
Compatible Remediation on Vulnerabilities from
Third-Party Libraries for Java Projects

Lyuye Zhang∗, Chengwei Liu∗§, Zhengzi Xu∗, Sen Chen†§, Lingling Fan‡, Lida Zhao∗, Jiahui Wu∗, Yang Liu∗
∗School of Computer Science and Engineering, Nanyang Technological University, Singapore

†College of Intelligence and Computing, Tianjin University, China
‡College of Cyber Science, Nankai University, China

Abstract—With the increasing disclosure of vulnerabilities
in open-source software, software composition analysis (SCA)
has been widely applied to reveal third-party libraries and
the associated vulnerabilities in software projects. Beyond the
revelation, SCA tools adopt various remediation strategies to fix
vulnerabilities, the quality of which varies substantially. However,
ineffective remediation could induce side effects, such as compi-
lation failures, which impede acceptance by users. According
to our studies, existing SCA tools could not correctly handle
the concerns of users regarding the compatibility of remediated
projects. To this end, we propose Compatible Remediation
of Third-party libraries (CORAL) for Maven projects to fix
vulnerabilities without breaking the projects. The evaluation
proved that CORAL not only fixed 87.56% of vulnerabilities
which outperformed other tools (best 75.32%) and achieved a
98.67% successful compilation rate and a 92.96% successful unit
test rate. Furthermore, we found that 78.45% of vulnerabilities
in popular Maven projects could be fixed without breaking the
compilation, and the rest of the vulnerabilities (21.55%) could
either be fixed by upgrades that break the compilations or even
be impossible to fix by upgrading.

Index Terms—Remediation, Compatibility, Java, Open-source
software

I. INTRODUCTION

The exposure of open-source third-party libraries (TPLs)

vulnerabilities in recent years, such as the well-known

Log4Shell vulnerability [1], [2], has been drawing increasing

attention. To accurately detect the versioned TPLs and the dis-

closed vulnerabilities in users’ projects, software composition

analysis (SCA) [3] has been widely applied to scan projects

and return detected TPLs for security analysis. The detection

has been well developed and implemented in various academic

and commercial SCA tools [4]–[9]. However, the remediation

to fix vulnerabilities in TPLs by version adjustments has no

broadly acknowledged solution but various strategies.

We further investigated existing tools. Community tools,

such as Dependabot [5], only considers vulnerabilities of direct

dependencies. Other popular anonymous commercial tools use

reachability analysis as the prioritization metric, but none con-

siders the compatibility of upgrades of the dependencies. An

academic tool, Steady, calculates the percentage of changed

classes or methods as the probability for compatibility, which

is inaccurate by its nature of uncertainty.

§ Chengwei Liu and Sen Chen are the corresponding authors (Emails:
chengwei001@e.ntu.edu.sg, senchen@tju.edu.cn).

Due to different strategies, the effectiveness of remediation

tools varies substantially, which will be clarified in the pre-

liminary study and the evaluation. Moreover, the side effects

of remediation could hinder the adoption of suggestions by

users. According to our study [10] of the rejected remediation

suggestions at GitHub, the primary concern of users was

incompatibility, which accounted for 51.31%.

Unfortunately, these concerns, especially compatibility, can-

not be appropriately handled by existing remediation tools

due to two reasons: (1) They conduct local optimization on

individual libraries instead of the global optimization of the

entire dependency graph (DG), which may miss incompat-

ible relationships and fail to handle the trade-off between

compatibility and security. (2) They offer suggestions based

on the original DG and overlook the structural changes that

suggestions bring to it and the underlying call graphs. As a

result, the outdated DG could lead to incompatibility, lack of

remediation on new vulnerabilities, and wasted remediation on

unused dependencies.

To address the problems of existing tools and achieve

remediation of better quality, three major challenges have

to be resolved: c1: The absolutely optimal solutions for

libraries are not always available. So the trade-off between

security and compatibility during decision-making has to be

handled. c2: The complexity of global optimization increases

exponentially with the number of dependencies because the

version combinations over all libraries should be traversed. c3:

The suggestions on one library can, directly and indirectly,

change the DG structure, call graphs, and compatibility of

DG. Accordingly, the optimal solutions for the rest of the

libraries may also be changed. These effects propagate from

the changed library to the entire DG through dependency

relationships, referred to as ripple effects in this paper. The

ripple effects may lead to sub-optimal solutions if DG is not

updated accordingly.

To tackle the above-mentioned challenges, we propose

Compatible Remediation of Third-party Libraries (CORAL)

to remediate vulnerabilities in dependencies by version sug-

gestions without breaking the projects with a balanced time

cost for Maven [11]. CORAL starts with the DG and the

underlying call graphs of the target project. Then, CORAL

splits the DG into subgraphs with two steps of partitioning

for c1. CORAL walkthroughs subgraphs with a top-down

approach and calculates the best solutions with SMT solver

2544

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00212

within subgraphs for c2. During the walkthrough, subsequent

subgraphs are dynamically updated for the ripple effects to

handle c3. To avoid dead ends, backtracking mechanisms are

implemented in CORAL.

We have evaluated CORAL by comparing it with state-of-

the-art remediation tools regarding security and compatibility.

It turned out CORAL fixed the most vulnerabilities (87.56%)

among all tools (best of others 75.32%) and achieved the

best assurance of compatibility (98.67% successful compi-

lation rate and 92.96% successful unit test rate). Moreover,

the designs of subgraph partitioning and the trade-off be-

tween compatibility and security were evaluated against the

baselines. The result showed CORAL broke fewer projects

and spent much less time than them at the cost of 4.05%
fewer vulnerabilities fixed. Furthermore, we found that 78.45%
of vulnerabilities in popular Maven projects could be fixed

without breaking the projects. However, without the aid of

CORAL, only 25.71% could be straightforwardly fixed by

users. The contributions we have made are as follows.

• We proposed CORAL as a remediation tool for Maven

projects to handle the global optimization for enhanced

security and compatibility.

• We studied the concerns of users regarding remediation

suggestions by analyzing Pull Requests (PRs) and found

that 51.31% of cases were related to incompatibility.

• We empirically compared and analyzed strategies of popular

remediation tools regarding their support of compatibility

and prioritization for the reference of other researchers.

II. MOTIVATIONS

A. Motivating Example

Dependabot has been widely used as the most popular

dependency security management extension at GitHub. One of

the most popular Maven projects, commons-lang [12], adopted

Dependabot to manage their dependencies. Nevertheless, the

remediation caused build failure after upgrading [13]. Depend-

abot has implemented the compatibility score by calculating

the test passing rates from other repositories as the confidence

score. However, in this case, the compatibility score was

unknown. The compatibility score relying on knowledge of

the crowd cannot guarantee a successful compilation without

code-based compatibility calculation. Thus, CORAL relies on

static code-based compatibility checkers aligning with a global

perspective of DG to ensure the adjusted dependencies do not

break the project. Motivated by the motivating example, we

studied the strategies of state-of-the-art remediation tools to

understand how existing tools handle incompatibility issues.

Then, we further studied the concerns of users regarding the

remediation suggestions at GitHub to recognize what can be

improved.

B. Study of Remediation Strategies of Existing Tools

To understand the implicit reasons for the breaking in

Section II-A, we first empirically compared the published

remediation strategies of existing tools and then quantitatively

evaluated them in Section IV. We only counted tools that

provided actionable advice for dependencies, while tools that

only offered multiple suggestions for vulnerabilities were out

of the discussion because users would have to select the

version out of multiple suggestions manually during decision-

making for each library. The tools included Dependabot,

Steady, and two popular commercial tools denoted by Com
A and Com B.

