
A Web-Based Tool for Using Storyboard of
Android Apps

Yuxin Zhang∗
College of Intelligence and Computing

Tianjin University
Tianjin, China

Sen Chen∗‡
College of Intelligence and Computing

Tianjin University
Tianjin, China

Lingling Fan†
College of Cyber Science

Nankai University
Tianjin, China

Abstract—The development team usually makes painstaking
efforts to review and analyze many existing apps with similar
purposes such as competitive analysis, design recommendation,
code generation, and app testing. To assist different roles in
doing these tasks, in our prior work, two advanced approaches
(i.e., StoryDroid and StoryDistiller) have been proposed to
automatically generate the storyboards for Android apps with
rich features such as UI pages, UI components, layout code, and
logic code. These approaches both aim at exploring and parsing
as many app pages as possible but lack some consideration of
the presentation and interpretability of the results for different
users such as PMs, designers, and developers. To improve
usability and scalability, this paper presents a web-based offline
tool, named StoryDroid+, which provides an operation-friendly
platform for using storyboards and helps different stakeholders
(e.g., designers, package managers, developers) explore and
understand apps from different perspectives through rich visual
pages. The tool and datasets are available at: https://github.com/
tjusenchen/StoryDroid and the demonstration video can be found
at: https://youtu.be/prszxRdkdYU.

Index Terms—Storyboard, App exploration, GUI exploration,
App review, Android app

I. INTRODUCTION

Nowadays, mobile applications (apps) are everywhere. In

just a few years, smartphones have become an indispens-

able part of our lives, helping us perform daily tasks, e.g.,

reading, shopping, banking, and chatting [1]. This has led to

the unprecedented growth of the app development business.

Today, companies, governments, and various organizations are

working hard to develop new and practical apps, hoping to

stay on users’ mobile devices. Competition among apps in

the same category is also growing. More than 3.8 million

Android apps and 2 million iOS apps are trying to attract users

in the two major mobile app markets, i.e., Google Play and

Apple App Store. However, there are still functional bugs [2]–

[4], security vulnerabilities [5]–[7], and a lack of marketing

competitiveness in mass mobile applications [8]. Therefore,

app developers and companies tend to conduct an extensive

competitive analysis of existing apps with similar functionality

through app reviews. This analysis helps to understand the

strengths and weaknesses of competitors and reduce market

risks before development, and it inspires developers with

innovative ideas for app design and implementation.

‡Corresponding author (senchen@tju.edu.cn)

However, to achieve the above goals, developers or com-

panies need to download apps from the market and install

them on mobile devices for manual exploration and recording,

which may be ineffective. To this end, Chen et al. [8] pro-

posed a hybrid method called StoryDistiller, which combines

static and dynamic methods to extract the relatively complete

activity transition graph (ATG) of apps more effectively. It

shows a strong ability to extract app storyboards with rich

and useful features for different users. However, the lack

of visual management also increases the difficulty for users

to understand the storyboards. Therefore, to make full use

of the value of the information extracted by these tools,

we have built a web-based offline tool named StoryDroid+.

StoryDroid+ can automatically extract the storyboards of the

app and then visualize the pages of the results. In detail, as

shown in Fig. 2, StoryDroid+ can visualize the page of the

results, including the basic storyboard features such as ATG

with UI pages and the corresponding code for developers,

app competitive analysis for product managers (PMs) through

app comparison, and several useful searching functionalities

for designers including searching for similar UI pages and

components.

In summary, we highlight the main functionalities of

StoryDroid+ as follows.

• App exploration module supports both batch or individual

exploration on the app exploration webpage.

• Storyboard display module shows the rendered UI pages

together with the ATGs are displayed to show the app sto-

ryboard, including the corresponding layout code, method

calls, and Java code of each activity.

• Competitive analysis module supports the comparison of

any two or more app functionalities based on the extracted

app storyboards.

• Attribute searching module includes two sub-modules,

i.e., search for similar UI pages and components, which

can inspire designers to design more competitive UIs.

