps owned by subsidiary banks are always less secure
than or equivalent to those owned by parent banks. In addition, we
also track the patching of weaknesses and receive much positive
feedback from banking entities so as to improve the security of
banking apps in practice. We further find that weaknesses derived
from outdated versions of banking apps or third-party libraries
are highly prone to being exploited by attackers. To date, we high-
light that 21 banks have confirmed the weaknesses we reported
(including 126 weaknesses in total). We also exchange insights with
7 banks, such as HSBC in UK and OCBC in Singapore, via in-person
or online meetings to help them improve their apps. We hope that
the insights developed in this paper will inform the communities
about the gaps among multiple stakeholders, including banks, aca-
demic researchers, and third-party security companies.
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1 INTRODUCTION

Banking apps belong to the most security-critical and data-sensitive
app category. Cashlessmobile payment has significantly fragmented
the traditional financial services, beginning with the first ATM and
culminating in e-banking. Users often misconceive that banking
apps provide secure transactions and an easy-to-use interface, by
assuming all communications are done between local banking apps
and remote bank servers securely (e.g., over HTTPS). Unfortunately,
this assumption does not always hold. After examining many real-
world banking apps, we find new types of weaknesses that are hard
to be detected by existing industrial and open-source tools, e.g.,
QiHoo360 [17], AndroBugs [2], MobSF [13], and QARK [16]. For
example, in a popular banking app from Google Play, the user will
be asked to register with her personal information, including first
name, last name, password, and address. After the user clicks the
“register” button, the app sends an SMS attached with the sensitive
data (in plain text) to authenticate that user, but the data is stored
in the SMS outbox unexpectedly. If an attacker registers a content
observer to the SMS outbox on the mobile device with READ_SMS
permission, the user’s sensitive data can be easily intercepted by
the attacker. Indeed, many other real-world banking-specific weak-
nesses and attacks have been witnessed globally [59, 60]. Nowadays,
banking apps pose new challenges, such as flaws and vulnerabili-
ties [9, 11] that cause huge financial loss [3].

To understand the weaknesses exhibited in banking apps and
help to improve the security of these apps, several studies have
been done manually on a small-scale banking apps [30, 61, 63, 64].
The conclusions drawn from manual analysis may be more likely
to be biased and cannot represent the security status of the entire
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Figure 1: Overview of our study

banking ecosystem. Apart from manual analysis on only a small-
scale apps, state-of-the-art assessment approaches also pose several
other limitations: (1) current studies lack a baseline of sensitive data-
related security weaknesses specific to the core functionality of
banking apps to ensure an overall assessment of these apps; (2) the
current off-the-shelf services (e.g., Qihoo360 [17]) and open-source
tools (e.g., AndroBugs [2]) use syntax-based scanning to perform
a security check during app development, which would incur a
large number of false positives (e.g., non-sensitive data printed
in the log file). Besides, these tools focus on generic categories of
apps, not specific to banking apps. Even when the weaknesses,
such as cryptographic misuses [42] and inappropriate SSL/TLS
implementations [40, 45, 51, 65], have been reported for years, it
still appears unknownwhy somany security weaknesses in banking
apps are not yet patched [63]. Overall, the existing work cannot
represent the security status of the entire banking ecosystem, and
the state-of-the-art tools are ineffective in collecting a large number
of weaknesses to conduct further in-depth analysis.

To explore the entire mobile banking ecosystem and help to
ensure the user’s financial security, this paper takes a large number
of banking apps as subjects to conduct a comprehensive empirical
study on the data-related weaknesses in global Android banking
apps. As shown in Figure 1, our study contains three main steps: (1)
we first collect 693 banking apps across 83 countries from various
markets, to our knowledge, this is the largest banking app dataset
taken into study to date; (2) to collect the weaknesses exhibited in
banking apps and complement the capability of existing tools in
data-related weakness detection, we first summarize a weakness
baseline and propose an automated security risk assessment sys-
tem (Ausera).Ausera combines static program analysis techniques
and sensitive keyword identification, to identify such weaknesses
(cf. Section 2). (3) By applying Ausera, we collected 2,157 security
weaknesses in the 693 banking apps, and further conduct a compre-
hensive empirical study (cf. Section 3) to investigate the ecosystem
of banking apps in terms of security weaknesses, aiming to answer
the following research questions:
• RQ1: What is the current status of existing tools towards
collecting reliable data-related weaknesses in banking apps
compared with Ausera?
• RQ2: What is the overall security status of banking apps in
terms of data-related weaknesses?
• RQ3: What is the weakness status of banking apps globally
w.r.t. economies and regulations?
• RQ4: How are weaknesses introduced during app evolution
and fragmentation?
• RQ5: What is the gap between academic researchers and
banks in understanding and fixing weaknesses?

Through an in-depth analysis of the weaknesses, we find that
(1) banking apps across different regions exhibit various types of
security status, mainly due to different economy status (e.g., small
village banks) and financial regulations (e.g., GDPR [18]). Banking
apps in Europe and North America have few security weaknesses,
with only 0.27 weakness of data leakage per app. Asia is most
flooded with security weaknesses, averaging out to 6.4 weaknesses
per app. Banking apps from Africa have comparatively moderate
security status with 4.6 weaknesses per app, primarily because of its
high demand for cashless payment services. (2) Weaknesses of apps
vary across different markets by countries and bring fragmentation
problems among different versions of the same banking apps. Apps
owned by subsidiary banks are always less secure than or equivalent
to those owned by parent banks. This observation is evidenced by
the South Korean version of the Citibank app and the Chinese
version of the HSBC app. (3) Apart from the lessons learned from
our study, we also track the weakness fixing process based on our
reported weaknesses and set up 9 in-person or online meetings with
7 banks. These meetings help the communities understand the gaps
between different parties, including banks, academic researchers,
and third-party security companies.

In summary, we make the following contributions:
• To collect weaknesses in banking apps and complement the
capability of existing tools in data-related weakness detec-
tion, we developed an automated security risk assessment
system (Ausera), to efficiently identify security weaknesses
in banking apps, outperforming 4 state-of-the-art industrial
and open-source tools.
• To our knowledge, we conducted the first large-scale empir-
ical study on 2,157 security weaknesses collected from 693
banking apps, the largest dataset taken into study to date.
We attempt to investigate the ecosystem of global banking
apps in terms of data-related weaknesses from four different
aspects, such as global distribution analysis and evolution
of multiple versions.
• We report the identified weaknesses to banks and provide
simple-but-concrete fixing recommendations. To date, 21
banks have acknowledged our results, and 52 reported weak-
nesses have been patched by the corresponding banks. Some
of them have actively collaborated with us to improve the
security of their apps.

