
A Comprehensive Study onQuality Assurance Tools for Java
Han Liu∗

East China Normal University
Shanghai, China

hanliu@stu.ecnu.edu.cn

Sen Chen∗
College of Intelligence and

Computing, Tianjin University
Tianjin, China

senchen@tju.edu.cn

Ruitao Feng
University of New South Wales

Sydney, Australia
ruitao.feng@unsw.edu.au

Chengwei Liu
Nanyang Technological University

Singapore, Singapore
chengwei001@e.ntu.edu.sg

Kaixuan Li
East China Normal University

Shanghai, China
kaixuanli@stu.ecnu.edu.cn

Zhengzi Xu
Nanyang Technological University

Singapore, Singapore
zhengzi.xu@ntu.edu.sg

Liming Nie
Nanyang Technological University

Singapore, Singapore
liming.nie@ntu.edu.sg

Yang Liu
Nanyang Technological University

Singapore, Singapore
yangliu@ntu.edu.sg

Yixiang Chen†
East China Normal University

Shanghai, China
yxchen@sei.ecnu.edu.cn

ABSTRACT
Quality assurance (QA) tools are receiving more and more atten-
tion and are widely used by developers. Given the wide range of
solutions for QA technology, it is still a question of evaluating QA
tools. Most existing research is limited in the following ways: (i)
They compare tools without considering scanning rules analysis.
(ii) They disagree on the effectiveness of tools due to the study
methodology and benchmark dataset. (iii) They do not separately
analyze the role of the warnings. (iv) There is no large-scale study
on the analysis of time performance. To address these problems, in
the paper, we systematically select 6 free or open-source tools for a
comprehensive study from a list of 148 existing Java QA tools. To
carry out a comprehensive study and evaluate tools in multi-level
dimensions, we first mapped the scanning rules to the CWE and an-
alyze the coverage and granularity of the scanning rules. Then we
conducted an experiment on 5 benchmarks, including 1,425 bugs,
to investigate the effectiveness of these tools. Furthermore, we took
substantial effort to investigate the effectiveness of warnings by
comparing the real labeled bugs with the warnings and investigat-
ing their role in bug detection. Finally, we assessed these tools’ time
performance on 1,049 projects. The useful findings based on our
comprehensive study can help developers improve their tools and
provide users with suggestions for selecting QA tools.

∗These authors contributed equally to this work.
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, United States
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598056

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
• General and reference→ Empirical studies.

KEYWORDS
Quality assurance tools, Bug finding, Scanning rules, CWE

ACM Reference Format:
Han Liu, Sen Chen, Ruitao Feng, Chengwei Liu, Kaixuan Li, Zhengzi Xu,
Liming Nie, Yang Liu, and Yixiang Chen. 2023. A Comprehensive Study on
Quality Assurance Tools for Java. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’23), July
17–21, 2023, Seattle, WA, United States. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3597926.3598056

1 INTRODUCTION
Software quality has always been a continuing goal of developers
and users. Due to the growing size and complexity of software,
developers are facing a particularly difficult situation compared to
that of the past few years. An increasing number of software bugs
have been discovered during operations, resulting in severe conse-
quences, including massive economic loss and even endangering
human lives [19, 27, 38, 60]. Given the importance of software code
quality, quality assurance (QA) tools have been widely used due to
their low cost, convenience, and ability to find bugs [3, 31].

Unfortunately, as a result of limited practical study, it is still
challenging for users to evaluate and select the appropriate QA
tools. (1) Recent research only compares the tools based on the
recall or false positive of detection results and ignores one of the
most important parts: Scanning rules. Developers and users cannot
understand the coverage and granularity of the scanning rules of
the tools according to the existing studies [18, 25, 29, 43, 49, 50,
56, 59]. (2) Evaluations of the tools based on the detection results
are influenced by the benchmark dataset and methodology. Some
research is conflicting when investigating tools’ capabilities for
identifying real bugs. Habib et al. [18] highlighted the poor recall
of these tools on the Defects4J dataset [22]. They found that a large
majority (95.5%) of the studied bugs were not detected. In contrast,

https://doi.org/10.1145/3597926.3598056
https://doi.org/10.1145/3597926.3598056

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Han Liu, Sen Chen, Ruitao Feng, Chengwei Liu, Kaixuan Li, Zhengzi Xu, Liming Nie, Yang Liu, and Yixiang Chen

RQ1: Coverage

and Granularity of

Scanning Rules

RQ2: Effectiveness

of Tools

RQ3: Effectiveness

of Warnings

RQ4: Time

Performance of

Tools

Labeling bugs

Error

Prone

Infer

Mapping

Scanning rules

Buggy Fixed Detection

rate

Time cost analysis

Defects4J

Bugs.jar

BugSwarm

Bears

QuikBugs

Benchmarks

1,049 projects
Selected

tools
Multi-level evaluation dimensions

Figure 1: Overview of our study

Thung et al. [49, 50] suggested that most bugs in the program can
be reported by combining the results of these tools on different
datasets and methods. (3) Although there are some studies on the
false positive warnings of QA tools, they focus on the truthfulness
of warnings and how to reduce false positives [29, 56, 59]. They
pay no attention to the effectiveness of the warnings or whether
they can provide clues for bugs. (4) There is no large-scale study to
analyze the time performance of the QA tools.

To address these problems, we conducted a comprehensive study
on Java QA tools to compare and evaluate them on multi-level di-
mensions. The overview of our study is shown in Figure 1. First, we
selected 6 tools and 5 benchmarks for our study. Then, we analyzed
the coverage and granularity of the rules of these tools through
manual comparison. However, even when performing manual anal-
ysis, it is challenging to compare scanning rules directly because
of the vast differences in how the rules are presented among these
selected tools. We need to build a unified ground reference to make
a fair comparison of the rules of these QA tools. CommonWeakness
Enumeration (CWE) [45] has been widely used to manage bugs
in various software projects [32] and its weaknesses have been
mapped to scanning rules of some tools (e.g., SonarQube [43], Sem-
grep [39]). Moreover, ISO/IEC 5055 [15], an international standard
for measuring software quality, also uses CWE as a reference. There-
fore, we used CWE as a reference and spent 6 person-month to
establish a connection and exploring the gap between the rules and
CWE to study the coverage and granularity between QA tools. Af-
ter that, we conducted a benchmark experiment on 5 benchmarks
to investigate the effectiveness of these tools. Note that, in this
work, we focused on assessing bug detection ability, not bad coding
practice and other issue detection ability of QA tools. We compared
the warnings reported by the tools in the buggy version and the
fixed version to analyze the detection rate of the tools. Notably, we
took substantial effort (1.5 person-month) to manually label the
bug information, mapping it to CWE. On top of that, we studied the
effectiveness of the warnings by comparing the labeling bug with
the warnings and exploring their role in finding bugs. Finally, we
evaluated the time performance of the tools in large-scale projects
to analyze their time cost.