• App management module supports the management of the

analyzed samples, including the downloading of output

files, selection of multiple apps for competitive analysis,

and deleting the apps.

117

2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

979-8-3503-2263-7/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-Companion58688.2023.00037

II. THE WEB-BASED TOOL

In this section, we first briefly introduce the back-end

techniques used in StoryDroid+, and then detail the web-based

functionalities of StoryDroid+.

A. Back-end Techniques in StoryDroid+

To extract the complete ATG and rich features of the app

as comprehensively as possible, StoryDroid+ integrates the

existing static and dynamic methods with reference to the

implementation of StoryDistiller [8]. As shown in Fig. 1,

three phases are designed as follows: (1) We first decompile

the APK as input, configure the AndroidManifest.xml file to

enable the third-party startup process, and repackage it to

generate a new installable APK file. (2) Static extraction

lays the foundation for the next stage of dynamic UI page

rendering, which mainly includes two steps: activity transition

graph (ATG) extraction and inter-component communication

(ICC) data extraction. Since the activity transition in fragments

and inner classes is representative and widely used in real-

world apps, we consider them to construct the static ATG by

analyzing their associations with components. To successfully

start an activity, the data required to render the target UI page

should be provided, so it is also crucial to obtain the ICC

data. For each activity, we obtain the parameters needed to

start it (including primitive attributes and extra parameters).

For primitive attributes such as “action” and “category”, we

obtain them by parsing the corresponding fields in the manifest

file or by extracting them in the Java code. As for the extra

parameter extraction, we first determine the methods related to

the activity life cycle and then analyze them successively based

on the relation between the additional parameters in these

methods and page rendering. (3) Dynamic UI page rendering

mainly includes two steps: UI page rendering, which uses the

extracted ICC data, and the Android toolkit to launch and

start activities dynamically; UI component exploration, which

identifies activity transitions and UI pages by exploring all

interactive components of each activity, so as to enhance the

static ATG. By using the mixed ATG construction method,

we can obtain a more complete ATG with the corresponding

rendered UI pages, together with other rich features such as

layout codes, call graphs, and screenshots of UI components.

B. Web-based Offline Platform

By integrating the methods used by existing static and

dynamic tools for storyboard generation, StoryDroid+ finally

extracts a relatively complete ATG and much rich feature

information related to apps. For example, in the process of

dynamic UI page rendering, we can obtain ATG, UI page,

activity name, and call graph in turn. For the activity code,

we use the reverse engineering tool Jadx [9] to decompile the

APK file and extract the corresponding Java code. Besides,

we obtain the layout code by storing the current activity

layout when rendering the UI pages. In addition, we can also

obtain other properties of the UI components from their layout

code to enrich the final presentation. However, obtaining such

information does not mean that users can fully understand

it. If this information cannot be displayed in an appropriate

form, it would greatly weaken its value and make it difficult

for users to understand. To this end, we set up an offline web

platform composed by user-friendly operation and a storyboard

to better tell the app. We linked the app information obtained

by StoryDroid+ in a visual form to help users explore the app

from a deeper level. The implementation of StoryDroid+ on

the offline web platform mainly includes six function modules:

� App exploration module. StoryDroid+ provides users

with an operation-friendly webpage that allows them to upload

one or multiple apks for analysis (� App exploration module

shown in Fig. 2). After uploading, StoryDroid+ will use the

hybrid method described above to explore the uploaded apk(s)

and parse various features such as ATG, UI pages, and layout

code. When the number of uploaded apk(s) is more than one,

the exploration results will be displayed in comparison, which

allows users to directly see the differences between apps.