• Dependabot: Dependabot is able to create PRs to upgrade

vulnerable dependencies to clean versions instead of provid-

ing an overall suggestion for the entire DG. As for the com-

patibility, Dependabot calculates the successful test rate of

the upgrades from other repositories as the confidence score.

However, this score can be unreliable because it is usually

unavailable, and the compatibility ultimately depends on the

context of the code base.

• Steady: Steady is an open-source academic SCA tool with

an open-source vulnerability database. Steady adjusts the

versions of both direct and transitive dependencies to reduce

the vulnerability risks at a fine granularity. Also, it utilizes

the reachability analysis of vulnerabilities to filter out the un-

reachable CVEs with low risks. The reachability comprises

both static and dynamic analysis, which only constructs call

graphs once at the beginning. As for the version selection,

Steady prioritizes the non-vulnerable versions, then deter-

mines the best candidate with the compatibility probability

p. To derive p, it defines the reachable constructs (class,

method, etc.) as touch points and calculates the percentage

of present touch points in upgraded versions as p. The

probability could be unreliable due to its uncertainty.

• Com A: Towards a DG, Com A tweaks only the direct de-

pendencies to remediate the vulnerabilities. The fundamental

strategy is to upgrade the libraries with vulnerabilities to

the closest non-vulnerable versions, as the closer versions

usually are more likely to be compatible. The reachability

is implemented by WALA [14] in a static manner to

prioritize the critical reachable vulnerabilities. However, the

compatibility of the remediation is not taken into account.

• Com B: Com B conducts the remediation on the direct

dependencies. The key feature is that Com B considers all

vulnerabilities of transitive dependencies associated with the

direct dependencies. Specifically, it iterates over all direct

dependencies. For each, Com B attempts the version candi-

dates and resolves the subsequent dependencies to measure

the updated overall vulnerabilities. Then, Com B selects

the version with the fewest overall vulnerabilities for this

direct dependency. The strategy considers the ripple effects
from the upgraded direct dependency to the upstream tree.

However, as direct dependencies are usually not independent

but inter-connected by transitive dependency relationships,

the respective optimization of each direct dependency does

not necessarily result in global optimization.

The comparison of SCA tools is demonstrated in Table I.

Fix level refers to the direct/transitive dependencies to be

fixed. Fix unit denotes the basic units that the tools optimize.

S&C trade-off means the prioritization of determining the best

2545

TABLE I: Comparison of State-of-the-art SCA Tools That Provide Remediation

Tool Fix level Fix target Compatibility S & C trade-off Reachability Dep conflict Ripple effects Unused dependencies

Steady All graph Vertex Sec first

Dependabot Direct Vertex Sec first

Com A Direct Vertex Sec only

Com B Direct Tree Sec only

1) Fix level: direct/direct+transitive dependencies. Fix target: basic units that the tools consider during optimization. S&C trade-off : prioritization of security
or compatibility during version determination. Ripple effects: the support to handle the side effects brought by ripple effects.

candidates. The rest of the columns are summarized in the next

section. From the remediation strategies of tools, we found

three major causes of incompatibility issues. (1) No reliable
detection: Although Steady and Dependabot support compat-

ibility scores, their results were unreliable due to inaccuracy.

(2) Lack of global optimization: Because vertices in DG were

interconnected with each other, optimizations of them were

not independent. Thus, it is impractical to optimize each vertex

individually without a global perspective. (3) Lack of support
of handling ripple effects: The optimization was conducted

based on the original DG without updating structures and call

graphs. Then, the optimal solutions based on the new DG were

changed so that the existing tools would return sub-optimal

solutions.

C. Study of Users’ Concerns with Remediation Suggestions

GitHub provides various automated SCA extensions to

create PRs of security updates for dependencies, but these PRs

are far from perfect, and thus sometimes rejected by users.

To increase the acceptance rate of suggestions, we conducted

a study to understand the concerns of users towards the

remediation at GitHub by analyzing the reasons for rejected

remediation suggestions and the accepted suggestions as a

comparison.

Due to the lack of existing studies on Maven projects, the

data set was collected by ourselves. First, we derived 9, 527
projects active in the last three years with 100+ starts at

GitHub. Then, 5, 356 un-merged PRs created by bots were

located and narrowed down to 306 PRs with human participa-

tion. Finally, we manually went through the comments in these

PRs and summarized several reasons why PRs were unmerged.

• (91 cases, 29.74%) Duplication: The upgrades were super-

seded by other PRs, which were eventually merged.

• (82 cases, 26.80%) Compilation/Test/CI failures and De-
pendency conflict (DC): The developers ran tests on the

projects with upgraded dependencies, and incompatible is-

sues occurred. Particularly, tests failed at dependency res-

olution, compilation, and test stages. For all PRs created

by Dependabot in this category, compatibility scores were

shown as unknown.

• (75 cases, 24.51%) Incompatibility concerns: The develop-

ers were concerned by incompatibility risks because either

the upgrades had large spans, such as major upgrades, or

they were known to be breaking. All compatibility scores

were shown as unknown as well.

• (23 cases, 7.51%) Internal errors: Bots reported their

internal errors in comments, so the users closed the PRs.

• (12 cases, 3.92%) Unused dependencies: The developers

found the dependencies to be upgraded were not in use

anymore, so the PRs were closed. The bloated dependencies
were supposed to be ignored during the remediation.

• (9 cases, 2.94%) Disobeying rules or absence of signed
agreements: The developers closed the PRs because the

PRs failed to follow the rules of the repositories or sign

the contributor agreements.

• (8 cases, 2.61%) Unknown reasons: The developers closed

the PRs without explicitly mentioning the reasons.

• (6 cases, 1.96%) Other: There were various reasons: (1)

Upstream projects demanded to keep the current version.

(2) Java version was not compatible. (3) The PR introduced

new CVEs. (4) Wrong user configuration. (5) A formatting

issue.

From the result, excluding the duplicated PRs and unrelated

reasons, such as internal errors, it is evident that the com-

pilation/test failures and incompatibility concerns were the

primary concerns of users (51.53%). The upgrades on unused

dependencies could be avoided by the reachability analysis.

The perspectives of concerns of users are demonstrated in

Table I. Dep conflict refers to the support of the detection

of possible dependency conflicts raised by Maven. The ripple
effects denotes the support of dynamically handling the ripple
effects. Unused dependencies means the support of detecting

and ignoring unused dependencies.

Besides the reasons for rejected PRs, merged PRs were also

studied as a comparison, but they usually failed to include the

reasons for acceptance. Thus, we studied the distribution of

their upgrades. Since the number of merged PRs is enormous,

we studied the 556, 257 PRs merged in the last two years for

Maven projects. The distribution was (1) Major: 11.91%; (2)

Minor: 38.34%; (3) Patch: 48.55%; (4) pre-release: 0.89%; (5)

No SemVer available: 0.31%. The result indicated that most

merged PRs (87.79%) did not bump the versions to major

upgrades, which followed the criteria of SemVer because non-

major upgrades were supposed to maintain backward compati-

bility. Therefore, the remediation suggestions with fewer major

upgrades are more likely to be accepted by users.

2546

III. METHODOLOGY

A. Problem Formulation

By summarizing the users’ concerns, we are able to define

the objectives and constraints of the remediation. The primary

objective is to minimize the total vulnerability risks:

min Fvul =
M∑

m=1

V ul∑
vul=1

θvulfcvss(vul) (1)

where M is the number of libraries and V ul is the number of

vulnerabilities of a vertex m. fcvss is the Common Vulnerabil-

ity Scoring System (CVSS) [15] weight. θv is the reachability

coefficient for vulnerability v, particularly, θv is larger for

reachable vulnerabilities, because the reachable vulnerabilities

are possible to be exploited by attackers. However, in reality,

not all vulnerabilities are open-source, which also increases

the difficulty for attackers. Thus, the vulnerabilities with un-

certain vulnerable classes or methods are classified as unknown
vulnerabilities whose severity is ranked between the reachable

and unreachable vulnerabilities. Since different vulnerabilities

result in different risks, we use CVSS, a normalized score

provided by NVD, to prioritize the vulnerabilities with higher

risks during calculation.