Through our study, (1) we find that the rules of SonarQube and
Error Prone have a higher coverage than others. The granularity of
rules in Infer, SpotBugs, and Semgrep is finer than others. (2) For
the detection rates of bugs, the tools with higher coverage of rules
are proven that they have a higher detection rate, except for PMD.
The detection rates range from 0.3% to 10.2%. The tools with finer

granularity appear to be more focused on the bugs in one domain
area. (3) With the analysis of the warnings and labeled dataset, we
find that most of the warnings are not the true reasons for bugs,
especially the warnings of PMD. However, the warnings would
be useful in finding bugs. (4) Based on the analysis, Error Prone
and SonarQube have the best capability in bug detection and Infer
presents an excellent capability in detecting its focused issues on our
benchmarks. (5) Finally, we observe each tool requires an average
of 65 seconds to execute a project analysis. The execution time of
each tool varies greatly. In large projects, the execution times of
SonarQube and Infer increase rapidly. Furthermore, the execution
time of Semgrep is only moderately affected by project size. It is
worth noting that although Error Prone runs with compilation, it
is more efficient than 4 tools due to its method of embedding the
compilation into checking.

In summary, the contributions of this work are as follows:

• We conducted a benchmark experiment of 6 QA tools on
1,425 bugs from 5 benchmarks and a large-scale experiment
of these tools on 1,049 projects. Our comprehensive study is
the largest study onQA tools ever (i.e., 6×(1, 425×2+1, 049) =
23, 3941 scanning tasks). We spent over 4 months preparing
and executing these projects.

• We spent 7.5 person-month mapping 1,813 scanning rules
of 6 tools to CWE and 311 detected bugs by these tools to
CWE. To the best of our knowledge, this is the first work
that constructs a connection between references, rules, tools,
and datasets.

• We evaluated the selected QA tools from multi-level di-
mensions, including coverage and granularity of scanning
rules, the effectiveness of tools, the effectiveness of warn-
ings, and time performance. Our evaluation implements
a systematic and comprehensive comparison of QA tools
from scanning foundation to scanning results and scan-
ning expense. The study data are released on the website:
https://sites.google.com/view/quality-tools-analysis/home.

2 OVERVIEW
In this section, we first detail the criteria for tool selection and
the used datasets in our study. We then introduce the method of
mapping scanning rules to CWEs for each tool.

2.1 Tool Selection
In this study, we first collected 148 QA tools supporting Java lan-
guage from 6 references [17, 23, 33, 35, 57, 58] including GitHub,
OWASP, NIST, Kompar, and Wikipedia, which is collected by snow-
balling the tool set from [31]. Then, we investigated the character-
istics of the tools and defined 6 selection criteria as follows. For
each criterion, our answer is either true or false.

• Criterion #1 (Available): The tool should be open-source or has
a free release if it is a commercial tool.

• Criterion #2 (Being maintained): The tool should still be main-
tained by the developers during the last two years so that we can
exclude some outdated and unpopular tools.

11,425 bugs have both buggy version and fixed version.

https://sites.google.com/view/quality-tools-analysis/home

A Comprehensive Study onQuality Assurance Tools for Java ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

• Criterion #3 (User-friendly command line interface): We
need to run the tool for benchmarks and large-scale experiments,
it needs to have a command line interface and execute without
any limitations(e.g., can only run as a plugin).

• Criterion #4 (Well documented with rules): As introduced,
establishing the linkage between CWEs and the rules for detec-
tion is our first task. The tool should have its own integral public
rules and be described well in the natural language. Otherwise,
it is difficult to conduct the analysis based on scanning rules.

• Criterion #5 (Quality related): The tool should be relevant to
code quality analysis/assurance such as bug detection. The tools
should claim that they can detect “quality issues”, “bugs”, “defects”,
“flaws”, “mistakes”, “failure”, or “fault” in their documents.

• Criterion #6 (Not similar to other tools): The selected tool
should be representative and partially unique, which means it
should not be an integrated or evolved version of other similar
tools in our collection.

Finally, followed by the defined criteria, we selected 6 QA tools
for Java from 148 tools: SonarQube, SpotBugs, Error Prone, Infer,
PMD, and Semgrep. Table 1 shows a brief introduction to these
tools. We briefly describe each tool as follows.

• SonarQube [43]. SonarQube is a code quality and security anal-
ysis tool by SonarSource. It is a multi-language supported tool,
which consists of two parts: SonarScanner and SonarQube servers.
In our study, we use version 9.5.0 of the SonarQube server and
version 4.1.0 of SonarScanner.

• SpotBugs [44]. This QA tool is licensed under the LGPL-2.1
license. It is the successor of Findbugs [20] and got 2.8k stars
and 482 forks on GitHub. SpotBugs aims to find bugs in a Java
program. We use version 4.7.0.

• Error Prone [1]. Error Prone is also an open-source QA tool on
Java developed by Google, which got 6k stars and 685 forks on
GitHub. It is licensed under the Apache-2.0 license. Error Prone
aims to catch common programming mistakes at compilation
time. In this study, since most projects in benchmark require Java
8 compilation environment, we use version 2.10.0 of Error Prone,
the latest version supporting Java 8 compilation.

• Infer [6]. Facebook developed this QA tool and is now an open-
source tool licensed under the MIT license. It got 4k stars and
1.3k forks on GitHub. Infer supports Java and C/C++/Objective-C
language and aims to produce a list of potential bugs. We use
version 1.0.0 of Infer.

• PMD [37]. PMD is an open-source source code analysis tool
licensed under PMD’s BSD-style license and gets 4k stars and 1.3k
forks on GitHub. It claims that it can find common programming
flaws in multi-language programs. In our study, we use version
6.41.0 of PMD.

• Semgrep [39]. Semgrep is a code analysis tool supporting 25+
languages. It claims that it can find bugs and run security scans
in programs. We use the open-source version 0.81.0 of Semgrep.

2.2 Datasets
We introduce two types of datasets, one for the benchmark-based
experiment, and the other for the large-scale experiment.