2 TOOL EVALUATION

In this section, we propose an automated weakness detection tool
(namedAusera), guided by our constructed security weakness base-
line in order to collect security weaknesses in banking apps. We also
evaluate its effectiveness compared with the state-of-the-practice
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Table 1: Taxonomy of security weaknesses in our study

Category Security Weakness Type

Input Harvest Sensitive data harvested by screenshots

Sensitive

Data Storage

Stored in shared preferences
Stored in webview.db
Logged locally
Stored on SD Card
Written in text files

Sensitive Data

Transmission

Transmitted via SMS

ICC leaked
by dynamically registered Receiver
by implicit Intent
by component export

Communication

Infrastructure

Only uses HTTP protocol
Uses invalid certificates (i.e., expiration, SHA-1 used)
Uses invalid
certificate
authentication

allows all hostname request
uses invalid hostname verification
uses invalid server verification

Uses hard-coded encryption key
Uses improper
AES encryption

uses insecure encryption
uses improper function

Uses improper
RSA encryption

no RSA
uses improper function

Uses insecure SecureRandom (i.e., setSeed)
Uses insecure hash function (i.e., MD5 and SHA-1)

tools to observe the current status of detection ability towards data-
related weaknesses in banking apps. We then introduce the data
collection process of banking apps and security weaknesses in these
apps as the basis to conduct a large-scale analysis. Before proposing
Ausera, we first revisit the state-of-the-art available tools or online
services for weakness detection.

AndroBugs [2], QARK [16], andMobSF [13] are all open-source
tools for detecting vulnerabilities in general Android apps. Specifi-
cally, AndroBugs is a framework to find potential vulnerabilities
in Android apps by pattern-matching, and it also records some
meta data in the database such as permissions used in the current
app. QARK is designed to look for vulnerabilities related to An-
droid apps, either in source code or packaged APKs. MobSF is a
pen-testing framework, which is able to detect app vulnerabilities,
and the results can be displayed on webpages. Apart from the open-
source detection tools, Qihoo360 is a popular security company in
China, which maintains an app scan engine, named appscan [17].
It is a free online application for security risk scanning service.

However, the current off-the-shelf services and tools have the
following limitations in banking specific weakness collection ac-
cording to our investigation: (1) They usually use syntax-based
scanning, thus cannot verify the actual data flow, which would in-
cur a large number of false positives that are not related to sensitive
data leakage. (2) They usually aim to detect weaknesses in general
apps, not specific to banking apps. Thus the patterns they use to
detect weakness are difficult to detect data-related weaknesses in
banking apps. The detection ability of the state-of-the-art weakness
detection tools are demonstrated in Section 2.2. Considering the
aforementioned situations, to complement the capability of existing
tools in data-related weakness detection, we propose a tool,Ausera,
for automating the detection and collection of sensitive-date related
weaknesses specific to banking apps.

Security Weakness
Detection

Function
Identification

Newly-defined
Source & Sink

Sensitive
Data Tagging

Banking
Keyword DB

Banking App

Security Weakness 
Baseline

AUSERA

Security Weaknesses

API Invocations for
Comm. Infra.

Figure 2: Overview of Ausera

2.1 Ausera

In order to collect a data-related weakness dataset specific to bank-
ing apps, we first propose a taxonomy of sensitive data-related se-
curity weaknesses in banking apps. Guided by the baseline, Ausera
is proposed to identify weaknesses in banking apps.

2.1.1 Taxonomy of Security Weaknesses within Banking

Apps. We propose and integrate security weaknesses of mobile
banking apps from prior research [30, 61, 63, 64], best industrial
practice guidelines and reports (e.g., OWASP [14], Google An-
droid Documentation [10], and AppKnox security reports [59, 60]),
NowSecure reports [70], and security weakness and vulnerability
databases (e.g., CWE [22], CVE [21]). We take an in-depth look at
the weaknesses w.r.t. sensitive data, since the biggest threat to
banking apps comes from manipulation of digital assets and rou-
tine financial activities. As shown in Table 1, sensitive data may be
exposed to attackers through various ways as follows:
• Input Harvest, confidential inputs and user relevant sensitive data
(e.g., transaction details) can be harvested via UI screenshot by
malicious apps on rooted devices, or even adb-enabled devices
without root access [55].
• Data Storage, an adversary is able to obtain data stored in local
storage (e.g., shared preference, webview.db) on rooted devices
or external storage (e.g., SD Card), and also from the output of
the Android logging system without root access.
• Data Transmission, sensitive data transmission via SMS can be
easily intercepted by malware observing the outbox of Android
SMS service. Moreover, data leakage via inter-component commu-
nication (ICC) is another potential threat, allowing third parties
to obtain data from banking apps by making implicit intent calls,
or dynamic registration of a broadcast Receiver.
• Communication Infrastructure, MITM attack can obtain sensitive
data through sniffing network traffic between client and server,
thereby sending fake data to either party. This kind of attack
is generally achieved due to improper authentication protocols,
insecure cryptography, lack of certificate verification, etc.
Our baseline contains data-related weaknesses of multiple cat-

egories and builds a solid foundation for analyzing weaknessesin
banking apps.

2.1.2 Methodology of Ausera. To collect a large dataset of
security weaknesses, Ausera takes as input each banking app,
guided by the weakness baseline, and ultimately outputs security
weaknesses of the app. Figure 2 shows the overview of Ausera,
including three phases: (1) Sensitive data tagging, which identifies
sensitive data in banking apps, including user inputs and the data
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Figure 3: Identification of sensitive data

from server displayed on the UI pages, and then attaches semantics
to the sensitive data-related variables in .xml/.java files according
to our constructed sensitive keyword database. (2) Function iden-
tification, which identifies the functions related to data leakage
such as preference storage, SMS transmission, and determines the
behavior of a piece of code based on API invocations (or their call
sequence patterns). (3) Weakness detection, which performs taint
analysis based on the tagged sensitive data and functions to check
the existence of weaknesses in the proposed baseline.
• Sensitive data tagging. Since we are concerned about the sensi-
tive data in banking apps that may incur security risks, we manually
extract typical data-related keywords in banking apps.

Figure 3 shows the process of sensitive keyword database con-
struction and sensitive data tagging. (1) Sensitive keyword DB con-
struction. To construct the keyword database, we first extract all
strings (i.e., component ID name of EditText, the hint text of Edit-
Text, and the text of TextView) from the layout files of 693 banking
apps by reverse engineering. We then filter the strings according
to the core financial services of banking apps such as login, pay-
ment, etc. Note that, to avoid missing variants of the keywords, we
further employ Word2vec [57] to supplement the corpus of the
keyword database. Specifically, we load the trained model based on
the .bin word vector, using the sentences extracted by Supor [52]
from 54,371 general apps. For example, we further find the string
“passwd” is a variant of the sensitive keyword of “password.” These
sensitive keywords are able to indicate the semantics of the compo-
nents (i.e., EditText and TextView). Eventually, we build a sensitive
keyword database containing 70 keywords, which can be classified
into 4 categories as shown in Table 2. Currently, we only consider
two languages (i.e., English and Chinese). In the future work, we
may extend the language types. The full list of keywords is publicly
available online.1 (2) Sensitive data tagging. Based on the keyword
database, we can identify the sensitive data-related variables in the
code and attach semantics to them. Specifically, we first extract vari-
ables related to two kinds of components: EditText for user input
and TextView for data display. For each component, as shown in
Figure 4, there may be several variables declaring different aspects
of the component such as the component ID, component hint, and
component text. Therefore, we extract all the variables related to
each component, and then tag the variable as sensitive if it matches
with any keyword in the keyword database. Note that, the semantic
tagging method in previous work [28, 52] relies on the component
relation in layouts, which may lose some user inputs. As a result,
sensitive data is tagged with its semantics in the format ⟨variable,
keyword⟩.