The remediation is less likely to be accepted if it breaks the

users’ projects, according to the study in Section II-C. Thus,

the pre-condition of successful remediation is the compatibility

of version adjustments.

s.t. cincom =
M∑

m=1

P∑
p=1

θv ∗ incom(vp, vm) = 0 (2)

P is the number of parent vertices of vm, while vp is a parent

vertex. cincom is the total number of dependency relationships

that cause incompatible issues. The incompatibility comprises

two types of code-based breaking (semantic and syntactic

breaking) and DC issues.

To achieve the global optimization and handle the ripple
effects mentioned above, CORAL is supposed to optimize all

connected vertices altogether in a dynamically adjusted DG.

These goals bring three challenges: (1) Trade-off between the

security and the compatibility during decision making. (2) The

time complexity increase exponentially with the size of DG

as O(n) =
∏N

n=1 if all solutions are to be iterated over. (3)

The ripple effects requires dynamically updated DG.

B. Overview

CORAL is implemented in four steps as illustrated in

Fig. 1. (1) Generating DG and the call graph (CG) from

the project object model (pom) file, a version control file of

Maven, and class files of the project. (2) Partitioning the DG

into subgraphs. (3) Optimizing the subgraphs regarding the

vulnerability risks based on the pre-computed vulnerability

mappings while ensuring compatibility. (4) Backtracking to

parent vertices heuristically if the dead end is met. Then,

the final remediation suggestions of version adjustment of all

TPLs in the DG are returned.

Construct CG

Maven Project

Dynamically Updating
DG & CG

Partitioning

SMT Solving

BacktrackSliding over
Subgraphs

+

If backtrack
needed

Dependency graph

Z3 Solver

Fig. 1: Overview of CORAL

C. Constructing Dependency Graph and Call Graph

With pom files and class files, CORAL extracts the de-

pendency tree by the Maven command and recovers the

DG by completing the absent dependency relationships from

a pre-computed dependency database. According to Maven

documentation [16], as dependencies with test scope are not

involved in the normal use of the projects, CORAL excludes

dependencies with test scope from the DG. Specifically, DG

is represented as DG = Graph(V,E), where V = {exi | i ∈
{0, ..., N − 1}, x ∈ {0, ..., L}} and E = {ei → ej | i, j ∈
{0, ..., N − 1}}. → denotes the direction of the calling edge,

and x specifies the stack level w.r.t the DG.

The CG is constructed statically based on Soot [17] by

the Spark algorithm [18] from the class files of the projects.

The main methods are considered the entry points which

serve as the start of the call graphs. If main methods are

absent, we overestimate that it is possible to execute all

methods implemented in the projects. Thus, all methods in

users’ projects are considered entry points. Since handling the

ripple effects requires the dynamically updated CG to achieve

real-time reachability analysis, the call edges in the CG are

collected modularly. i.e. call edges are not extracted from a

Uber jar [19] (root project with all dependencies) but from

jars of each dependency separately and sequentially and then

integrated into one graph originating from the root project.

Particularly, for each dependency, the callers from the parent

libraries serve as the entry points for child libraries. After

the remediation, if the child libraries are suggested for other

versions, the callees in them can be substituted accordingly to

generate the real-time CG flexibly.

D. Partitioning Dependency Graph

Due to the high complexity of optimization over the entire

DG, CORAL partitions the DG into subgraphs to reduce the

size of the overall solution space. The partitioning comprises

two steps, vertical partitioning, and horizontal partitioning. As

illustrated in Fig. 2 (a), the vertical partitioning iteratively

splits the DG into multiple partitions that are not connected

2547

x

x

1

2 3

5

4

6 7 8

9 10 11 12 13

x

Lvl 0

Lvl 1

Lvl 2

Lvl 3

Partition 1 Partition 2

1

2 3

5

4

6 7 8

9 10 11 12 13

Partition 1

Partition 2

(a) (b)

Root Root

Fig. 2: Dependency Graph Vertical (a) and Horizontal (b)

Partitioning

with each other by dependency edges except the direct re-

lationships from the root project v1 until all unconnected

partitions are split. Since the direct dependencies do not

depend on each other, optimizations on multiple partitions can

be conducted independently and concurrently. For example, in

Fig. 2 (a), partition 1 and partition 2 do not depend on each

other. Hence, they can be partitioned to boost performance.

However, the vertical partitioning is not always sufficient,

especially for the large partition at left in Fig. 2 (a). In this

case, horizontal partitioning can further reduce the solution

space. The subgraphs are partitioned by levels to preserve

the semantics. According to [20], the semantics of a method

decays along the calling chain, i.e. dependencies closer to the

root matter more than those farther from the root in terms of

the semantics or functioning they provide. For better notations,

dependencies are labeled by tags called level to denote the

smallest number of hops from the root. To better preserve the

semantics of dependencies against the potential incompatibil-

ity, CORAL split DG and group vertices at level l and l−1 into

subgraphs as in Fig. 2 (b). Then, because the closer dependen-

cies preserve more semantics, CORAL starts the optimization

from the root user projects in a top-down manner. Particularly,

the lower-level dependencies should humor the upper ones in

terms of the compatibility constraints as much as possible.

Hence, CORAL attempts to optimize dependencies in two

adjacent levels at a time and then moves the sliding window

of a partition down to the next level with a newly updated

CG. With the horizontal partition, the complexity can be

reduced to O(n) =
∑Phori

phori=1

∑Pvert

pvert=1

∏Np

n=1. The side effect

is that the potential better solution with lower vulnerability

risks may be overlooked for dependency edges across multiple

levels. To compensate for the loss, Section III-F introduces the

backtracking mechanisms to avoid sub-optimal situations.

E. Optimizing Subgraphs

In this subsection, the detailed specification of the optimiza-

tion on subgraphs based on Z3 SMT solver [21] is described.

1) Objectives and Constraints Definition: In each sub-

graph, CORAL conducts the optimization to minimize the

vulnerability risks in the condition that the version changes are

compatible. The vulnerability elimination follows the objective

function in Equation (1). The basic vulnerability elimination

strategy is to find versions with the fewest reachable and

unknown vulnerabilities. Then, if more than one versions

x

x

1

2 3

5

4

6 7 8

9 10 11 12 13

x

v1 v2 v3 v4 v5 v6 v7

Incompatible

v5 v6 v7

Compatible

Incompatible

Original Version 3
Library 3

x

x

1

2 3

5

4

6 7 8

9 10 11 12 13

x

v5 v6 v7

v3 v4 v5 v6 v7

Vulnerabilities CandidatesV l

For next pruning

Check compatibility & DC

Check vulnerabilities

v5 v6

Check compatibility & DC

Pick temporary version

Closer to original version

x

x

1

2 3

5

4

6 7 8

9 10 11 12 13

x

v5 v6

Incompatible with
Lib (13)

Adjust by lower parents

3
Library 3

3
Library 3

(a) 1st Iteration

(b) 2nd Iteration

(c) 3rd Iteration

Fig. 3: Example of the Version Selection of a Dependency

satisfy these conditions and other constraints, the versions

without unreachable vulnerabilities are preferred.