Table 1: Tool profile

Tools Aim Version # License # Rules

SonarQube code quality analysis 9.5.0 LGPL-3.0 552
SpotBugs find bugs 4.7.0 LGPL-2.1 453
PMD find flaws 6.41.0 PMD’s BSD-style 119
Error Prone catch mistakes 2.1.0 Apache-2.0 405
Infer find potential bugs 1.0.0 MIT 120
Semgrep find bugs 0.81.0 LGPL-2.1 164

Table 2: Details of datasets

Dataset # Project # Bugs

Defects4J 17 835
Bugs.jar 6 371
BugSwarm 35 108
Bears 40 71
QuixBugs 40 40

Total bugs 1,425

2.2.1 Benchmark Dataset. For our study, we need high-quality
benchmark datasets to evaluate the tools. To this end, we defined
the following three criteria:

• Criterion #1 (Java language): The benchmark should contain
bugs in Java language projects.

• Criterion #2 (Peer-reviewed): The benchmark should be peer-
reviewed. It needs to be present in at least one research paper.

• Criterion #3 (Manually-fixed version): For each bug, the bench-
mark should have a manually-fixed version accordingly.

Specifically, we first collected 7 datasets by the criterion #1 and #2,
including Bugs.jar [41], iBUGS [10], Bears [30], IntroClassJava [13],
BugSwarm [52], QuixBugs [26], and Defects4J [22]. Then we se-
lected the datasets by criterion #3. Finally, there are 5 datasets that
meet all requirements: Bugs.jar, Bears, BugSwarm, QuixBugs, and
Defects4J.

Since the tools such as Infer, SpotBugs, SonarQube, and Error
Prone, have a strong requirement for compilation, we requested
that the projects in these datasets can be compiled. We excluded
some non-compilable projects from the dataset. The final number
of projects and bugs contained in each dataset is shown in Table 2.

2.2.2 Large-scale Experiment Dataset. To assess the time perfor-
mance of QA tools, we require a large-scale experiment in addi-
tion to a benchmark-based experiment. Our goal is to obtain the
efficiency of executing these tools in real-world scenarios. Conse-
quently, we need to obtain numerous projects of diverse sizes and
developers, ensuring that the selection process is free from any
perceived bias. In addition, we need to ensure that the dataset in
the project is representative which means not a project which is
meaningless and unused. Initially, as the compilation necessities of
the tools allow projects released in package managers to be com-
piled more easily, we chose open-source projects from repositories
in package managers such as Maven and Gradle. Subsequently, we
applied two filters to the projects: the packages associated with
the open-source projects have been depended on by packages from
other providers and have new packages relying on them within
the past three years. In this step, we chose around 10,000 projects.
Lastly, given the performance and compilation requirements, we

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Han Liu, Sen Chen, Ruitao Feng, Chengwei Liu, Kaixuan Li, Zhengzi Xu, Liming Nie, Yang Liu, and Yixiang Chen

Quality Assurance

Tools

Bad Coding

Practice

Data Processing

Errors
ResourceLocking

Problems

EqualsHash

Code

Misused-

WeekYear

DoubleChecked

Locking

CWE - 581 CWE - 609

BadAnnotation

Implementation

…… ……

…… …… ……

CWE

Category

CWE

Weakness

Scanning

Rule

Figure 2: The mapping structure of CWEs

picked 1,049 compilable projects. The versions of these projects are
the most recent versions accessible at that time.

2.3 Mapping Scanning Rules to CWEs
To study the effectiveness of scanning rules, we investigate the
coverage and granularity of the rules. However, due to the different
forms and presentations, it is difficult to directly compare the cov-
erage and granularity of the rules between different tools. We need
to establish links and explore gaps between tools and a baseline
and then answer the research questions according to the baseline.

2.3.1 Common Weakness Enumeration (CWE). CWE [45] is a com-
munity developed list of software and hardware weakness types. It
is language-independent and uses a generic approach to describe
the weaknesses of software and hardware. CWE has evolved over
the years to its current location. Recently it has been expanded to in-
clude weaknesses from quality characteristics beyond security [15].
Now it has 927 weaknesses and contains a variety of different views,
including Software Development, Hardware Design, and Research
Concepts. In order to study the detection capability of tools in dif-
ferent bug categories, we manually mapped the rules of different
tools to CWEs.

2.3.2 Mapping Method. In this study, we need to choose a CWE
VIEW to map, which is a subset of CWE entries that provides a
way of examining CWE contents. There are three main views in
CWE, i.e. Software Development, Hardware Design, and Research
Concepts. Since we focus on software code quality, we use the CWE
VIEW: Software Development (ID:699) [48] instead of CWE VIEW:
Research Concept (ID:1000) [47] and CWE VIEW: Hardware Design
(ID:1194) [46] to map the rules. Moreover, Research Concept concen-
trates on the research of weaknesses. It aims to identify theoretical
gaps within CWE systematically. It pays less attention to how to
detect bugs, which is contrary to our research. Thus, CWE VIEW:
Software Development is a better choice. This view contains the
weaknesses and concepts for all aspects of software development at
418 weaknesses in total, including 40 CWE categories that contain
a set of other CWE entries that share common characteristics.

The mapping process is structured into two parts. As shown in
Figure 2, we need to establish the connections between scanning
rules and CWE categories and the connections between scanning
rules and CWE Weaknesses. (1) We mapped each scanning rule
to the CWE category because the CWE categories contain a wide
range of weaknesses. For example, for the rules of Error Prone
“EqualsHashCode” and “BadAnnotationImplementation”, we mapped
them to the CWE category “Bad Coding Practices”. For another rule

of Error Prone “MisusedWeekYear", we mapped it to CWE category
“Data Processing Errors”. (2) We tried to map the scanning rule to
CWE weakness. Since the CWE types are more specific, there may
be cases where the rules cannot be mapped to the CWE weakness.
Moreover, there may also be more than one rule corresponding
to a CWE weakness, as many scanning rules are finer than CWE
weaknesses. For example, for the rules of Error Prone “EqualsHash-
Code” and “BadAnnotationImplementation”, we mapped them to
CWE weakness “CWE-581: Object Model Violation” belonging to
the CWE category “Bad Coding Practices ”. As for another rule “Mis-
usedWeekYear”, we failed to map it to CWE weaknesses belonging
to the CWE category “Data Processing Errors”.

It is undeniable that there is subjectivity in these two parts. Fur-
thermore, the mapping results are limited by the knowledge and
experience of the mappers. To reduce the influence of subjective
factors and the limitations of the knowledge and experience of the
mappers, we used one-person mapping and two-person confirma-
tion for this process. The mapping results will be accepted when
the three authors’ results are consistent.