1www.sites.google.com/view/ausera/

Table 2: Keyword examples

Category Keyword Examples Number

Identity username, userid, byname, user-agent 13
Credential password, passcode, pwd, pin 11
Personal Info name, phone, email, birthday 24
Financial Info credit card, amount, payment, payee 22

<TextView android:text=“@string/Passowrd”/>
<EditText android:id=“@+id/pwd”

android:hint=“Password”/>

�

�

textPwd = (EditText) findViewById(R.id.pwd);
String password = textPwd.getText().toString();

�

UI layout
code

Java code

Figure 4: Code relation between Java and UI layout code

For the example described in the introduction, the sensitive data
is tagged as ⟨edit_PIN, pin⟩, ⟨edit_firstName, firstname⟩, ⟨edit_lastName,
lastname⟩, ⟨edit_addr, addr⟩, so the app in the example is confirmed
to send sensitive data out via SMS.
• Function identification. The sensitive data extracted above are
defined as sources, and be far apart from the access of unauthorized
users. We use our newly-defined sinks (i.e., specific-APIs) to iden-
tify function code that is associated with weaknesses for banking
services. However, as discussed in Section 2.1.1, these sensitive
data may be divulged during the storage or transmission process.
To achieve confidentiality, the sensitive data should not flow into a
code point where unauthorized users can access via local storage,
external storage, logging output, SMS, and component transition
in Table 1 (a.k.a., sinks of sensitive data). It is worth mentioning
that the sinks here are different from the sinks defined in SuSi [62].
SuSi’s sinks are all potential method calls with 12 categories that
leak sources out of mobile devices, while our newly-defined sinks
are leaking sensitive data through specific leakage channels (e.g.,
shared preferences, logging output, and SMS). According to the
leakage channels, we manually define 106 vulnerable sinks [20] in
total that are likely to be exploited in banking apps.

Communication infrastructure, which is indispensable to bank-
ing apps [42, 64]. It establishes a channel to communicate with
remote bank servers. However, communication infrastructure is
likely to be attacked, and hence it can undermine the security
of these apps. The core functionalities in communication infras-
tructure include certificate verification, cryptographic operation,
and host authentication. To accurately identify the functional code
for communication infrastructure, we summarize all invocation
patterns of multiple Android APIs for each functionality. Taking
hostname verification as an example, if there is an invocation se-
quence {new X509HostnameVerifier, setHostnameVerifier of
class HttpURLConnection}, we consider that the app uses hostname
verification during communication. We further check its implemen-
tation to determine whether it implements correctly. We have 12
groups of API invocation patterns in total for function identifica-
tion in communication infrastructure. We reverse-engineer banking
apps, locate the invocations of these relevant Android APIs, and

www.sites.google.com/view/ausera/
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use call graphs and component transitions to determine their call
relation in between. Finally, we can identify the functional code for
communication infrastructure of banking apps.
• Security weakness detection.Given a banking app, we attempt
to find whether it contains any weaknesses listed in Table 1 and
reduce false positives by employing the two strategies: (1) a forward
data-flow analysis to determine whether there exists sensitive data
flowing into insecure sinks by leveraging sensitive data tagging and
taint analysis; (2) a backward control-flow analysis to check whether
the vulnerable functional code identified by API invocation patterns
in communication infrastructure is feasible based on call graphs and
Activity transitions.

We carry on a forward taint analysis on top of Soot [71] to sup-
port intra- and inter-component communication analysis based on
the tagged sensitive data. These data are regarded as sources, and
the sinks are the Android API list we defined. During the process of
functional code identification, we can obtain all vulnerable code (i.e.,
incorrect implementation) that exists in communication infras-
tructure. However, noise may arise because the dead code for testing
purpose cannot be executed during runtime. Reaves et al. [63, 64]
found that the dead code may bring false positives to the detection
results. We perform a backward control-flow analysis, and extract
all reachable call sequences according to call graphs and Activity
transitions. If the vulnerable code is reachable, we determine it is a
valid weakness, otherwise, it is a false alarm.

We highlight the following three strategies to reduce false posi-
tives. (1) Ausera reduces the size of our extracted keywords from
124 to 70, which effectively reduces ambiguity of the keywords
(e.g., “info” and “status”), and hence can identify sensitive data
more accurately. (2) Ausera utilizes newly-defined sources and
sinks, which are relevant to weaknesses of sensitive data leakage.
(3)Ausera identifies the vulnerable code and checks its reachability
to eliminate weaknesses in dead code by call graphs and Activity
transitions.

2.1.3 Implementation of Ausera. To implementAusera, we
combine static program analysis and sensitive data tagging to iden-
tify sensitive data in banking apps, and associate them with the
corresponding variables in XML/Java code. Ausera relies on Ap-
ktool [5] to extract resource files from apks. It then uses parts-
of-speech (POS) tagger of OpenNLP-1.8.3 [19] to parse the text
labels in TextView and EditText, thereby identifying keywords in-
cluded. We manually check on these keywords to retain the ones
that are sensitive and relevant to the core functionalities of banking
apps. After that, we employWord2vec to supplement the keyword
database.

To accomplish the detection, we summarize 12 groups of patterns
(e.g., AES/ECB/NoPanding) to depict the communication weak-
nesses. Thenwe employ pattern-based static analysis to find the pos-
sible vulnerable patterns in code. We check three aspects for certifi-
cate authentication: whether the client side 1) allows all hostname
requests; 2) bypasses hostname verification; 3) fails to implement
anything in the server verification method (checkServerTrusted).
The weakness “hard-coded encryption key” is determined by first
checking whether an encryption key is embedded in code, and ex-
amining whether it is used to encrypt sensitive data to reduce false
positives. The banking sensitive data are encrypted with the DES or

Table 3: Distribution of the collected banking apps

Continent #Developed #Developing Total Percentage

Europe 102 0 102 21.7%
America 53 24 77 16.4%
Asia 16 210 226 48.1%
Oceania 16 0 16 3.4%
Africa 0 49 49 10.4%
Total 187 283 470 -

Blowfish algorithm. Using either of the encryption mechanisms is
viewed as a weakness [63, 64]. The AES forbids ECB mode because
it does not provide a general notion of privacy [42]. The padding of
AES and RSA is always improper, such as NoPadding and PKCS1,
though AES/ECB/NoPadding is very frequently used. The function
SecureRandom should not be seeded with a constant. The hash
functions MD5 and SHA-1 are insecure [72, 73].

2.1.4 Evaluation of Ausera. We randomly selected 60 bank-
ing apps (12.8%) in our dataset and manually checked the detection
results to evaluate Ausera’s precision. Note that, we cannot evalu-
ate the false negatives when assessing banking apps due to lack of
weakness benchmarks of banking apps. False positive (FP) refers to
weakness that are detected during static analysis but actually infea-
sible at runtime or detected by mistake. As a result, we only found
6 false positives (corresponding to five weakness types, i.e., Shared
Preference Leakage, Logging Leakage, SD Card Leakage, Text File
Leakage, and Hard-coded Key) from the identified 341 weaknesses
of these 60 banking apps, achieving an average precision of 98.24%.