Theoretically, the compatibility constraint is supposed to

be strict. However, not all types of incompatibility can be

accurately detected. Generally, there are three major types

that CORAL aims to resolve, namely, semantic breaking,

syntactic breaking, and dependency conflicts, as discussed in

Section II-C. Except for semantic breaking, the rest can be

detected statically and efficiently. Thus, the detection of the

rest is integrated into the optimization as constraints:

s.t. csynb =
M∑

m=1

σ ∗ synb(P (x′
m), x′

m) = 0 (3)

The synb, Syntactic Breaking, is calculated based on the

reachability analysis and the API compatibility checkers. For

each version pair of one library, the modified APIs that can

2548

cause the failure of compilation are calculated by the three

most widely used API compatibility checkers japi-compliance-

checker [22], revapi [23], japicmp [24] based on the pair of

jar files. Then, based on the reachability analysis, the called

APIs of this library are obtained from CG. If any problematic

APIs are called, the compilation would mostly fail, so CORAL

would label this candidate version as breaking and discard it.

s.t. cdc =
M∑

m=1

dc(P (x′
m), x′

m) = 0 (4)

The DC issues are calculated based on Maven version rules

[25]. Like other package managers, version ranges define

the allowed versions for dependencies. If two version ranges

required by dependents do not overlap, Maven would report

Dependency Conflict during version resolution before the

compilation. A similar logic is implemented in CORAL to

only select versions within the intersection of ranges defined

by dependents. It is noteworthy that over 99% dependency

version specifications are not determined with ranges, but sin-

gle recommended versions instead, which means all versions

are available regardless of compatibility. In this case, CORAL

would include all versions as candidates for DC detection as

Maven.

Since the semantic breaking is usually revealed by unit tests

subject to limited coverage according to [26], it is hard to

detect it statically and efficiently. Also, it is the leading cause

of unit test failures [27], which is one of the main reasons why

users reject remediation suggestions. Thus, CORAL relies on

auxiliary information to infer the potential semantic breaking

and minimize its probability by following the SemVer and

Maven versioning guides. According to SemVer, the Major
upgrades are allowed to break the original implementations.

Hence, CORAL avoids using Major upgrades/downgrades as

much as possible unless they are less vulnerable and satisfy

the other compatibility criteria. Thus, besides the primary

objective, we add a secondary objective, fmajor, the number

of dependencies that have Major upgrades/downgrades:

min fmajor =
N∑

n=1

fmajor,xn
(xn, x

′
n) (5)

where fmajor =

{
0 if xn to x′

n is not major

1 if xn to x′
n is major

Although SemVer stipulates Minor should not include in-

compatible changes, researchers from [28] found that Minor
upgrades are not as compatible as Patch upgrades, which

generally introduce more breaking changes. Therefore, CORAL

always prefers Patch upgrades rather than Minor if all other

conditions stand. Another secondary objective function of

fminor is created to fulfill the purpose.

min fminor =
N∑

n=1

fminor,xn(xn, x
′
n) (6)

where fminor =

{
0 if xn to x′

n is not minor

1 if xn to x′
n is minor

Besides SemVer, Maven version control rules [25] also help

identify potentially breaking versions. First, the pre-release

versions, also known as development versions, such as alpha,
beta, SNAPSHOT versions, are unstable and prone to breaking

changes, which are selected at a lower priority than Major
upgrades. Second, the larger version spans are usually more

likely to induce incompatible changes. CORAL attempts to

reduce the version span from the original version to the new

version as much as possible. In terms of these two objectives,

the functions of fdev and fspan are formally given as:

min fdev =
N∑

n=1

fdev,xn(xn, x
′
n) (7)

where fdev =

{
0 if x′

n is not dev

1 if xn is not dev, x′
n is dev

min fspan =
N∑

n=1

dist(xn, x
′
n) (8)

where dist(x, y) is the distance between x,y in sorted versions.

After solving with the SMT solver, each vertex in the

subgraph is assigned with a selected version, and upgraded

libraries in CG will be updated accordingly. However, the

selected versions can be overthrown by the next optimization.

Thus, all selectable candidate versions are saved and fed to the

next optimization. For instance, in Fig. 3 (a), Lib 3 initially

has 7 candidates and gets filtered to 3 by incompatibility and

vulnerabilities. In the next iteration (b), Lib 3 has its candidates

further filtered to 2 because of the incompatibility. Then, v5
is selected due to its smaller version span from the original

version. However, in the third iteration (c), v5 is overthrown

because it is not compatible with the parent library Lib 13
at a lower level. Since the compilation and Maven resolution

would fail regardless of the levels, the selected versions must

follow the constraints in Equations (3) and (4). Therefore, v5
is discarded, and v6 with compatible changes is selected.

F. Backtracking

Although sequential partitions of DG reduce the complexity,

they could lead to sub-optimal solutions and dead ends. To mit-

igate such issues, two types of backtracking mechanisms are

implemented in CORAL, the hard and the soft backtracking.

1) Hard Backtracking: Hard backtracking is implemented

to avoid dead ends. It happens during deciding the best version

of a library where all versions disobey the constraints by

potentially breaking the project. The backtrack targets are

parent libraries of the current library. Since backtracking

requires re-visiting the related vertices, the parent library at

the lowest level is prioritized to reduce the efforts of re-

visiting. And then, the higher ones are attempted if the lower

parent triggers the backtrack again. During one backtrack, the

selected version of the target parents is temporarily marked as

incompatible, and other versions are attempted.

2) Soft Backtracking: Soft backtracking is used to avoid

sub-optimal solutions. It is triggered when the version se-

lected by the SMT solver is not the version with the lowest

vulnerability risks in the version list, such as non-vulnerable

versions. Like the hard backtrack, the soft backtrack prior-

itizes the parent libraries at lower levels. The different part

2549

Algorithm 1: Algorithm of CORAL

Input: Dependency Graph G 〈V,E〉 (vertices V and edges
E) with h levels, class files cf of the project

Output: Remediated G′ 〈V ′, E′〉 with newly assigned
versions

1 partsv ← verticalPartition(G)
2 foreach part in partsv do
3 foreach ith in h do
4 parth ← Vi + Vi+1

5 cg ← CallGraph(parth, cf)
6 foreach v in V do
7 parents← parentsOf(v)
8 foreach ver in versionsOf(v) do
9 if ver has synb or DC then

10 cand.remove(ver)

11 if sizeOf(cand) == 0 then
12 hardBacktrack
13 break

14 vuls← vulsOf(ver)
15 foreach vul in vuls do
16 θ ← reachability(vul, cf)

17 sort candidates by θ

18 s← SMTsolver(Vi, Vi+1)
19 if vuls(s)! = min(vuls)) then
20 softBacktrack
21 break

22 cg ← updateBy(s)
23 G← updateBy(s)
24 if hardBacktrack then
25 p← parentlowest

26 p.incompatible← ver
27 backtrack to p

28 if softBacktrack then
29 p← parentlowest

30 runs← saveV ul(p)
31 backtrack to p
32 foreach rth run in p.vers do
33 runs← saveV ul(pr)

34 s← min(runs)

35 return G′ 〈V ′, E′〉

is that soft backtrack does not mark the parent’s current

version as incompatible but unpreferrable instead. It means

if other versions are proven to be not as optimal as the

unpreferrable version after the backtracking, the unpreferrable

would still be selected. Thus, even if versions satisfy the

constraints, they could be ignored by soft backtracking. During

the soft backtracking, CORAL saves the overall vulnerabilities

between the backtracked library and the target parent for

future comparison. After the backtracking, CORAL compares

the vulnerabilities of the current run with the ones saved

previously and adopts the run with the fewest vulnerabilities to

apply the versions to backtracked libraries accordingly. Note

that to avoid an infinite loop, soft bakctracking would not be

triggered again during one run of soft backtracking. Also, if

the hard backtracking is triggered during soft backtracking,

the current run would be discarded, and other versions would

be attempted.