For each tool, we obtained the rules in default configuration from
their official documentation or website, and the number of rules for
each tool is shown in Table 1. As for the SonarQube and Semgrep,
they officially map the rules to CWE weaknesses. We confirmed
their mapping result and map their rules to CWE categories. Finally,
for each tool, we obtained a hierarchy similar to the one in Figure 2.

3 EMPIRICAL STUDY
3.1 Research Questions
In this study, we aim to answer the following research questions:

3.1.1 Coverage and Granularity of Scanning Rules (RQ1).
To what extent do scanning rules cover different bugs, and how do
the granularity of scanning rules vary by tools?

For this RQ, we focus on the coverage and granularity of the
scanning rules to investigate the effectiveness of these rules. We
try to investigate the coverage of scanning rules for different bugs
and the granularity gap of scanning rules in different tools.

3.1.2 Effectiveness of Tools (RQ2). Towhat extent can QA tools
detect bugs from a diversity of benchmarks?

For this RQ, we focus on the tools’ detection rates for detecting
bugs in a diversity of benchmarks to explore the capability of QA
tools. Furthermore, we study the reasons for missing bugs to present
improvement methods for QA tools.

3.1.3 Effectiveness of Warnings (RQ3). How effective are the
warnings reported by the QA tools?

This RQ tries to investigate the gap between the warnings and
the real source of bugs to study the effectiveness of the warning.
In addition, we explore whether they can provide some hints for
developers even if they are not the real source of bugs.

3.1.4 Time Performance of Tools (RQ4). What is the time per-
formance of the QA tools?

In this RQ, we focus on time performance to analyze the time cost
of these tools. We compare the average time performance of each
QA tool and their trend on different sizes of projects to explore the

A Comprehensive Study onQuality Assurance Tools for Java ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Table 3: Rules mapping results

Tools
mapped

CWE categories
mapped

CWE weaknesses

SonarQube 28 41
SpotBugs 22 33
PMD 19 12
Error Prone 24 21
Infer 19 28
Semgrep 18 22

time cost of tool usage and the correlation between the technologies
of tools and their execution time.

3.2 Coverage and Granularity of Rules (RQ1)
In this RQ, we analyze the coverage of scanning rules in various
bug categories and the granularity of these rules in different tools to
investigate whether they are well-designed. To this end, we mapped
all rules to the CWEs. Table 3 shows the number of mapped CWEs
associated with the rules. More specifically, we summarize the top
5 CWE categories and concrete weaknesses from the results of anal-
ysis and present the results in Table 4. For each CWE category and
CWE weakness, the numbers in parentheses indicate the quantity
mapped to their rules.

3.2.1 Coverage of Rules. As shown in Table 3, SonarQube’s rules
cover the largest number of CWE categories, with 28 categories.
The second is Error Prone, whose rules cover a total of 24 CWE
categories. The third is SpotBugs, with 22 CWE categories. PMD,
Infer, and Semgrep cover the 19, 19, and 18 CWE categories, respec-
tively. By looking into the covered CWE categories (in Table 4),
almost half of the rules in SonarQube, SpotBugs, PMD, and Error
Prone belong to “Bad Coding Practices”. Especially for SonarQube,
“Bad Coding Practices” accounts for 52.2% of all rules. For Infer, as
it claims that, it focuses on the null pointer dereferences, memory
leaks, coding conventions, and unavailable APIs, 23% of its rules
focus on the “Pointer Issues”, 19.2% concern “Resource Management
Errors”, and 9.2% focus on “Memory Buffer Errors”. As for Semgrep,
over 26% of the rules belong to “Data Neutralization Issues”.
Missing Covered Categories. However, although all tools cover
more than 18 CWE categories, there are still some categories that
have not been included, such as “User Session Errors”, “User Interface
Security Issues”, “Signal Errors”, “Authorization Errors”, “Communi-
cation Channel Errors”, “Data Validation Issues”, and “Credentials
Management Errors”. By exploring the tool implementations and
the rule composition forms, we find the main reason for these
uncovered categories is that some of them are designed for domain-
specific issues. However, most of the scanning rules of tools are
used to check for general errors. For domain-specific issues, such as
web and user interface, developers need to configure and re-write
the rules to adapt the tools to a specific domain.
In addition, for a majority of tools, it is observed that most of the
rules fall under a limited number of categories. Certain categories
may contain a multitude of potential bugs, but these tools only
implement a part of them. Therefore, some tools seem to cover a
wide range of categories that, in reality, do not contain a substantial
number of rule entries within each category. For the 6 selected tools,
the number of categories with less than 1% of rules are: SonarQube

with 17 categories, SpotBugs with 8 categories, PMD with 10 cate-
gories, Error Prone with 10 categories, Infer with 7 categories, and
Semgrep with 5 categories.
Comparative Coverage Focus of Different Tools. The coverage
varies between different tools. For example, “Pointer Issues” does
not appear in the rules of PMD and Semgrep. “Concurrency Issues”
does not appear in the rules of Semgrep. On the contrary, “Pointer
Issues” is dominant in Infer’s rules, and “Concurrency Issues” plays
an important role in SpotBugs. We further investigate the reasons
behind this difference and find that: Tools such as SonarQube, Spot-
Bugs, and Error Prone apply a multitude of analysis methods. They
not only scan the source code but also examine binary code or col-
lect compile-time data, enabling them to gather more information
and enhance their analytical capabilities. As a result, they imple-
ment more rules to detect bugs. In contrast, other tools like PMD
and Semgrep can only construct abstract syntax trees, data flows,
and control flows via source code analysis. This method provides
substantially less information compared to the others, making the
implementation of numerous rules challenging. Nevertheless, the
objective of these tools is to swiftly identify issues on a large scale.
Hence, they can only solve the issues under CWE categories which
can be detected more easily, e.g., “Bad Coding Practices”, “Complex-
ity Issues”, and “Information Management Errors”. As for the tool,
Infer, its underlying formalism - Separation Logic is a mathematical
method that can facilitate the reasoning about the program to find
potential mutations in computer memory [34]. Thus, the issues
caused by null pointer dereference and leakage of resources and
memory definitely attract more attention, which further leads to
the dominance of the corresponding rules.