Consequently, 5 out of 6 false positives belong to sensitive data
leakage. The reason is that Ausera matches variables (e.g., “pkg-
name.txt,” “login_fragement,” “loginpager,” and “spinnerGender”)
inaccurately with the keywords in our database. The remaining one
FP belongs to Hard-coded Key type, because the extracted variable
is relevant to the exception parameters (i.e., “KeyPermanentlyIn-
validateException”).

2.2 RQ1: Tool Evaluation and Data Collection

Banking app collection. As shown in Figure 1, we collected 693
banking apps2 in total from various Androidmarkets such as Google
Play store and APKMonk [24]. Note that we only collect multiple
versions of some apps from APKMonk to conduct the longitudinal
anlaysis (cf. Section 3.3) since APKMonk maintains the full versions
of apps, while Google Play store only maintain the latest version.
The collected apps range across 470 unique banks, where some
apps have multiple versions. They originate from both developed
and developing countries across five continents (see breakdowns in
Table 3). Table 3 indicates that 48.1% of the banking apps are from
Asia, considering the largest population proportion all over the
world. Only 3.4% of apps are from Oceania, considering its smallest
population proportion all over the world. The 24 banking apps
of American developing countries all originate from South Amer-
ica, while 16 apps of Oceanian developed countries originate from
Australia and New Zealand. 16 apps of Asian developed countries

2Apart from the 693 apps, we have filtered out apps with packer techniques (49 apps
in total) and with decompilation failure since they are out of scope in this paper.
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Table 4: Detection result comparisons

Tools #Types Precision Time/App (mins)

Ausera 341 98.24% 1.6
Qihoo360 80 87.50% 8.5
AndroBugs 76 81.58% 1.8

QARK 93 87.10% 16.1
MobSF 213 48.36% 2.4

originate from Singapore, Japan, and South Korea. To our knowl-
edge, this is the largest banking app dataset taken into study to
date.
Comparison with the state of the practice. We compare the
detection results of Ausera with 4 industrial and open-source
tools, including Qihoo360, AndroBugs, MobSF, and QARK. We
randomly select 60 banking apps in our dataset for comparison and
run each tool 3 times to stabilize the detection accuracy. Table 4
shows the results.Ausera outperforms other tools in both precision
and time cost, achieving 98.24% precision in 1.6 minutes per app.
The precisions for these tools are obtained by manual validation
through filtering out all false positives. We also conduct a cross-
validation of detection results across different authors. We can
see that all comparisons of the detection results comply with the
weaknesses baseline. Ausera outperforms other tools with higher
precision and less time. Ausera manages to scan each app within
1.6 minutes on average, much faster than the other tools.

In particular, we show several specific cases to explain how false
positives are incurred. Sensitive data disclosure through logging can
be detected byMobSF, however,MobSF just matches the following
APIs if used (e.g., Log.e(), Log.d(), and Log.v()), without further
determining whether the output data is sensitive or not. There is
no doubt that it would incur a large number of false positives. If
the data is not sensitive, such as “menu_title,” it is very normal
for developers to output it in the terminal or write messages to
understand the state of their application. The risk is that some cre-
dentials (e.g., PIN and password) are also leaked by logging outputs.
A syntax-based scanning tool may provide an incomplete and incor-
rect analysis result due to the influence of dead code. For example,
Qihoo360 detected three code blocks violating server verification,
e.g., do nothing in checkServerTrusted. In contrast, Ausera aims
to to minimize the influence of dead code. Two key strategies to
eliminate such false positives are: (i) checking whether invalid au-
thentication is in a feasible path in call graphs; (ii) checking whether
the Class has been instantiated in Activity transitions.

Apart from the comparison with the above 4 tools, we also dis-
cuss the comparison between Ausera and two taint analysis tools
(i.e., FlowDroid [29] and IccTA [54]). Ausera aims to identify
weaknesses specifically in banking apps, while FlowDroid and
IccTA, which largely rely on sources and sinks defined in SuSi, aim
to identify the data leakage in general apps. (1) The sources and
sinks considered by FlowDroid and IccTA are specified by SuSi,
which contains 12 different source categories and 15 different sink
categories. However, among them, we only use taint analysis on 4
types of weaknesses (i.e., Shared preference leakage, logging leak-
age, SD card leakage, and SMS leakage). In other words, FlowDroid
and IccTA cannot detect most of security weakness types in our
proposed data-related baseline specific to banking apps. (2) In fact,

Table 5: Weaknesses in 470 banking apps

Weakness Category Weakness Type #Affected Apps

Input Harvest Screenshot 415 (88.3%)

Data Storage

Shared preference 44
WebView DB 64
Logging 66
SD Card 14
Text File 10

Data

Transmission

SMS Leakage 18
ICC Leakage 324 (68.9%)

Communication

Infrastructure

HTTP Protocol 84
Invalid Certificate 31
Invalid Authentication 222
Hard-coded Key 30
Improper AES 131
Improper RSA 231
Insecure SecureRandom 133
Insecure Hash Function 340 (72.3%)

we have deployed FlowDroid and IccTA on our defined sources
and sinks, and find that they cannot identify the concrete data types
(i.e., sensitive or non-sensitive) when tracking the 4 types of weak-
nesses. For example, developers usually output debug information
such as string length via logging channel, however, tracking such
non-sensitive data causes many false positives. While Ausera only
tracks the labeled sensitive data that are most relevant to the core
financial services of banking apps. (3) Most of the sources defined in
SuSi are not sensitive in banking apps, such as the API invocations
of Bluetooth, Calendar, and Settings. More comparison results can
be found on our website [20].
Answer to RQ1. In summary, existing state-of-the-practice
tools are less effective (i.e., lower precision, more false positives,
and cost more time) in identifying data-related weaknesses in
banking apps, compared with Ausera. Therefore, Ausera can
be used to collect a large number of security weaknesses for
further in-depth analysis.

Weakness collection. Ausera is demonstrated as the most effec-
tive tool to collect banking specific security weaknesses, we thus
apply it on the collected 693 banking apps across 83 countries. Fi-
nally, we collect 2,157 security weaknesses for further large-scale
empirical study.

3 A LARGE-SCALE COMPREHENSIVE

EMPIRICAL STUDY

In this section, we conduct a large-scale empirical study from dif-
ferent aspects based on the collected weaknesses by Ausera.