In conclusion, CORAL was designed to overcome the chal-

lenges of the high complexity of global optimization and ripple
effects. The algorithm is presented in Algorithm 1. CORAL

starts with vertical and horizontal partitions to split the DG into

multiple parts. Then, the SMT solver is used to optimize the

remediation results in each partition in a top-down manner. If

any backtrack is triggered, CORAL backtracks to the previous

vertices to avoid the sub-optimal solutions.

IV. EVALUATION

We aim to answer the following research questions:

RQ1: How is CORAL compared with other cutting-edge

remediation tools regarding security and compatibility?

RQ2: How effectively does CORAL resolve the challenge of

global optimization by subgraph partitioning?

RQ3: How many vulnerabilities CAN/CANNOT be fixed

without breaking the projects in the Maven ecosystem?

A. Preparation

1) Data Collection: To build a data set of in-development

Maven projects, we collected 301 most starred projects man-

aged by Maven at GitHub on May 21st, 2022. We first selected

Java projects with the most stars from GitHub and excluded

non-Maven projects. Next, we manually modified the POM

files of each project to apply the remediation suggestions from

these tools. Considering the efforts of manual work, we filtered

these projects with 1K+ stars. Finally, we got 301 selected

projects. The demographics of the data set are illustrated in

Fig. 4. It has the following features: (1) The code base size

is non-trivial (average 22.19 kloc). (2) The range of sizes of

dependency graphs is large (max 327, average 32.0). (3) The

projects are affected by an adequate number of CVEs (average

27.6). (4) The projects are popular due to high star numbers.

To experiment with accurate vulnerability mappings, we

periodically crawled CVE feeds from NVD [29] with a

pipeline and pre-classified the language of CVEs by keyword

matching. As the CVE descriptions are free-text [30], [31], it

is impractical to directly extract version mappings from them.

Hence, we manually triaged the mappings from reference links

and associated Common Platform Enumerations (CPEs) [32].

So far on May 21st, 2022, we collected mappings for 1, 759
CVEs associated with Maven libraries. In this section, the

evaluation needs the reachability analysis, which requires the

vulnerable methods and classes associated with CVEs. Thus,

we first identified 750 CVEs (42.64% of all Maven CVEs)

from 2, 326 unique libraries used as dependencies in 301
projects. Then, vulnerable classes and methods of 300 CVEs

were successfully identified and manually collected from the

patches available at NVD links. The mappings and vulnerable

methods of lib-vers and CVEs are publicly accessible on our

website [10].

2) Tools and Environments Preparation: All tools used

in the evaluation were tested with their latest versions in May

2022. Steady was tested with version 3.2.4 with a built-in vul-

nerability database including 729 CVEs. The two commercial

tools were evaluated in their publicly accessible production en-

vironments. CORAL was implemented with 6.9kloc in Python

2550

CVEs Sizes of DG Github Stars (k) kloc

Fig. 4: Demographics of the Data Set of RQ1 and RQ2

3.8.2 and evaluated with java 7 − 13 (depends on projects),

Maven 3.8.2, and Ubuntu 18.04.6.

B. RQ1: Comparison with Other Remediation Tools

1) Evaluation Metrics: (1) Vulnerability fixed: The pri-

mary target of remediation is fixing vulnerabilities which

are further classified in terms of reachability as remain-

ing reachable CVEs: V ulr, remaining unreachable/unknown

CVEs: V ulur/V uluk, and total fix: Fix. (2) Compilation:

Failcomp. The projects with updated pom files were compiled

by Maven to evaluate the correctness of Maven resolution and

the compile-time compatibility. (3) Unit test: Failtest. The

affiliated unit tests were run against the remediated projects to

evaluate the runtime compatibility. (4) Supplementary metrics:

The number of upgraded/downgraded libraries, total version

span, number of Major upgrades (#Major), and development

upgrades (#Dev) were counted for reference.

2) Comparison Results: The evaluation was conducted

based on the remediated projects (versions returned by reme-

diation tools were adjusted in pom files), which along with the

Maven logs, are available on our website. To emphasize the

improvement gained from the version selection strategy, we

added two baseline tools with naive strategies. Both baseline

tools share the same partitioning and backtracking mechanisms

as CORAL. Baseline A always prefers the latest versions of

vulnerable libraries. It is used to demonstrate the result of a

common practice which is upgrading vulnerable dependencies

to the latest. Baseline B always prioritizes the versions with the

fewest reachable and unknown vulnerabilities, even if it may

break the projects. Baseline B gave an idea of how many non-

trivial vulnerabilities could be fixed without being constrained

by compatibility. The comparison results with remediation

tools and baselines are provided in Table II. The analysis of

each metric is supplied as follows:

• Remaining Reachable Vuls: Due to a limited number of

vulnerable methods, only 17 CVEs could be identified as

reachable in original projects. It is noteworthy that CORAL

eliminated all reachable CVEs. Because Dependabot re-

turned far fewer remediation suggestions than other tools,

16/17 reachable CVEs remained reachable after remedi-

ation. As Steady’s vulnerability database is limited, we

re-evaluated Steady with the 729 CVEs in their database

and enclosed the updated numbers in brackets. Within this

scenario, Steady had fewer reachable CVEs than before,

like other tools.

• Remaining Unreachable and Unknown Vuls: CORAL had

much fewer unreachable vulnerabilities (reduce 87.56% of

vulnerabilities) than other tools because though the un-

reachable vulnerabilities were considered harmless, CORAL

attempted to remove them if the constraints allowed. Un-

known vulnerabilities 583 still remained in the DG for three

reasons: (1) 244, 41.87%. The versions with fewer vulnera-

bilities did not satisfy the constraints. (2) 149, 25.56%. All

versions were vulnerable. (3) 101, 17.31%. The more secure

versions with unreachable CVEs were Major upgrades with

overly large version spans. Regarding baselines, Baseline A
proved that upgrading to the latest fixed only an insignif-

icant amount of vulnerabilities. Baseline B suggested that

338 (4.05%) more vulnerabilities could be fixed without

considering compatibility.

• Compilation Failures: CORAL achieved 98.67% successful

compilation rate due to detecting syntactic breaking and

DC issues. The reasons for four failed cases were (1) Call

graph generation failure: One of the libraries along the call

chain had no call edges generated, which led to unreachable

breaking methods. (2) Exception class not captured: The

breaking exception class was not captured in the call graph

and thus deemed unreachable. (3) Overriding not captured:

The breaking methods of a class were extended and over-

ridden in the new version, but the call graph did not reflect

such overriding. For example, a project, apollo-client [33],

had a failed compilation due to the incompatibility in its

dependency, snakeyaml. The overriding of class, BaseC-
onstructor, was not captured. (4) Ghost dependency: The

breaking methods were used in an undefined dependency,

so they were not captured as reachable methods. Because of

the local optimization and unreliable or absent compatibility

detection, the rest of the tools were subject to broken

upgrades with failed compilation.

• Unit Test Failures: Since it is challenging to detect Se-

mantic Breaking effectively, it is difficult to prevent Unit

test failures. Thanks to the prioritization based on SemVer

and Maven resolution rules, CORAL was able to achieve the

fewest failures among these tools. Note that due to private

dependencies, unfinished development, special requirements

of running environments, etc., 88 unit tests in original

projects already failed without remediation, which was

excluded from the number of failures in the table.

• Other Statistics: It is evident that Com B had many more

lib-ver pairs changed because it manipulated the direct

dependencies to adjust the associated trees by changing

the default versions of subsequent dependencies regardless

of vulnerabilities, while other tools mostly focused on the

vulnerable vertices. The same reason stood for the version

span. Because CORAL, Steady, and Com B substantially

changed the versions of transitive dependencies, their total

version spans were larger than Dependabot’s.