Answer to RQ1: The scanning rule coverage of QA tools needs
to be improved. Even though SonarQube and Error Prone have
a higher coverage (28 and 24 mapped CWE categories), they are
more willing to detect easier categories, e.g., Bad Coding Practices.
In addition, each tool has its own specific focus point. Users can
combine the features of the tools with their own needs in practice
(e.g., select Infer for point issue detection).

3.2.2 Granularity of Rules. According to the result of CWE
weakness mapping (in Table 3), SonarQube still holds the lead
with a total of 43 CWE weaknesses involved. Next are SpotBugs
and Infer which involve 33 and 28 CWE weaknesses, respectively.
Finally, Semgrep, Error Prone, and PMD involve 22, 21 and 12 CWE
weaknesses, respectively. From this perspective, it is clear that both
SonarQube and SpotBugs have the advantage of a higher coverage
of the CWEweaknesses. For the purpose of studying the granularity
of the rules, which is another focus point, we need to investigate
the number of rules mapped to each CWE.

As shown in Table 4, we can observe that one CWEweakness can
be mapped to many rules. For instance, CWE-476 can be mapped to
22 rules in our study. As we described in the § 3.2.1, Infer focuses
on checking issues caused by null pointer dereference, memory
leakage, coding convention, and unavailable API. The root cause
of CWE-476 happens to be null pointer dereference. As a result,
Infer takes full advantage of its own strengths and achieves the best
detection effectiveness on CWE-476. In fact, after a more concrete
analysis of the used fundamental components in the tool, we find
that most of these rules are detected by the same Infer detector,

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Han Liu, Sen Chen, Ruitao Feng, Chengwei Liu, Kaixuan Li, Zhengzi Xu, Liming Nie, Yang Liu, and Yixiang Chen

namely Pulse. Pulse divides the null pointer dereference in a more
fine-grained way, making its checks in this area more detailed. In
addition, other CWE weaknesses (e.g., CWE-124, CWE-825) that
can bemapped to Infer’s rules are also related to similar risks caused
by pointers, buffers, and resources.

For Semgrep, CWE-611 and CWE-319 have the largest number of
mapped rules, which is 16. Different from Infer, Semgrep does not
use a specific technical implementation to detect a certain category
of issues. Semgrep’s rules development is jointly maintained by the
open-source community, thereby, developersmaywant to subdivide
issues (e.g., CWE-611 and CWE-319). Hence, Semgrep’s rules are
more fine-grained and detailed from the aspect of software security.

For SpotBugs, CWE-476 (null pointer dereference) has been
mapped to 9 rules, which also shows a more fine-grained detec-
tion than other tools (e.g., SonarQube). SpotBugs divides the is-
sues caused by null pointer dereference into 9 types, including
null pointer dereference, null pointer dereference in method on
exception path, etc. Similar to Infer, this tool also involves multiple
detectors, most of which are mapped to a CWE weakness belonging
to the same detector. For instance, issues associated to CWE-476
are actually detected by the detector, namely FindNullDeref. After
detection, SpotBugs finally breaks them down at the rule level to
give the developer a more detailed description.

For the other 3 tools, SonarQube, Error Prone, and PMD, there
is little difference in granularity at the mapped CWE weakness
level. Their rules have the appropriate granularity relative to CWE
weakness. Therefore, the scanning rules of Infer, Semgrep, and
SpotBugs have finer granularity than the rules of SonarQube, Error
Prone, and PMD from CWE. On the one hand, users who want to
find detailed reasons (e.g., junior programmers) for the bugs should
use tools with finer granularity (i.e., Infer, Spotbugs, Semgrep). On
the other hand, users who prefer a comprehensive bug detection
without caring about the details (e.g., skillful programmers) can use
tools with coarser granularity (i.e., SonarQube, Error Prone, PMD).
However, due to the possibility that the rules of the tools may be too
finer or too coarse, the rules can not be mapped to CWEs, and there
is still a significant gap between them and CWE. This also indicates
that there are missing rules in these tools, causing them to not fully
cover CWE. Therefore, scanning rules can still be improved.
Answer to RQ1: From the mapping results, the granularity of
Infer, Semgrep, and SpotBugs’ rules is finer than that of SonarQube,
Error Prone, and PMD. This is achieved by detailing the result of
their sub-detectors. But the gap between tools and CWE is still
quite wide since only a small part of the rules are successfully
mapped to CWE weaknesses.

3.3 Effectiveness of Tools (RQ2)
We investigate the coverage and granularity of rules for each tool
in § 3.2. In this RQ, we investigate the effectiveness of QA tools
in detecting real-world bugs. To achieve this, we conducted bug
detection using 6 tools on 5 benchmarks, Defects4J, Bugs.jar, Bears,
BugSwarm, and QuixBugs.

3.3.1 Experiment Setup. In the experiment, we first checked out
all buggy versions and fixed versions in benchmarks. For the 6
tools, each tool has its specific requirements for execution. Error
Prone and Infer have to conduct bug checking during compilation.

Table 4: Top 5 CWE categories and CWE weaknesses in rules

CWE category CWE
weakness

So
na

rQ
u
be Bad Coding Practices (288, 52.2%) CWE-476 (5)

Error Conditions, Return Values, Status Codes (43, 7.8%) CWE-546 (2)
Expression Issues (36, 6.5%) CWE-396 (2)
Permission Issues (28, 5.1%) CWE-477 (2)
Data Processing Errors (25, 4.5%) CWE-595 (2)

Sp
ot
Bu

gs

Bad Coding Practices (187, 41.3%) CWE-476 (9)
Concurrency Issues (42, 9.3%) CWE-125 (5)
Data Processing Errors (41, 9.1%) CWE-908 (5)
Permission Issues (38, 8.4%) CWE-1024 (4)
API/Function Errors (20, 4.4%) CWE-248 (4)

PM
D

Bad Coding Practices (44, 37.0%) CWE-252 (2)
Complexity Issues (18, 15.1%) CWE-609 (1)
Error Conditions, Return Values, Status Codes (13,10.9%) CWE-1339 (1)
Permission Issues (7, 5.9%) CWE-1051 (1)
Data Processing Errors (6, 5.0%) CWE-570 (1)

Er
ro
r
Pr

on
e Bad Coding Practices (155, 38.3%) CWE-570 (4)

Data Processing Errors (73, 18.0%) CWE-1024 (4)
Error Conditions, Return Values, Status Codes (31, 7.7%) CWE-595 (3)
API/Function Errors (21, 5.2%) CWE-805 (2)
String Errors (15, 3.7%) CWE-581 (2)