3.1 RQ2: Security Status of Banking Apps

Since the multiple versions of a banking app may have overlapped
weaknesses, we select the latest version of the 693 apps if they have
multiple versions, and apply Ausera to these 470 unique banking
apps to conduct the following study. Table 5 shows the results
of weaknesses corresponding to the security baseline defined in
Section 2.1.1.
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Figure 5: Top 10 sensitive data types leaked in 470 banking apps

Input harvest. Screenshot (88.3%), as an easy-to-use way to har-
vest users’ credentials, is most likely to be neglected by developers.
Only 55 apps (e.g., Bank of Communications of China) are protected
from screenshots in our investigation.
Data storage. Only a small portion of apps store sensitive data on
SD Card (2.98%) and Text File (2.13%), which are globally accessible
and thereby susceptible to privacy leakage. We show that Shared
preference, Logging, and WebView DB are the main channels that
leak sensitive data. As shown in Figure 5, Ausera identifies 592
cases of private data leakage across 470 unique banking apps. Cre-
dentials (e.g., PIN), as the most dangerous leakage in banking apps,
appear in 82 cases and affect 64 banking apps. Note that banking-
specific data (e.g., transaction password and card number) accounts
for 22.47%, and the other data leakage includes personal info (e.g.,
Name, Phone, and Email).
Data transmission. We show that ICC Leakage (68.9%) is also
among the most popular weaknesses. Despite the small portion of
SMS Leakage, SMS could directly forward credentials, thwarting
confidentiality. For example, the real banking app mentioned in the
introduction leaks sensitive data such as pin, first name, last name,
and address via SMS.
Communication infrastructure. The protection of communica-
tion infrastructure in banking apps is far away from satisfactory.
More specifically, many apps are still using HTTP to exchange
sensitive data with the remote bank server, or do not validate the
certificates of the connected servers. We find 222 banking apps with
invalid authentication, including 13 banking apps that have both
invalid and correct SSL/TLS implementations in source code. They
establish communications with servers using different strategies
(i.e., invalid and correct SSL/TLS implementation). Insecure Hash
Function (72.3%) is also frequently misused.

Answer to RQ2. Overall, the security status of banking apps is
severe according to the results. In summary, Screenshot (88.3%),
Insecure Hash Function (72.3%), and ICC Leakage (68.9%) are the
most popular weaknesses of banking apps. Meanwhile, Invalid
Authentication (222 apps) also has severe damage.

3.2 RQ3: Global Distribution of Weaknesses

Figure 6 shows the number of weaknesses discovered among the
banking apps by continents. The intensity scale encodes the number
of weaknesses the apps have, scaled from light blue (least) to dark

Figure 6: Number of weaknesses in global banking apps

blue (most). We observe the following findings: (1) Weaknesses
in banking apps of Asia outnumber those of Europe (resp. North
America) by 1.56 (resp. 1.31) to 1, where each banking app of Asia
has 6.4 weaknesses on average, indicating that the banking apps of
developed countries (i.e., Europe and North America) have fewer
weaknesses than those of developing countries. Ironically, to our
surprise, we find that weaknesses in apps of Asian developed coun-
tries slightly outnumber (with 6.7 weaknesses per app) those of
Asian developing countries. (2) Banking apps from Africa exhibit
satisfactory security status, having only 4.6 weaknesses on aver-
age, some are even more secure than those of developed countries.
Possible reasons why the security of banking apps varies across
regions can be interpreted as follows:
• The financial regulations and development guidelines are dif-
ferent across regions, which may affect the implementation of
banking apps. For example, both Europe (GDPR [18]) and USA
(PCI DSS [15]) adopt very strict security and privacy regulations.
The GDPR poses a regulatory framework that is unique to the
financial service industry. Failure to meet its requirements will
come with potentially hefty penalties [44]. This is also reflected
by the 143 banking apps from Europe and USA, where data leak-
age rarely exists, with only 0.27 data leakage weakness reported
per app.
• The development budget and developers’ expertise may affect
the security of products. During our investigation, we find that a
number of local banking apps of China have many more weak-
nesses than international or nationwide ones. We speculate that
due to inadequate budget for app development, those released
apps are prone to being less secure.
• Cashless payment systems have been bootstrapped in areaswhere
traditional banking is uneconomical and expensive, removing
large investments on the massively deployed financial infras-
tructure. This is evidenced by the fact that Kenya, a country in
Africa, is a world leader of money transfers by mobile [1], and
68% of people in Kenya report the use of phones for a financial
service [12].
Answer to RQ3.We conclude that apps across different countries
exhibit various types of security status, mainly because of different
economies and regulations that take shape. We find that apps from
Africa have comparatively moderate security status, primarily
because of its high demand for cashless services.
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Figure 7: Number of weaknesses in each update version.

3.3 RQ4: Longitudinal Analysis of Version

Updates and Fragmentation

We attempt to perform a longitudinal study on security risks by
revisiting the 7 apps (GCash, mPay, MOM, Zuum, Oxigen Wallet,
Airtel Money, and mCoin) which have been systematically studied
by Reaves et al. [64], with confirmed weaknesses. We downloaded
all available versions of 6 apps (mCoin is excluded since history
versions are not publicly available.), and obtained 88 different ver-
sions in total, i.e., GCash (6 versions), mPay (20 versions), MOM
(22 versions), Zuum (12 versions), Oxigen Wallet (12 versions), and
Airtel Money (8 versions). All versions span more than two years.

Figure 7 shows the number of detected weaknesses across all
versions of each app. We can see most of the version updates (90%)
fail to bring at least two successful patches for weaknesses in their
history versions, which echoes the findings of paper [63] that apps
have not repaired critical vulnerabilities in their new versions. After
an in-depth manual analysis, we find input harvest via screenshots,
MITM attacks, AES/RSA misuses, and insecure hash functions are
the most common weaknesses that remain unfixed. Furthermore,
developers usually neglect hostname verification or server authenti-
cation, which may enable the MITM attack. These apps are also not
aware of AES/RSA misuses and insecure hash functions, indicating
that developers are still not aware of these weaknesses perpetually.

GCash has a sharp decline from v2.4.3 to v3.0.0 in terms of the
number of weaknesses. Three weaknesses are patched, the hard-
coded encryption key, insecure SecureRandom, and privacy leakage
to SD Card. Reaves et al. [63, 64] found that the vulnerabilities still
remain in the updated version in 2016. However, according to our
security reports, GCash fixed most of the vulnerabilities in their
latest version. In contrast, the weaknesses of Oxigen Wallet sig-
nificantly increase from v5.01 to v7.3.3 due to the changes of app
features. More specifically, many new weaknesses (i.e., WebView
DB Leakage, ICC Leakage, MITM Attacks, and Insecure SecureRan-
dom) were introduced, which had not been discovered by Reaves
et al. [64]. They compared the code similarity between the 2015 and
2016 versions of each app, and found some apps have significant
amounts of new code [63]. This aligns with our study that many
banking apps do not perform systematic security checks before
delivery.