2551

TABLE II: Comparison of CORAL among State-of-the-art Remediation Tools

Tool name Avg DG Size V ulr V ulur V uluk FixedCV E Failcomp Failtest #Crashes #Libs changed Version span #Dev #Major

Original 33.99 17 5,363 2,954 0 0 0 0 0 0 0 0
CORAL 36.27 0 553 583 7,198(87%) 4 15 0 2,556 70,464 3 139
Dependabot 34.93 16 5,357 2,682 262 (3%) 20 31 1 602 17,024 0 44
Steady 44.17 11(4) 1,596(955) 1,457(515) 5,253(63%) 27 36 1 2,292 75,380 4 257
Com A 34.24 7 4,199 2,410 1,469 (18%) 51 61 7 1,398 24,679 0 245
Com B 35.61 3 1,040 1015 6,277(75%) 54 70 0 6,498 134,407 0 170
Baseline A 33.81 3 4,677 2,786 869 39 45 0 2,580 16,863 7 194
Baseline B 43.11 0 422 376 7,536 54 71 0 5,860 90,931 5 329
Baseline C 35.11 0 535 547 7,252 4 12 0 2,613 56,738 1 126

1) V ulr : number of reachable CVEs. V ulur : number of unreachable CVEs. V uluk: number of unknown CVEs. FixedCV E : number of fixed CVEs.
Failcomp: number of projects with failed compilation. Failtest: number of projects with failed tests. Crashes: number of projects that tools crashed
and failed to return results. Dev: number of development version pairs. Major: number of Major version pairs

Fig. 5: Ascending Order by Numbers of CVEs of Original per

Project

To illustrate the distribution of remaining vulnerabilities

over all projects, the remaining CVEs of all tools are presented

in the scatter plot of Fig. 5. The x-axis is ordered by the

number of CVEs of the original, which serves as the upper

bound denoted by yellow stars. It is evident that CORAL has

the overall fewest remaining CVEs at the bottom of the chart,

denoted by blue dots.

Conclusions of RQ1: From the evaluation in Table II,

CORAL fixed 87.56% of all CVEs with all reachable

removed, including 911 more CVEs than the best of the

rest tools. Meanwhile, CORAL achieved the 98.67% suc-

cessful compilation rate and 92.96% successful unit test

rate, which outperformed the rest of the tools. Compared

with the two baseline tools, CORAL was proven to be

effective at balancing the compatibility and security by

breaking 106 (35.21%) fewer projects at the cost of 338
(4.05%) fewer vulnerabilities fixed.

C. RQ2:Effectiveness of Improvement on Global Optimization

The subgraph partitioning was implemented in CORAL to

boost the performance towards the global optimization. To

evaluate the effectiveness of partitioning, Baseline C was im-

plemented in the same logic without two types of partitioning

used by CORAL. The same data set was used to evaluate the

Fig. 6: Time Consumption of Baseline C and CORAL

existing metrics and time consumption. To measure the time,

we respectively ran CORAL and Baseline C ten times against

each project and calculated the average time as the final result.

The result is presented in Fig. 6, which illustrates that the

Baseline C generally tended to spend more time than CORAL

for complete remediation. In the figure, the 301 projects are

ordered by the size of DG. Each dot in the figure represents

a single project. The tendency curves of both are fitted by the

second-degree polynomials to avoid over-fitting.

To explain the fluctuations of the consumed time of CORAL,

we manually analyzed the causes of the outliers. First, the 6
lower outliers were collected and analyzed. The cause of these

cases was subgraphs partitioned were pretty small (1-5 deps),

and the backtracking was not triggered. Second, for 18 higher

outliers, there were four major causes:

• (9 cases) Call graph generation failures: The Call graph

generation of the Soot script failed at some dependencies of

DG, which took a long time to return. Usually, the failure of

one version would persist with other versions of the same

library, so the total time was elongated.

• (5 cases) SMT solver took a long time: For these projects,

both Baseline C and CORAL spent a long time because the

SMT Solver took a long time to finish. The direct reason for

this cause was that the levels of DGs were limited, which

means the DGs were more flattened than others. Thus, the

2552

partitioning of CORAL based on levels could still include a

substantial number of vertices in the SMT solver.

• (3 cases) Multiple backtracking: Another backtracking

could be triggered during the current run of backtracking

or after the current run fails. In these cases, 2 out of 3

cases had over three attempts of failed hard backtracking,

and the rest triggered the hard backtracking multiple times

during soft backtracking, which led to no improvement of

vulnerability reduction for this soft backtracking.

• (1 case) Jar downloading failure: The CG generation

and Syntactic breaking detection relied on the jar files

of dependencies, CORAL failed to download from Maven

Repository with time-out multiple times.

The observed metrics for Baseline C are presented in

Table II. From the table, Baseline C has fixed 54 (0.75%)

more vulnerabilities than CORAL, which implies the global

optimization without partitioning has slightly improved the

vulnerability fixing. Moreover, the number of projects with

failed compilation stayed the same because CORAL handled

the syntactic breaking and DC issues regardless of the parti-

tioned subgraphs by backtracking.

Conclusions of RQ2: The comparison between Baseline
C and CORAL substantiates that the partitioning mech-

anism could substantially reduce the time consumption

without introducing the compilation failures at an accept-

able cost of 0.75% fewer fixed vulnerabilities, especially

for the large DG.

D. RQ3: How many fixable/unfixable CVEs in Maven

We target finding out how many vulnerabilities can be

fixed without breaking the compilation and how many cannot

in popular Maven projects. Since CORAL could efficiently

exclude the solutions that broke the compilation with high

precision (98.67%), we made an assumption that CVEs fixed

by CORAL were fixable and CVEs not fixed by CORAL were

unfixable.

1) Preparation of data: To conduct a large-scale study

in the Maven ecosystem, we constructed a different data set

from RQ1 and RQ2. Considering the balance between the

representativeness and quality of the dataset, we first collected

repositories with 100+ stars managed by Maven from GitHub

to ensure the high quality of the dataset. Then, we compiled

them and extracted dependency trees from them by the Maven

command. If both steps succeeded, the dependency trees and

class files were used as input for the remediation. Eventually,

we randomly selected 2, 000 out of 6, 898 projects (average

size 103.58) for the evaluation to make sure the dataset was

representative. As for CVE mappings, the same mappings were

used as RQ1 and RQ2. Since collecting vulnerable methods

and classes is not as straightforward as version mappings,

which requires much more effort for all CVEs, we decided

not to conduct the reachability analysis of vulnerabilities in

the experiment.

2) Results of RQ3: Fixable: The fixable CVEs are 10, 109
(78.45%) as in Fig. 7. It is inferred that around 78% vulner-

abilities could have been safely eliminated from the popular

Maven projects without breaking the compilation to reduce the

vulnerability risks of the ecosystem. We further calculated the

distribution of the CVEs regarding the levels of the libraries

and the types of upgrades that removed the CVEs. Although

78% seems to be a large number, the majority of them could

not be fixed without domain knowledge or the aid of CORAL.

According to Fig. 7, the proportion of vulnerabilities that could

be fixed by adjusting direct dependencies was 11.71%, out of

which 8.34% belonged to Minor and Patch upgrades.

As users can straightforwardly upgrade their direct depen-

dencies to non-major versions to fix vulnerabilities on their

own, we applied this naive method for the comparison with

CORAL. The result showed that 25.71% of CVEs can be fixed

by upgrading direct dependencies. Due to ripple effects, not

only were 8.34% in direct dependencies fixed but more CVEs

in transitive dependencies were also fixed. It is implied that

without the aid of CORAL, the rest of the fixable vulnerabilities

(52.74%) could not be fixed straightforwardly.