� Storyboard display module. To clearly show the results

of exploration to users, we will display all the features parsed

on the webpage. First, we use the component Network [10] (a

visual network composed of nodes and edges) to draw ATG,

which is implemented based on the dynamic visualization

library vis.js. As shown in Fig. 2 (� Storyboard display

module for developers), we use the rendered screenshots of UI

pages and names of the activities as nodes and use “edge” to

describe the transition relations between UI pages. Displaying

ATG in the form of a visual network can not only enable

users to understand the presentation of real UI pages but also

show the relation and navigation between app UI pages more

clearly. Users can also get the trigger mechanism between each

function module while knowing more about the functions of

the app. This is equivalent to the process of disassembling

the entire app and reassembling it for users. In addition, we

also associate the method call graph, activity code, and layout

code of each activity with the activity, so that users such as app

developers can better understand the specific implementation

of each activity. The “Package Name”, “Package Version”,

“Activity Number”, and other relevant attributes about the app

are also clearly visible on the same webpage. To facilitate

users to quickly find the target activity, StoryDroid+ has a

query function on this page (“Search (activity name)”). Users

can quickly locate and view the activity’s method call graph,

activity code, layout code, and other useful information by

entering keywords.

� Competitive analysis module. In order to facilitate users

such as PMs comparing different apps (such as conducting

competitive analysis), StoryDroid+ supports users selecting

two apps they are interested in for visual display (the search

function can also be used to retrieve similar apps). As shown

in Fig. 2 (� Competitive analysis module for PMs), users

can visually see the storyboards of the two apps, and all

information related to the two apps can be found directly

on the visualization page. Users can also use the search bar

to quickly locate activities with the same name in these two

apps. Through these functions, users can conduct competitive

analysis on existing apps with similar functionality, understand

118

Fig. 1. The back-end techniques used in StoryDroid+.

Fig. 2. Main function modules of the web-based offline tool of StoryDroid+.

the strengths and weaknesses of competitors in advance, and

reduce market risks before development. This module offers a

thorough competitive analysis that PM urgently needs.

� Attribute searching module. To facilitate users, such as

designers, in viewing similar activities and UI components,

we classify apps analyzed by users according to the semantic

names of activities and establish a database of activities with

similar functions. As shown in Fig. 2 (� Attribute searching

module (UI pages) for designers), we also visualize this

function to facilitate users to query and view the UI, activity

code, and layout code of similar activities. This can not only

help UI/UX designers get inspiration from similar app designs

but also help developers who want to get inspiration from

similar apps link the UI screen with the corresponding real

code. In addition, in the same way, we split and classify the

components on the UI pages according to the component type

and the semantic information of their activities. In Fig. 2 (�
Attribute searching module (UI components) for designers),

users can learn about the design style of a specific type of

component in similar activities to get references.

� App management module. As shown in Fig. 2 (�
App management), to facilitate subsequent viewing and use,

StoryDroid+ builds a local database to store the results of apps

that have been analyzed and allows users to manage these apps

on the “Recent Scans” page, including deleting, viewing, etc.

In the meantime, we also log the statistical data from over ten

dimensions, which can be generated and directly downloaded

from the webpage.