Furthermore, we find banks encounter the version fragmentation
problem especially when they release versions to different markets
by countries. We selected the top 5 banking apps based on the S&P
Global Market Intelligence report [7] across their 30 different ver-
sions, i.e., Citibank (10 versions), HSBC (3 versions), Deutsche Bank
(3 versions), Banco Santander (8 versions), and ICBC (6 versions).
By comparing the differences of weaknesses between these ver-
sions, we observe the following: (1) A subsidiary bank, incorporated
in the host country but owned by a foreign parent bank, usually
launches its original financial services with most of its products,
such as banking apps, into the host market. As a result, a subsidiary
bank inherits the weaknesses from the original version of its parent
bank. This observation is evidenced by the South Korean version
of Citibank app and the Macau version of ICBC app (see Figure 8).
(2) Due to the business difference, culture difference, and exper-
tise of security teams, weaknesses of apps vary across different
markets by countries. This is also evidenced by the fact that the
official app of HSBC (China) v2.7.1 has more weaknesses than that
of HSBC (UK) and HSBC (Hong Kong). A possible reason might be
that HSBC (China) is independent of the parent bank in terms of
its app development outsourcing procedures and security teams,
while in Hong Kong, as the former UK colony, HSBC (Hong Kong)
largely follows the convention of HSBC (UK). Nevertheless, we
find that not all subsidiary banks operate under the host country’s
regulations in terms of the number of banking app security risks
(Figure 8 shows the source and host countries of flows containing
security weaknesses.).
Answer to RQ4. By revisiting apps studied by previous re-
search and further examining them across all their publicly
available versions that have not been scrutinized before, we con-
clude that app developers are still not aware of these weaknesses
perpetually. Furthermore, apps owned by subsidiary banks are
always less secure than or equivalent to those owned by parent
banks, for which the assumption that subsidiary banks operate
under the host country’s regulations does not always hold true.

3.4 RQ5: Weakness Fixing and Feedback

Our study has uncovered 2,157 weaknesses in total from 693 bank-
ing apps, most of which have been reported to the corresponding
banks. As shown in Table 7, 21 banks have replied and confirmed
these weaknesses, and 16 apps have been patched.3 Furthermore,
we approached the major stakeholders across the global, such as
HSBC (UK/Hong Kong/Shanghai), OCBC (Singapore), DBS (Singa-
pore), and BHIM (India), to understand their security practice and
policies. Through in-depth discussions with 7 banks, we find they
hold different mindsets toward assessing severity of weaknesses
and setting security goals. Note that, on average, the 7 banks take
41 days to fix their security weaknesses we reported. We elaborate
this gap and provide our insights on how to close it.
Lack of effective criteria for rating security weaknesses. An
effective severity criterion of weaknesses is crucial for banks to
prioritize security patching. However, such a criterion is still miss-
ing for banking apps. As a result, some banks use CVSS [23] to
determine the severity of the identified weaknesses. However, this
3We do not disclose any concrete weakness types or details in these banking apps to
avoid security threats.
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Figure 8: Flow of security weaknesses from parent banks to

subsidiary banks across the world. The flow width indicates

the number of weaknesses originating and terminating be-

tween two corresponding banks. Different types of banks

are encoded by different colors.

standard is not perfect in practice [25–27, 58], and provides few
principled ways to characterize security risks and potential im-
pact. Moreover, we find these banks hold subjective attitudes to-
ward fixing different types of weaknesses. For example, most banks
are concerned about obvious privacy leakage (e.g., leakage from
SharedPreference, Logging, SMS, SD Card, Text File, and Web-
View DB), while they are only aware of and somehow reluctant to
fix the weaknesses, such as ICC Leakage, Invalid Certificate, and
Insecure Hash Function. Table 6 summarizes our observations on
various banks’ attitudes towards different weaknesses, which are
classified by “Concerned" (high priority) and “Aware" (low priority).
Lack of systematic security checks and validation tools.Many
banking apps do not undergo a systematic security check and val-
idation before delivery — Ausera discovers a large number of
high-severity weaknesses, e.g., sensitive data leakage, hard-coded
key and invalid authentication. With the assistance of Ausera,
many banks, e.g., OCBC and Zijin Bank, expeditiously patched the
weaknesses in their new versions. However, ironically, some banks
patched the weaknesses but introduced new ones at the same time.
For example, C∗ patched two weaknesses (i.e., Logging Leakage
and HTTP Protocol) by employing SSL over HTTPS communi-
cation. However, new weaknesses are introduced in the updated
version, i.e., the app fails to verify the identity of the bank server
(checkServerTrusted), which echoes the finding of [63, 64] that
4 apps have new vulnerabilities. Due to lack of systematic security
checks and validation tools, many security weaknesses still reside
in these apps.

Table 6: Different concerns from banks

Security Weaknesses

Concerned

Screenshot, SharedPreference Leakage, Logging
Leakage, SMS Leakage, SD Card Leakage, Text File
Leakage, WebView DB Leakage, Invalid Authentica-
tion, Hard-coded Key, Insecure SecureRandom

Aware

ICC Leakage, HTTP Protocol, Invalid Certificate, Im-
proper AES/RSA, Insecure Hash Function

Outdated versions remain in effect in the wild. Banks usually
hold the assumption that customers always keep their apps updated,
and thus concentrate more on the weaknesses of latest versions
than those of outdated versions. However, this assumption is not
true, considering the device fragmentation problem — Android apps
have to be compatible with more than 10 major versions of Android
OS running on over 24,000 distinct device models; and it is also
dangerous, considering attackers can leverage the weaknesses of
outdated versions to mount specific attacks. We find that most
banking apps across multiple versions still remain in effect in the
wild (e.g., Apkmonk [24]). On average, these apps have 7.7 different
versions, and the most fragmented app has 25 versions. Thus, we
strongly recommend banks push compulsory app updates to the
customers or block access to outdated apps, especially when high-
severity weaknesses were patched.
Risks from third-party libraries.Our study finds the third-party
libraries, e.g., com.google.android.gms.∗ and com.facebook.∗,
are widely used in banking apps. Ausera detects BHIM (v2.3.6) and
MyAadhar (v1.9.3) use insecure third-party hash functions, such as
MD5 and SHA-1, to produce message digests, which have already
been accepted as insecure [66, 73]. Banks still use these insecure
functions despite being aware of the insecure, as they assume that
ordinary attackers are not capable of breaking them. However, it
is still possible for experienced attackers to mount a large-scale
attacks by exploiting these weaknesses. Banks are liable if they
use security-weakened or poisoned third-party libraries without
careful inspection. To avoid an “amplification effect” caused by the
weaknesses in third-party libraries [41], we strongly recommend
banks to carefully inspect third-party libraries in use.

Answer to RQ5. Incomplete security criterion provides banks
wide leeway to use one-sided judgment about specific security
practices. We also observe that outdated versions and weaknesses
from third-party libraries are all likely to be exploited. They re-
main unfixed for weeks to months post-disclosure. This gap pro-
vides opportunities for attackers to strike. Understanding the gap
between industrial practitioners and academic researchers help
illuminate the nature of patching process.