Unfixable: The number of unfixable CVEs was 2, 777
(21.55%) as in Fig. 7, which could not be fixed by CORAL

for three major reasons, the soft backtrack, all versions of

a library were vulnerable, and the secure versions were in-

compatible. Reflected in Fig. 7, it is observed that the major

reason was incompatibility which accounted for 60.10%. Note

that the incompatibility did not count the Semantic Breaking

because it could not be reliably detected. The minor reason,

soft backtrack, refers to the vulnerabilities being left unfixed

because the soft backtrack could not eradicate all CVEs, but

minimized the overall vulnerabilities by ignoring some CVEs.

Although unfixable vulnerabilities cannot be easily removed

without breaking the projects, some of them are removable at

an acceptable cost. For example, if an API is deprecated and

migrated to another, users only have to invoke the updated API

and upgrade to the target version to fix the issue and vulner-

abilities. Thus, if efforts to fix incompatibility are acceptable,

more vulnerabilities can be fixed thoroughly with minimized

efforts by quantifying efforts to fix the incompatibility.

Conclusions of RQ3: Through the experiments with the

most starred projects on GitHub, we found that 78.45% of

vulnerabilities could be fixed without breaking the compi-

lation. However, without the aid of CORAL, only 25.71%
could be fixed by upgrading the direct dependencies to

non-major secure versions.

V. THREATS OF VALIDITY

The threat of CORAL is the static call graph reliance because

only the static call graphs are not accurate enough to capture

all possible call edges, which is one of the causes of the

unit test failures in Section IV-B2. One typical example of

inaccurate static call graphs is that static call graphs may miss

invocations made by dynamic features, e.g., reflection. More-

2553

Unfixable Vulnerabilities 21.55%

Fixable Vulnerabilities 78.45%

Fig. 7: Distributions of Fixable/Unfixable Vulnerabilities

over, The prioritization of vulnerabilities might overlook some

reachable ones due to inaccurate static call graphs. However,

to modularly and dynamically update the call graphs after each

version adjustment, we could only generate static call graphs

that are faster than dynamic ones. As it is impractical to run

tests and generate dynamic call graphs thousands of times per

project, we sacrificed accuracy for better performance.

VI. RELATED WORK

A. SCA Tools and Strategies

SCA has been a popular research topic in recent years. Re-

searchers have invested much effort to study and improve the

two major procedures: component and vulnerability detection

and vulnerability remediation.

1) SCA remediation: A limited number of research works

[34]–[38] attempted to study and enhance the remediation

strategy. Alfadel et al. [34] found for the Javascript projects

at Github 34.58% of PRs created by Dependabot were not

merged due to five reasons: (1) Duplication (2) Dependency

conflict by peer requirements (3) Test failures (4) Internal

errors (5) Disobeying rules/standards, which substantiate our

findings in Section II-C. Steady [36], [37] has been devel-

oped for years to be a code-centric and usage-based SCA

tool, which has been proved effective by Imtiaz et al. [39].

Soto et al. [38] found 22.6% of upgrades by Dependabot

were recommended for bloated dependencies. 22.6% does

not contradict our result 3.92% because 22.6% consists of

all bloated dependencies, while ours were only those found

and addressed. These works except for Steady mostly focused

on the evaluation of remediation tools, which left a blank of

remediation strategy enhancement filled by CORAL.

2) Component and vulnerability detection: Many re-

searchers and practitioners [7], [8], [35], [39]–[48] have

studied the component and vulnerability detection. Imtiaz

et al. [39] studied 9 commercial SCA tools and found the

reported vulnerabilities vary substantially, which revealed that

the vulnerability database was the key differentiator. Dann et

al. [40] reviewed six commercial and academic SCA tools

regarding their ability to handle the dependency modification

types. By testing 7k+ Java projects, they found the re-bundle

modification in Maven dependencies was not supported by

any tools. Vuln4real [35], [42] was proposed to exclude the
false alarms of vulnerabilities by identifying the vulnerabilities

in lagging, development-only, and unreachable dependencies,

which significantly reduces false alerts.

B. Study of Open-source Software Ecosystem

Apart from SCA techniques, researchers [49]–[59] have

studied the open-source software (OSS) and associated vul-

nerabilities in the OSS ecosystem, conclusions of which can

be used to guide the designs of SCA tools. Decan et al. [49]

studied NPM and Rubygems package managers and found that

33% and 40% of vulnerabilities respectively had their fixes

within the same major release. Plate et al. [58] proposed new

metrics to determine the criticality of vulnerabilities regardless

of the types and languages of vulnerabilities, which helps

with the automated impact assessment of new vulnerabilities.

Imtiaz et al. [50] studied the characteristics of security fixes

at 6 major package managers, namely, the semantic versions,

release notes, and the time lag between fixes and releases, and

offered 4 recommendations for the better practice of security

releases. Ponta et al. [51] manually collected 625 publicly

disclosed vulnerabilities for Java projects, which was also used

in the Section IV as the Steady data set at the latest version.

VII. CONCLUSION

We proposed CORAL to provide remediation without break-

ing compatibility. The evaluation demonstrated that CORAL

outperformed other tools by fixing 87.56% of vulnerabilities

and achieving 98.67% successful compilation rate and 92.96%
successful unit test rate. In the ablation study, the partitioning

of DG and trade-off between security and compatibility had

been proved effective. Furthermore, we found that 78.45%
of vulnerabilities in popular Maven projects could be fixed

without breaking the compilation.

DATA AVAILABILITY

The data sets of the studies and evaluations can be publicly

accessed at https://sites.google.com/view/icse23remediation.

ACKNOWLEDGEMENTS

This research is partially supported by the National Re-

search Foundation Singapore and DSO National Laboratories

under the AI Singapore Programme (AISG Award No: AISG2-

RP-2020-019), the NRF Investigatorship NRF-NRFI06-2020-

0001, the National Research Foundation through its Na-

tional Satellite of Excellence in Trustworthy Software Sys-

tems (NSOE-TSS) project under the National Cybersecurity

R&D (NCR) Grant award no. NRF2018NCR-NSOE003-0001,

the Ministry of Education, Singapore under its Academic

Research Fund Tier 2 (MOE-T2EP20120-0004) and Tier 3

(MOET32020-0004). Any opinions, findings and conclusions

or recommendations expressed in this material are those of

the author(s) and do not reflect the views of the Ministry of

Education, Singapore.

2554

REFERENCES

[1] “Log4j Vulnerability,” https://nvd.nist.gov/vuln/detail/CVE-2021-44832,
2021.

[2] “Log4j Remote Code Execution,” https://www.netskope.com/blog/
cve-2021-44832-new-vulnerability-found-in-apache-log4j, 2021.

[3] “Software Composition Analysis,” https://snyk.io/series/
open-source-security/software-composition-analysis-sca/, 2022.

[4] “Eclipse Steady,” https://projects.eclipse.org/proposals/eclipse-steady,
2022.

[5] “Dependabot,” https://github.com/dependabot, 2022.
[6] “Snyk,” https://snyk.io/, 2022.
[7] “White Source,” https://www.whitesourcesoftware.com/, 2022.
[8] “OWASP Dependency Check,” https://owasp.org/

www-project-dependency-check/, 2022.
[9] “Scantist,” https://scantist.com/, 2022.