III. EVALUATION

StoryDroid+ integrated the back-end techniques proposed

by StoryDistiller, therefore, the effectiveness of the storyboard

extraction has been thoroughly evaluated in our previous

work [8]. We randomly selected 75 open-source apps and

75 closed-source apps as test sets and then compare with

three existing dynamic and static ATG exploration tools, i.e.,

IC3 [11], Gator [12], and Stoat [13], to evaluate the effective-

ness of StoryDroid+. The number of activity transfer pairs

and activity coverage are used to demonstrate the performance

of each tool. The back-end extraction technique can obtain a

more complete activity transition graph with real UI pages

for both open-source and closed-source apps. Specifically, in

the aspect of activity transition pairs, StoryDroid+ is better

than static method IC3 [11] and Gator [12] (the average

value of StoryDroid+ is 23.3, while IC3 is 7.8, and Gator

is 10.0). In terms of activity coverage, it is also better than

the dynamic method Stoat [13] (77.5% for StoryDroid+ and

36.3% for Stoat). In comparison with the static method,

the performance trend of the activity coverage is similar to

that of the activity transition pairs, and StoryDroid+ still

119

#
T
ra
ns
iti
on
pa
ir
s

0
5

10

15

20

25

30

35

40

45
50

IC3 Gator StoryDroid+

#
T
ra
ns
iti
on
pa
ir
s

0
5

10

15

20

25

30

35

40

45
50

IC3 Gator StoryDroid+

A
ct
iv
ity
C
ov
er
ag
e

0
0.1

0.2

0.3

0.4

0.5
0.6

0.7

0.8

0.9
1

Stoat IC3 Gator StoryDroid+

A
ct
iv
ity
C
ov
er
ag
e

0
0.1

0.2

0.3

0.4

0.5
0.6

0.7

0.8

0.9
1

Stoat IC3 Gator StoryDroid+

Fig. 3. Comparison of transition pairs and Activity coverage.

outperforms other tools. For the evaluation of the web-based

offline platform, we manually uploaded the aforementioned

150 apps and demonstrated StoryDroid+ can work smoothly

for different users in practice.

IV. APPLICATIONS BASED ON STORYDROID+

StoryDroid+ effectively makes up for the shortcomings of

existing ATG construction tools, makes app exploration more

comprehensive and complete, and depicts the storyboard of

apps more vividly through the operation-friendly visual pages,

which can help different stakeholders explore and understand

apps from different perspectives.

A. UI/UX Designer

The success of app design depends on the user experience

(UX) and user interface (UI). Poorly designed apps would be

difficult to be widely accepted and probably lose attraction to

potential customers. StoryDroid+ allows designers to explore

a large number of apps when designing apps, and learn from

the same category of apps or from the activities of the same

function of different apps to find inspiration. StoryDroid+ can

present a large number of different UI pages to users, which

are almost the same as the real UI pages that users will see. In

addition, to learning the overall design of UI pages, designers

can also learn about the design trend of UI components in a

certain type of app through our tools, such as the style, color,

and size of buttons.

B. App Developers

StoryDroid+ provides users with ATG with many features

(e.g., layout code, activity code, method call graph) and links

these features with the corresponding UI screens. Therefore,

in the implementation of UI, developers can quickly and accu-

rately obtain the corresponding layout code by searching for

similar UI and customize the UI code according to their own

purposes to achieve the given UI design. In the implementation

of the functions of apps of the same category, in order to have a

competitive advantage, apps of the same category will contain

more common functions. Therefore, activities with the same

semantic name are likely to have similar logic and architecture.

Through our tools, developers can refer to activity codes with

the same name to help improve the quality of their apps and

customize more interesting functions on this basis.

C. App Testers

For app testing, it is necessary to ensure that all important

scenarios are covered as much as possible, to avoid service

failure caused by untested functions. The relatively complete

ATG built by StoryDroid+ can help testers explore more ac-

tivities and improve test coverage. In the storyboard visualized

by StoryDroid+, users can see the navigation relationship

between different UI pages and the relatively complete UI page

composition of each activity, which can effectively avoid the

problem of incomplete testing by testers due to the possible

complexity of the app. In addition, StoryDroid+ can help

guide the regression testing of apps by identifying the modified

ATG and UI components. StoryDroid+ stores the mapping

relationship between the UI page and the corresponding layout

code and activity code. Testers can compare the differences

between different versions of layout code to identify the

modified UI components or functions, and update test cases

accordingly, rather than designing test cases from scratch,

which improves the reusability of test cases and reduces the

workload of testers.

V. RELATED WORK

Static GUI exploration (e.g., Gator [12], StoryDroid [1],

GoalExplorer [14]) and ICC resolution (e.g., IC3 [11], and

ICCBot [15]) are all important way of app abstraction and

GUI modeling, however, the completeness of ATGs is limited

by the static analysis techniques. They only provided a graph

structure of the UI transitions without the rendered UI pages.

A large number of dynamic GUI testing tools (e.g., Mon-

key [16], A3E [17], Sapienz [18], Stoat [13]) have been

exhibited, however, the pure dynamic testing approach is

limited by the low activity coverage, which significantly limits

the completeness of ATGs.