3.5 Case Studies of Weaknesses

To showcase the exploitability of these weaknesses, we introduce 4
vulnerable apps reported by Ausera.
Screenshot weakness. A∗ Bank (v3.3.1.0038) employs two-factor
authentication, i.e., the user first inputs the username and password,
and then enters verification code sent by the bank server. It can be
attacked if the login page is not protected (without setting the flag
WindowManager.LayoutParams.FLAG_SECURE to prohibit taking
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// Save Username and Password to Preference
private void SaveCredentials() {        

if (this.rememberMe.isChecked()) {            
Editor editor = UnamePrefs.edit();            
Editor editor1 = PasswordPrefs.edit(); 
// Save Username
editor.putString("Uname", etUsername
.getText());
// Save Password
editor1.putString("Password",etPassword
.getText());
editor.commit();            
editor1.commit();            
return;        

}
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private String IV = “fedcba9876543210”;    
private String KEY = “tQna25tR89d6af1a”;    
// Encrypt Data
public static String encryptStr(String text){        

Cipher cipher = Cipher.getIns(“AES/CBC/NoPadding”);                
cipher.init(1, KEY, IV);            
plainText = bytesToHex(cipher.doFinal());        
return text;    

}    
// Decrypt Data
public static String decryptStr(String encStr){

Cipher cipher = Cipher.getIns(“AES/CBC/NoPadding”);               
cipher.init(2, KEY, IV);            
encStr = cipher.doFinal(hexToBytes(encStr)); 
return encryptedString;    

}

Figure 9: Simplified code of Prefer-

ence weakness in G∗

// Update new banking app version
public static void update(Context context) {        

if(checkNewVersion()){
getApk(“AndroidBankingApp.apk”, SDCard);

}
// Check banking app version
Private boolean checkNewVersion(){

Connection con = new Connection();
con.checkServerTrusted(); return true;

}
// Check bank server
public final void checkServerTrusted(X509Cert[] 
x509CertificateArr, String str) { 

// do nothing   
}
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private String IV = “fedcba9876543210”;   
private String KEY = “tQna25tR89d6af1a”;   
// Encrypt Data
public static String encryptStr(String text){        

Cipher cipher = Cipher.getIns(“AES/CBC/NoPadding”);                
cipher.init(1, KEY, IV);            
plainText = bytesToHex(cipher.doFinal());        
return text;    

}    
// Decrypt Data
public static String decryptStr(String encStr){

Cipher cipher = Cipher.getIns(“AES/CBC/NoPadding”);               
cipher.init(2, KEY, IV);            
encStr = cipher.doFinal(hexToBytes(encStr)); 
return encryptedStr;    

}

Figure 10: Simplified code of update

weakness in I∗ SMS

// Update new banking app version
public static void update(Context context) {        

if(checkNewVersion()){
getApk(“AndroidBankingApp.apk”, SDCard);

}
// Check banking app version
Private boolean checkNewVersion(){

Connection con = new Connection();
con.checkServerTrusted(); return true;

}
// Check bank server
public final void checkServerTrusted(X509Cert[] 
x509CertificateArr, String str) { 

// do nothing   
}
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private String IV = “fedcba9876543210”;   
private String KEY = “tQna25tR89d6af1a”;   
// Encrypt Data
public static String encryptStr(String text){        

Cipher cipher = Cipher.getIns(“AES/CBC/NoPadding”);                
cipher.init(1, KEY, IV);            
plainText = bytesToHex(cipher.doFinal());        
return text;    

}    
// Decrypt Data
public static String decryptStr(String encStr){

Cipher cipher = Cipher.getIns(“AES/CBC/NoPadding”);               
cipher.init(2, KEY, IV);            
encStr = cipher.doFinal(hexToBytes(encStr)); 
return encryptedStr;    

}

Figure 11: Simplified code of en/decryption

weakness in N∗

Table 7: Weaknesses tracking of 21 banking apps. 16 banks have

already patched their banking apps, and the rest have confirmed the

weaknesses in their replies and will fix them soon in new versions.

No. Banking Apps #W #Patched #New Country Downloads

1 HSBC∗ 5 2 0 UK 5M - 10M

2 PSD Bank 3 2 0 Germany 50K - 100K

3 BBBank 3 2 0 Germany 50K - 100K

4 Intesa Sanpaolo
Mobile 5 2 0 Italy 1M - 5M

5 AIB Mobile 8 1 0 Ireland 5M - 10M

6 Alma Bank 6 3 0 Russia 5K - 10K

7 Discover Mobile 8 4 0 USA 10M - 50M

8 Citizens Bank
of Lafayette 2 1 2 USA 5K - 10K

9 CDB 6 2 2 China 5K - 10K

10 Zijin Bank 8 7 0 China 10K - 50K

11 DBS 10 0 0 Singapore 5M - 10M

12 OCBC 9 8 0 Singapore 5M - 10M

13 MyAadhar 4 0 0 India 50M - 100M

14 BHIM 3 2 0 India 10M - 50M

15 ICICI Netbanking 7 0 0 India 100M - 500M

16 ICICI Pockets 7 0 0 India 50M - 100M

17 GCash 11 8 0 Philippines 10M - 50M

18 Bank Australia 7 2 0 Australia 10K - 50K

19 CaixaBank 5 2 0 Brazil 1M - 5M

20 BMCE Bank 5 2 0 Morocco 100K - 500K

21 NMB Mobile Bank 4 0 1 Zimbabwe 10K - 50K

“#W”: The number of detected weaknesses. “#Patched”: the number of patched weaknesses in
update versions. “#New”: The number of newly-introduced weaknesses in update versions.

“Country” means the country of bank headquarters.
“∗”: The HSBC Cybersecurity team has reviewed and responded that the remaining three reported
“weaknesses” in HSBC China version (v2.7.1) are not vulnerabilities, but are features purposely

retained to support market specific customer requirements.

screenshot), and the verification code can be accessed with granted
permissions. As such, we generate a malicious app [33, 68] that
runs a service which can take screenshot of the screen and read
the verification code from SMS during the process of login. As a
result, the remote attacker can steal the credentials and bypass the
login authentication. Note that the crafted malware [38, 49, 50] has
bypassed the security vetting of Google Play and is successfully put
on the shelf, which makes this attack more practical [36, 37, 39].
Preference weakness. Figure 9 shows the vulnerable code of a
Preference weakness in G∗ Bank (v1.1) from Algeria. This app

stores the credentials (i.e., username and password) into Preference
named UnamePrefs and PasswordPrefs (lines 6-9). To steal these
credentials, we can either (1) create a malicious app signed with
the same key, so that it can run in the same sandbox as the victim
app on a non-rooted device; or (2) create a malicious app that mod-
ifies the original file permission from “660” to “777” by running
Runtime.getRuntime().exec on rooted devices [63, 64]. In either
way, the malware can access the victim’s sensitive data stored in
the Preference. Even worse, we find that several apps use inse-
cure permissions MODE_WORLD_READABLE/WRITEABLE rather than
MODE_PRIVATE, which eases such attacks.
Version update weakness. I∗ SMS Bank (v5.0) is detected as hav-
ing a MITM risk during version updates, the vulnerable code is
shown in Figure 10. The app checks new versions with the bank
server once started (line 3), but does not verify the X.509 certifi-
cates from SSL servers (lines 11-15). It allows MITM attackers to
spoof the server by crafting an arbitrary certificate. As a result, the
new version can be downloaded to SD Card from an attack server
(line 4). To exploit this, we use Burp Suite [6] and Fiddler [8] to
fool the banking app, by sending a malicious app to impersonate
the most recent version [4]. After this malicious app is installed, it
serves as a phishing app to steal user credentials and other data.
Encryption/Decryption attack. Ausera detects an encryption
weakness in N∗ Bank (v1.8) as shown in Figure 11. It leaves the
hard-coded AES keys (IV and KEY) as plain text (lines 1-2), and
uses them to encrypt and decrypt the communication between the
app and the bank server. By leveraging these keys, we successfully
decrypt all sensitive data during communication. Moreover, AES
uses block cipher modes. If we set with NoPadding (lines 5 and 12),
it is easier for attackers to subvert encryption because they only
need to decrypt one of the blocks.