[10] “Data set,” https://sites.google.com/view/icse23remediation, 2022.
[11] “Maven,” https://https://maven.apache.org/, 2022.
[12] “Commons-lang,” https://github.com/apache/commons-lang, 2022.
[13] “Dependabot upgrade resulted in build failure,” https://github.com/

apache/commons-lang/pull/826, 2021.
[14] “Wala,” https://github.com/wala/WALA, 2022.
[15] “Common Vulnerability Scoring System,” https://nvd.nist.gov/

vuln-metrics/cvss, 2022.
[16] “Maven Scope,” https://maven.apache.org/guides/introduction/

introduction-to-dependency-mechanism.html#Dependency Scope,
2022.

[17] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A Java bytecode optimization framework,” in CASCON First
Decade High Impact Papers, 2010, pp. 214–224.

[18] “Soot Spark Call Graph,” https://soot-build.cs.uni-paderborn.de/public/
origin/develop/soot/soot-develop/options/soot options.htm#phase 5 2,
2021.

[19] “Uber-jar,” https://imagej.net/develop/uber-jars, 2022.
[20] A. Schroter, A. Schröter, N. Bettenburg, and R. Premraj, “Do stack traces

help developers fix bugs?” in 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010). IEEE, 2010, pp. 118–121.

[21] “Z3 Solver,” https://github.com/Z3Prover/z3, 2022.
[22] “japi-compliance-checker,” https://lvc.github.io/

japi-compliance-checker/, 2019.
[23] “revapi,” https://revapi.org/revapi-site/main/index.html, 2021.
[24] “japicmp,” https://siom79.github.io/japicmp/, 2022.
[25] “Maven Versions,” https://maven.apache.org/pom.html#Version Order

Specificationl, 2022.
[26] L. Chen, F. Hassan, X. Wang, and L. Zhang, “Taming behavioral

backward incompatibilities via cross-project testing and analysis,” in
Proceedings of the ACM/IEEE 42nd International Conference on Soft-
ware Engineering, 2020, pp. 112–124.

[27] S. Mostafa, R. Rodriguez, and X. Wang, “Experience paper: a study
on behavioral backward incompatibilities of Java software libraries,” in
Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2017, pp. 215–225.

[28] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and impact
analysis of api breaking changes: A large-scale study,” in 2017 IEEE
24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2017, pp. 138–147.

[29] “National vulnerability database,” https://nvd.nist.gov/, 2022.
[30] H. Guo, S. Chen, Z. Xing, X. Li, Y. Bai, and J. Sun, “Detecting and

augmenting missing key aspects in vulnerability descriptions,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 31, no. 3, pp. 1–27, 2022.

[31] H. Guo, Z. Xing, S. Chen, X. Li, Y. Bai, and H. Zhang, “Key
aspects augmentation of vulnerability description based on multiple
security databases,” in 2021 IEEE 45th Annual Computers, Software,
and Applications Conference (COMPSAC). IEEE, 2021, pp. 1020–
1025.

[32] “Common Platform Enumeration,” https://nvd.nist.gov/Products/CPE,
2022.

[33] “Apollo project,” https://github.com/ApolloAuto/apollo, 2022.
[34] M. Alfadel, D. E. Costa, E. Shihab, and M. Mkhallalati, “On the use

of dependabot security pull requests,” in 2021 IEEE/ACM 18th Inter-
national Conference on Mining Software Repositories (MSR). IEEE,
2021, pp. 254–265.

[35] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vuln4real: A methodology for counting actually vulnerable dependen-
cies,” IEEE Transactions on Software Engineering, 2020.

[36] S. E. Ponta, H. Plate, and A. Sabetta, “Beyond metadata: Code-centric
and usage-based analysis of known vulnerabilities in open-source soft-
ware,” in 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 2018, pp. 449–460.

[37] Ponta, Serena Elisa and Plate, Henrik and Sabetta, Antonino, “Detection,
assessment and mitigation of vulnerabilities in open source dependen-
cies,” Empirical Software Engineering, vol. 25, no. 5, pp. 3175–3215,
2020.

[38] C. Soto-Valero, T. Durieux, and B. Baudry, “A longitudinal analysis
of bloated Java dependencies,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2021, pp. 1021–1031.

[39] N. Imtiaz, S. Thorn, and L. Williams, “A comparative study of vulnera-
bility reporting by software composition analysis tools,” in Proceedings
of the 15th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2021, pp. 1–11.

[40] A. Dann, H. Plate, B. Hermann, S. E. Ponta, and E. Bodden, “Identifying
challenges for OSS vulnerability scanners-a study & test suite,” IEEE
Transactions on Software Engineering, 2021.

[41] M. Alfadel, D. E. Costa, and E. Shihab, “Empirical analysis of security
vulnerabilities in Python packages,” in 2021 IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2021, pp. 446–457.

[42] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vulnerable open source dependencies: Counting those that matter,”
in Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2018, pp. 1–10.

[43] “Blackduck,” https://www.synopsys.com/software-integrity/
security-testing/software-composition-analysis.html, 2022.

[44] “Sourceclear,” https://www.sourceclear.com, 2022.
[45] “Sonarqube,” https://www.sonarqube.org/, 2022.
[46] L. Zhang, C. Liu, Z. Xu, S. Chen, L. Fan, B. Chen, and

Y. Liu, “Has my release disobeyed semantic versioning? static
detection based on semantic differencing,” 2022. [Online]. Available:
https://arxiv.org/abs/2209.00393

[47] X. Zhan, L. Fan, S. Chen, F. We, T. Liu, X. Luo, and Y. Liu, “Atvhunter:
Reliable version detection of third-party libraries for vulnerability identi-
fication in Android applications,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 1695–
1707.

[48] X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo,
and Y. Liu, “Automated third-party library detection for Android ap-
plications: Are we there yet?” in 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2020,
pp. 919–930.

[49] A. Decan, T. Mens, and E. Constantinou, “On the impact of security vul-
nerabilities in the NPM package dependency network,” in Proceedings
of the 15th international conference on mining software repositories,
2018, pp. 181–191.

[50] N. Imtiaz, A. Khanom, and L. Williams, “Open or sneaky? fast or slow?
light or heavy?: Investigating security releases of open source packages,”
IEEE Transactions on Software Engineering, 2022.

[51] S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi, and C. Dangremont,
“A manually-curated dataset of fixes to vulnerabilities of open-source
software,” in 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 2019, pp. 383–387.

[52] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl,
and Y. Acar, “Vccfinder: Finding potential vulnerabilities in open-source
projects to assist code audits,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, 2015, pp. 426–
437.

[53] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “Tracing known security vul-
nerabilities in software repositories–a semantic web enabled modeling
approach,” Science of Computer Programming, vol. 121, pp. 153–175,
2016.

[54] C. Liu, S. Chen, L. Fan, B. Chen, Y. Liu, and X. Peng, “Demystifying
the vulnerability propagation and its evolution via dependency trees in
the NPM ecosystem,” 2022.

[55] J. Hejderup, “In dependencies we trust: How vulnerable are dependen-
cies in software modules?” 2015.

2555

[56] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “Vulpecker: an automated
vulnerability detection system based on code similarity analysis,” in
Proceedings of the 32nd Annual Conference on Computer Security
Applications, 2016, pp. 201–213.

[57] K. A. Farris, A. Shah, G. Cybenko, R. Ganesan, and S. Jajodia, “Vulcon:
A system for vulnerability prioritization, mitigation, and management,”
ACM Transactions on Privacy and Security (TOPS), vol. 21, no. 4, pp.
1–28, 2018.

[58] H. Plate, S. E. Ponta, and A. Sabetta, “Impact assessment for vulnera-
bilities in open-source software libraries,” in 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2015, pp. 411–420.

[59] W. Tang, Z. Xu, C. Liu, J. Wu, S. Yang, Y. Li, P. Luo, and
Y. Liu, “Towards understanding third-party library dependency in C/C++
ecosystem,” in 37th IEEE/ACM International Conference on Automated
Software Engineering, 2022.

2556