In
fe
r

Pointer Issues (28, 23.3%) CWE-476 (22)
Resource Management Errors (23, 19.2%) CWE-124 (7)
Complexity Issues (12, 10.0%) CWE-502 (6)
Resource Locking Problems (11, 9.2%) CWE-825 (4)
Memory Buffer Errors (11, 9.2%) CWE-413 (4)

Se
m
gr
ep

Data Neutralization Issues (42, 25.6%) CWE-611 (16)
Data Processing Errors (25, 15.2%) CWE-319 (16)
Cryptographic Issues (23, 14.0%) CWE-502 (8)
Information Management Errors (18, 11.0%) CWE-89 (7)
Resource Management Errors (16, 9.8%) CWE-94 (6)

SpotBugs and SonarQube need the binary files generated after
compilation. PMD and Semgrep need to check the source files. To
fairly test the tools, we compiled all projects and collected all their
dependencies and binary class file directories. We input the tools
with compilation, binary files, and source files, respectively. In the
benchmark-based experiments, we tried to discern bug-sensitive
warnings. These are warnings that appear in the buggy versions
but not in the corresponding fixed versions. We analyzed both the
projects in the buggy and fixed versions. Then we generated a
report for each tool per project for subsequent evaluation. If a tool
reports a bug in the buggy version and does not report the same
bug following the fix, we categorize this as a bug-sensitive warning
and conclude that it accurately predicts the presence of the bug. We
believe that using bug-sensitive warnings to verify the correction
of the warning is more effective than simply comparing the bug
lines. This method not only contains the line information in it but
also identifies all the related warnings of the bugs.

3.3.2 Result and Analysis of Effectiveness. To understand the size
of bugs in the benchmarks, we count the number of files affected
and the number of line changes between buggy and fixed versions.
The findings reveal that 84.7% of bugs only required alterations to a
single file, and 72.3% of bugs necessitated changes to fewer than ten
lines of code. This suggests that the majority of bugs in a project
are typically confined to a single file and can be rectified with a few
line modifications.

The bug detection results of each tool are presented in Table 5.
We observe that the result vary widely across different tools. In
general, the detection rates of each tool are not satisfied. Even for

A Comprehensive Study onQuality Assurance Tools for Java ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Table 5: Tool detection results

Tools # Bugs Detected in Different Benchmarks
Defects4J Bugs.jar BugSwarm Bears QuixBugs Total

SonarQube 68 (8.1%) 40 (10.8%) 21 (19.4%) 3 (4.2%) 4 (10.0%) 136 (9.5%)
SpotBugs 44 (5.3%) 18 (4.9%) 21 (19.4%) 0 (0.0%) 3 (7.5%) 86 (6.0%)
PMD 90 (10.8%) 30 (8.1%) 22 (20.4%) 3 (4.2%) 1 (2.5%) 146 (10.2%)
Error Prone 61 (7.3%) 40 (10.8%) 5 (4.6%) 2 (2.8%) 1 (2.5%) 109 (7.6%)
Infer 10 (1.2%) 4 (1.1%) 4 (3.7%) 1 (1.4%) 0 (0.0%) 19 (1.3%)
Semgrep 0 (0.0%) 0 (0.0%) 4 (3.7%) 0 (0.0%) 0 (0.0%) 4 (0.3%)

Total Bugs 835 371 108 71 40 1,425

Figure 3: Detection results in different benchmarks

the tool with the best results, PMD only detects 10.2% (146/1,425)
bugs. SonarQube has a similar detection rate with PMD, which
detects 9.5% of bugs. The next is Error Prone and SpotBugs, with
7.6% and 6.2%, respectively. Infer and Semgrep have lower detection
rates, which only detect 1.3% and 0.3% of 1,425 bugs, respectively.

The effectiveness of each tool differs across different benchmarks.
As shown in Figure 3, SonarQube detects muchmore bugs (19.4%) in
BugSwarm than other benchmarks while it detects the least (4.2%)
in Bears. Regarding other benchmarks, SonarQube detects around
10% of bugs. As for SpotBugs, it detects most (19.4%) in BugSwarm
while it can not detect bugs in Bears. For other benchmarks, it
detects around 5.5% of bugs. PMD also shows a better detection
capability (20.4%) in BugSwarm. In other benchmarks, it presents an
unstable detection rate from 2.5% to 10.8%. Error Prone detects most
in Bugs.jar, which is different from other tools, and its detection
rate in other benchmarks ranges from 2.5% to 7.3%. As for Infer
and Semgrep, they detect a little in the benchmarks. Noted that,
BugSwarm is still detected most in Infer and Semgrep. The main
reason that leads to the difference is that different benchmarks have
different categories of bugs. As shown in § 3.2, the coverage of the
scanning rules varies between tools, thus leading to the difference
in detection results. Overall, although the bug pattern may cover
the influence scope of bugs in benchmarks, the detection rates of
the tools are disappointing based on their claims and their rule
coverage. Among 6 tools, PMD and SonarQube demonstrate rela-
tively better capability in bug detection. Error Prone and SpotBugs
also can detect some bugs, but they are less capable than PMD
and SonarQube. Since Infer and Semgrep focus on point issues and
security issues, they do not perform well on the benchmark we
have collected. The results of the benchmark experiments agree
most with the answers to RQ1. SonarQube, which has been con-
firmed with higher coverage in RQ1, shows better capabilities than
other tools. Error Prone and SpotBugs are also more effective than
Infer and Semgrep. However, despite the lower coverage of PMD, it
detects the most among the 6 tools. The reason is that the warnings
reported by PMD are not most useful or relevant. It achieves this
effectiveness by reporting a large number of warnings. We will
discuss this extensively in RQ3.

Answer to RQ2: Our experiment on 5 benchmarks shows that
the QA tools can not detect bugs as expected. The best tools, PMD
and SonarQube, can detect only around 10% of bugs. Next are
Error Prone and SpotBugs, which can detect 7.5% and 6% of bugs,
respectively. Semgrep and Infer, which focus more on a certain
type, show a lower detection rate in our experiment.

3.3.3 Reasons for Missing Detection of Bugs. To understand why
more than 80% of bugs are not detected by these tools, we manually
inspect the code and reports of the missed bugs. We conducted a
random sample analysis on 30 bugs that are missing detection by 6
tools and summarize three reasons for missing detection of bugs.