4 LESSONS LEARNED AND LIMITATIONS

Lessons learned. (1) According to the security assessment of
global banking apps in Table 5, banking apps are not as secure
as we expected in the real world. Meanwhile, the results of the
global status and longitudinal studies unveil many security threats
and unreasonable phenomena. Stockholders such as security teams
in banks should pay more attention on these security issues. (2) The
processes of weakness reporting and patches tracking reveal the
gaps between academic researchers, banks, and third-party security
companies. (3) The processes of meeting and discussions between
corresponding banks bring useful recommendations, and some of
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them have been used to improve the banking app security. (4) From
the perspective of banks, they should pay more attention to secu-
rity issues compared with functional bugs. Meanwhile, they should
provide various channels to respond to the reported vulnerabilities,
to make the patching process more efficient. (5) Fortunately, some
of banks have accepted our reported vulnerabilities and actively
collaborated with us to improve their app security by using Ausera
before releasing new app versions.
Limitations. (1) The proposed data-related baseline is integrated
by many channels based on our depth understanding and knowl-
edge, thus might be incomplete. However, we can investigate the
global ecosystem of banking apps based on the baseline. Meanwhile,
according to the communications with real banks, they are highly
concerned about the security weaknesses we proposed in Table 1.
(2) The keyword database is constructed first with manual selection
of keywords, and then extended with the help of NLP techniques.
However, some of keywords may be ignored in the manual analysis
process. Actually, the database can be further extended with the
increasing banking apps. (3) Ausera is built on the top of the static
analysis framework (i.e. Soot), thus inherits the limitation of Soot
that it may fail and lose some data flows, creating false negatives.

5 RELATEDWORK

Security assessment of banking apps. In 2015, Reaves et al. [64]
realized the severe weaknesses of branchless banking apps. They
reverse engineered and then manually analyzed 7 apps from devel-
oping countries, and last found 28 significant weaknesses. Most of
these weaknesses remained unresolved after one year [63]. Chana-
jitt et al. [31] also manually analyzed 7 banking apps, and inves-
tigated three types of weaknesses, including how much sensitive
data is stored on device, whether the original apps can be substi-
tuted, and whether communication with the remote server can
be intercepted. Our study differs from [31, 63, 64] with regards to
the scope of the study. Whereas [31, 63, 64] mainly leverage case
studies to study banking apps, the focus of our paper is to conduct a
large-scale empirical study on security weaknesses of banking apps.
Furthermore, we also incorporate multidisciplinary expertise (e.g.,
code comprehension, regulations, economics) to interpret the po-
tential causes of occurrence of security weaknesses. Our work also
differs from alternative topics, such as functional bugs [47, 48, 67],
performance [56] and fragmentation [74]. For the concrete security
weaknesses, for example, SSL issues have been widely discussed
in [46], which suggests revisiting the SSL handling in applied plat-
forms (e.g., iOS and Android). Followed by recent reports [53, 61]
and our observation, we find that many banking apps have fairly
weak or even no authentication and encryption mechanisms. Soun-
thiraraj et al. [65] proposed to combine static and dynamic analysis
to identify security problems in SSL/TLS for Android apps. Georgiev
et al. [51] focused on SSL connection authentication of non-browser
software, indicating that SSL certificate validation is defective and
vulnerabilities are logical errors, due to the poor design of APIs to
SSL libraries and misuse of such APIs. Egele et al. [42] checked for
violations of 6 cryptographic rules (using cryptographic APIs) in
real-world Android apps. They applied static analysis to extract
necessary information to evaluate the properties and showed that
about 88% of the apps violate the security rules. For our research,

we also integrate these aforementioned weaknesses as vulnerable
security points, and examine whether banking apps contain these
vulnerabilities.
Global analysis of banking apps. Castle et al. [30] conducted a
manual analysis of 197 Android apps and interviewed 7 app devel-
opers across developing countries (Africa and South America). They
divided 13 hypothetical attacks into 5 categories and concluded that
realistic concerns are on SMS interceptions, server attacks, MITM
attacks, unauthorized access, etc. Lebeck et al. [53] summarized
weaknesses of mobile money apps in developing economies, and
combined existing techniques (e.g., cryptocurrencies) to achieve
security and functionality goals. Parasa et al. [61] studied 9 mostly-
used mobile money apps across 9 Australasian countries, and re-
ported the security weaknesses in authentication, data integrity,
poor protocol implementation, malfunction, and overlooked attack
vectors. They reported that the apps from comparatively developed
countries (e.g., AliPay, Osaifu-Keitai) also have weaknesses. Be-
sides, Taylor et al. [69] adopted two off-the-shelf tools to roughly
scan the apps that are labeled as finance from Google Play Store. All
these prior work adopts small-scale analysis or is taken by survey,
while our results are obtained in an automated and largest-scale
fashion, which have not been systematically scrutinized before.
Besides, Chen et al. [35] focused on studying the details of issue-
reporting and issue-patching lifecycle based on the results of weak-
ness detection tools like Ausera [34]. It unveils gaps between the
industry and academia regarding the inconsistent understanding
of reported issues and responsibilities. However, in this paper, we
propose a comprehensive taxonomy of data-related security weak-
nesses for banking apps, and propose a detection approach based
on the taxonomy. Using Ausera, we conducted experiments to
identify security weaknesses and investigate the overall ecosystem
of global banking apps from multiple aspects.
Security analysis ofAndroid apps.Taint analysis is a commonly-
used method to reveal potential privacy leakage in Android apps.
For example, TaintDroid [43] is a dynamic taint-tracing tool which
tracks flows of private data by modifying Dalvik virtual machine;
FlowDroid and IccTA [29, 54] are both static taint analysis tools
that accept the source and sink configurations for privacy leaks.
However, these tools target on general apps [32], and thus may not
be able to unveil specific security weaknesses (summarized in Ta-
ble 1) when applied for banking apps. We also detail the differences
in Section 2.2.

6 CONCLUSION

In this paper, we conduct a large-scale comprehensive empirical
study on the collected 2,157 security weaknesses of 693 banking
apps across more than 80 countries from various aspects. To collect
the dataset, we also propose a three-phase system, Ausera, to
automatically identify data-related weaknesses in banking apps.
Our detected security weaknesses (i.e., 52 security weaknesses)
have been confirmed and patched by the 21 corresponding banks
and some of them have actively collaborated with us to improve the
security of their banking apps. The study also narrows down the
gaps between academic research and industrial banks, and helps
both banks and third-party companies to better tackle security
weaknesses.
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