Compared with these related works, StoryDroid+ optimizes

the original tool on ATG construction and UI page rendering

by combining the original static method and novel dynamic

exploration. Last but not least, StoryDroid+ further provides

an operation-friendly web platform for using storyboards and

help different stakeholders.

VI. CONCLUSION

In this paper, we proposed a web-based offline tool named

StoryDroid+. By integrating the existing static and dynamic

ATG exploration methods, StoryDroid+ can obtain a relatively

complete storyboard of apps with rich features. On this basis,

StoryDroid+ is designed in a user-friendly way, which can

not only make it easier for users to operate but also visualize

the storyboard of the app and help different stakeholders

explore and understand the app. Compared with the existing

tools, StoryDroid+ has better performance and significantly

improved efficiency for app review and app understanding.

ACKNOWLEDGEMENTS

This work was partially supported by the National Natural

Science Foundation of China (No. 62102197, 62102284).

120

REFERENCES

[1] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu, “Sto-
rydroid: Automated generation of storyboard for Android apps,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 596–607.

[2] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and G. Pu, “Efficiently
manifesting asynchronous programming errors in Android apps,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, 2018, pp. 486–497.

[3] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su, “Large-
scale analysis of framework-specific exceptions in Android apps,” in
Proceedings of the 40th International Conference on Software Engi-
neering, 2018, pp. 408–419.

[4] S. Chen, C. Chen, L. Fan, M. Fan, X. Zhan, and Y. Liu, “Accessible
or not? an empirical investigation of Android app accessibility,” IEEE
Transactions on Software Engineering, vol. 48, no. 10, pp. 3954–3968,
2021.

[5] S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu, and L. Xu,
“An empirical assessment of security risks of global Android banking
apps,” in Proceedings of the 42nd International Conference on Software
Engineering. IEEE Press, 2020, pp. 596–607.

[6] S. Chen, Y. Zhang, L. Fan, J. Li, and Y. Liu, “Ausera: Automated
security vulnerability detection for Android apps,” in 37th IEEE/ACM
International Conference on Automated Software Engineering, 2022, pp.
1–5.

[7] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu, “Are
mobile banking apps secure? what can be improved?” in Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2018, pp. 797–802.

[8] S. Chen, L. Fan, C. Chen, and Y. Liu, “Automatically distilling sto-

ryboard with rich features for Android apps,” IEEE Transactions on
Software Engineering, 2022.

[9] (2018) Dex to Java decompiler. [Online]. Available: https://github.com/
skylot/jadx

[10] (2022) vis.js Network. [Online]. Available: https://visjs.github.io/
vis-network/docs/network/

[11] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel, “Composite
constant propagation: Application to Android inter-component commu-
nication analysis,” in Proceedings of the 37th International Conference
on Software Engineering-Volume 1. IEEE Press, 2015, pp. 77–88.

[12] S. Yang, H. Wu, H. Zhang, Y. Wang, C. Swaminathan, D. Yan, and
A. Rountev, “Static window transition graphs for Android,” Automated
Software Engineering, vol. 25, no. 4, pp. 833–873, 2018.

[13] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based GUI testing of Android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, 2017.

[14] D. Lai and J. Rubin, “Goal-driven exploration for Android applications,”
in 2019 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 2019, pp. 115–127.

[15] J. Yan, S. Zhang, Y. Liu, J. Yan, and J. Zhang, “Iccbot: fragment-
aware and context-sensitive icc resolution for Android applications,”
in Proceedings of the ACM/IEEE 44th International Conference on
Software Engineering: Companion Proceedings, 2022, pp. 105–109.

[16] (2018) Google Monkey for Testing. [Online]. Available: https:
//developer.android.com/studio/test/monkey

[17] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of Android apps,” in Acm Sigplan Notices, vol. 48,
no. 10. ACM, 2013, pp. 641–660.

[18] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for Android applications,” in Proceedings of the 25th interna-
tional symposium on software testing and analysis, 2016, pp. 94–105.

121