First, many bugs (19 of 30) contain specific domains, which can-
not be detected by existing tools. For example, in the Time project
in Defect4J with bug No.16, which is not detected by any tool, a
variable “iDefaultYear” is used to overwrite the given instant year,
which leads to the Default Year is not a leap year. Therefore, it
cannot correctly parse the date 29, February. However, due to the
specialty of this leap year issue, it is difficult to be detected by com-
mon rules. Secondly, a certain number of missing bugs (7 out of 30)
occur exclusively in exceptionally particular circumstances. These
conditions are overlooked by both QA tools and developers. Never-
theless, these particular conditions may be the ones users employ
in the real world, triggering the bugs. For example, in the project
Commons-Math in Defects4J with bug No.1, here, the construc-
tor Fraction will create a fraction by the given double value and
maximum denominator. However, an overflow exception is thrown
when a fraction is initialized from a double that is very close to a
simple fraction. Despite many tools possessing rules for detecting
overflow, this represents an incredibly specific situation where the
gap between implementation and invocation is considerable. Con-
sequently, it becomes challenging for tools to manage this scenario
effectively. Thirdly, a subset of these bugs (4 out of 30) embodies
logical or algorithmic issues that evade identification by rule-based
detection methods such as pattern matching or other forms of static
analysis. For instance, bug No.21 in the Commons-Math project
from Defects4J fails to accurately calculate the rank of the matrix
under certain conditions. This error stems from an incorrect matrix
transformation due to misarranged columns, representing a pro-
found logical mistake. Such an error is challenging to encapsulate
within a rule. The majority of QA tools are not designed or capable
of detecting these types of logical errors.

Findings in RQ2: The main reasons for the missing detection
of bugs are insufficient scanning rule coverage, neglect of highly
specific scenarios, and the inability to handle logical or algorithmic
errors, which are not the target of most QA tools. These insights
can be utilized to enhance the effectiveness of these tools in the
future.

3.4 Effectiveness of Warnings (RQ3)
In RQ2, we investigate the effectiveness of tools by comparing the
warnings between the buggy and fixed versions. We find PMD
detects more bugs than other tools with fewer rules which is far
away from our expectations. In this RQ, we take a further step into
the gap between the warnings and the real bugs (ground truth) to
study the practical precision of the reported warnings. In addition,

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Han Liu, Sen Chen, Ruitao Feng, Chengwei Liu, Kaixuan Li, Zhengzi Xu, Liming Nie, Yang Liu, and Yixiang Chen

Table 6: Top 5 CWE categories and weaknesses in detected projects

CWE category CWE weakness

Data Processing Errors (54) CWE-1339 (6)
Numeric Errors (38) CWE-1024 (3)
Behavioral Problems (22) CWE-476 (3)
Bad Coding Practices (18) CWE-353 (2)
Encapsulation Issues (16) CWE-835 (2)

we explore whether they can provide any hints for fixing when not
able to give actual reasons for the bugs.

3.4.1 Datasets Annotation. In order to answer RQ3, we need to
know the actual reasons for the bugs detected by the tools. There-
fore, we manually labeled our datasets by mapping bugs to CWEs.
The mapping method is similar to that of mapping rules. Firstly,
we reviewed the bug issues, bug report, and some other documents
of the bugs, and compared the source code in the fixed and buggy
versions. Next, we mapped them to CWE categories. If the corre-
sponding CWE weakness is not identified, we only map this bug
to the CWE category. Otherwise, the bug will be mapped to the
CWE weakness. In this process, we followed the procedure that
one person works on mapping, and two persons validate the re-
sults as a check. Finally, we summarize the top 5 CWE categories
and weaknesses from the mapped results of detected projects and
present them in Table 6.

3.4.2 Analysis of Warnings. By comparing the CWE categories
mapped to the bugs with those mapped to the warning rules, we
find that only a small percentage of the CWE categories are ac-
tually detected. Through the experiments, we observe only Error
Prone, SonarQube, SpotBugs, and PMD successfully detect bugs.
Specifically, Error Prone and SonarQube detect the largest number
of bugs at 12, followed by PMD at 8 as the second. SpotBugs detect
4 bugs, and Infer detect 3 bugs. In this way, the capability of PMD
decreases significantly, which explains our doubts raised in the
previous discussion: PMD does not have a large number of rules,
yet it performs very well on most datasets. Most of the warnings
reported by PMD are not the actual reasons for specific bugs while
it claimed that it can find flaws. Instead, most of them are just
referred to as Bad Coding Practice . On one hand, some of PMD’s
rules do successfully detect bugs. On the other hand, although its
warnings are bug-sensitive, they are not actually the root cause of
the bugs. As Infer focuses on a specific domain, the results show a
good ability in finding targeted issues due to its implementation.
For SonarQube, Error Prone, and SpotBugs, their detection rate de-
creases sharply, but the relationship between their capabilities and
rules is as expected. In detail, the ability of SpotBugs and the quality
of its rules are not as good as Error Prone in our experiments.

We also count the number of warning rules reported by each
tool, and the CWE categories and weaknesses in detected bugs to
observe the most frequently reported warnings. Table 7 shows the
top 5 reported rules and CWE categories and weaknesses, which
the rules map to. Compared the numbers in Table 6 with those in
Table 7, there is a wide gap between the warnings reported by tools
and the actual reasons for bugs. SonarQube, SpotBugs, PMD, and
Error Prone all report a large number of Bad Coding Practice in the
warnings. However, the fact is most bugs in the benchmark areData
Processing Errors. PMD also reports a number of Complexity Issues

and Documentation Issues which would not be the primary reason
for the bug either. Because Semgrep focuses on security issues, it
presents a worse capability of bug detection on our benchmark.

Answer to RQ3: Compared with the real reasons for bugs, only a
few warnings are effective, and most of them refer to Bad Coding
Practice. Although some of the warnings are bug-sensitive, they
are not actually the real cause of the bugs. Comparatively, Error
Prone and SonarQube have the best capability in bug detection.
Infer presents an excellent capability in detecting its focused issues.

Although most reported warnings are not real bugs, we are
interested in their actual effectiveness as they are bug-sensitive. We
suppose that these warnings may be caused by the complications
of the bugs and they can provide some hints for developers as
guidance to understand the bugs.

In this part, we also manually inspect the warnings associated
with the source code of bugs. We inspect a random sample of 50
warnings in the detected projects and find there are three types of
warnings. (1) The warnings (37 of 50) are a suggestion for improv-
ing maintainability or performance. It provides a few clues to bugs.
The fixed version removes this part of the code as a coincidence.
These warnings include useless parentheses, unused import, miss-
ing override etc. For example, in bug "WICKET-5569_5efb8091" of
benchmark Bug.jar, PMD reported a warning about useless paren-
theses. In the fixed version of the bug, the warning disappeared
due to the completely refactored code. (2) The warnings (11 of 50)
belonging to Bad Coding Practice can really provide hints for finding
bugs, especially for those variants that are not using private func-
tions. For example, in the project JacksonDatabind with bug No.29
of benchmark Defects4J, it is caused by the next token of variable
p2 may be a null value. There is a warning reported by PMD that
the variable t has never been used and the next token of variable
p2 is variable t. The warning does not directly point out the root
reason for the bugs, but we can notice that the next token of vari-
able p2 may be null according to the warnings. In this regard, PMD
performs better, but developers may need some experience to find
bugs with the help of the warning information. (3) The warnings
(2 of 50) are indeed potential danger. These warnings may include
null point dereference. For example, regarding project Jsoup with
bug No.4 of benchmark Defects4J, Infer reported a warning that
m.group(1) may be null, which may not be the reason for this bug.
However, m.group(1) is assigned to String name which will be a
parameter called by full.containsKey(). If name is null, containsKey
will throw an NullPointerException.

Findings in RQ3: While some warnings reported by the tool are
not indicative of actual bugs, a portion (26%) of these warnings (e.g.,
null point dereference) do provide valuable insights for identifying
bugs within certain contexts. Nevertheless, a significant percentage
of these warnings (74%), such as useless parentheses, prove to be
of limited usefulness in pinpointing specific bugs.

3.5 Time Performance (RQ4)
3.5.1 Experiment Setup. To fairly compare the performance of
these tools, we first cloned the 1,049 well-selected projects as the
experiment objects, and based on them, we execute each tool in-
dependently to capture their execution time on each project. Next,

A Comprehensive Study onQuality Assurance Tools for Java ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Table 7: Top 5 rules, CWE categories, and CWE weaknesses in benchmark experiment

Rule CWE category CWE weakness
So
na

rQ
u
be Deprecated code should be removed (25) Bad Coding Practices (190) CWE-563 (29)

Local variables should not be declared and immediately returned or thrown (16) Data Processing Errors (38) CWE-595 (2)
@̈Deprecatedc̈ode should not be used (15) API / Function Errors (13) CWE-1024 (1)
Unused assignments should be removed (14) Documentation Issues (10) CWE-1069 (1)
The diamond operator ("<>") should be used (14) Error Conditions, Return Values, Status Codes (4)

Sp
ot
Bu

gs

EI_EXPOSE_REP (14) Bad Coding Practices (51) CWE-476 (13)
EI_EXPOSE_REP2 (10) Permission Issues (39) CWE-821 (6)
DLS_DEAD_LOCAL_STORE (10) Error Conditions, Return Values, Status Codes (15) CWE-1188 (5)
THROWS_METHOD_THROWS_CLAUSE_BASIC_EXCEPTION (8) Pointer Issues (13) CWE-786 (2)
IS2_INCONSISTENT_SYNC (6) Initialization and Cleanup Errors (6) CWE-477 (15)

PM
D

UnnecessaryImport (166) Complexity Issues (228) CWE-563 (14)
UselessParentheses (29) Bad Coding Practices (103) CWE-476 (6)
ControlStatementBraces (29) Documentation Issues (16) CWE-546 (5)
GuardLogStatement (21) Error Conditions, Return Values, Status Codes (14) CWE-459 (5)
UnnecessaryLocalBeforeReturn (17) Memory Buffer Errors (6) CWE-563 (29)

Er
ro
r
Pr

on
e MissingOverride (47) Bad Coding Practices (117) CWE-595 (2)

UnusedVariable (29) Data Processing Errors (38) CWE-1024 (1)
InvalidParam (18) API / Function Errors (13) CWE-1069 (1)
UnnecessaryParentheses (11) Documentation Issues (12)
DefaultCharset (9) Error Conditions, Return Values, Status Codes (4)

In
fe
r

NULL_DEREFERENCE (13) Pointer Issues (13) CWE-476 (13)
THREAD_SAFETY_VIOLATION (10) Concurrency Issues (10)
RESOURCE_LEAK (4) Resource Management Errors (4)
INEFFICIENT_KEYSET_ITERATOR (2) Complexity Issues (2)

Se
m
gr
ep

hardcoded_api_key (8) Key Management Errors (8) CWE-532 (3)
android_logging (3) Information Management Errors (3) CWE-611 (2)
documentbuilderfactorydisallowdoctypedeclmissing (1) Data Processing Errors (2) CWE-94 (1)
imports.owasp.java.xxe.possible.import.statements (1) Data Neutralization Issues (1)
script-engine-injection.script-engine-injection (1)

considering that these tools have different requirements when ex-
amining user projects, i.e., different requirements on inputs, we
prepared the execution environment and measured their execution
times separately for each tool. Specifically, (1) for tools (SpotBugs
and SonarQube) that take binaries (i.e., jar files and class files) as
inputs (SonarQube requires both binaries and source code), all these
projects have to be built and compiled before experiments. How-
ever, since such a process could be heavily influenced by the time of
downloading dependencies and network traffic, we only measure
the execution time after the projects are compiled. (2) For tools
(PMD and Semgrep) that simply scan source code, we directly feed
them with the source code of the 1,049 projects. (3) For tools that
intercept the compilation processes to identify quality issues, we
are unable to split the execution times of Infer and Error Prone out
of the compilation time, and we can only record the time of the
entire compilation process. Instead, we prepare the binary files and
dependencies before compiling the projects with javac command
for Infer and Error Prone to minimize the influence of compilation.

Our experiments are conducted on a server with 80 vCPUs (In-
tel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz ×2) and 188G of RAMs.
Furthermore, we also copy the projects into the RAM disk to fasten
the experiment process and prevent the influence of cloudy disk
reading/writing. The speed of the RAM is 2,933 MT/s.

3.5.2 Results and Time Performance Analysis. Table 8 shows the
average and total execution time of each tool on 1,049 selected
projects. Generally, it takes 65 seconds averagely for each tool to
scan a project. PMD is the fastest tool which only averagely takes 7
seconds to scan a project. Apart from PMD, Error Prone, SpotBugs
and SonarQube can finish their scanning within 30 seconds per

Table 8: Execution time for each tool

Tools Execution requirement Execution time
Average Total

1 PMD Source code 00:00:07 02:13:59
2 Error Prone Execution with compilation 00:00:18 05:24:14
3 SpotBugs Binary file 00:00:18 05:24:43
4 SonarQube Source code and binary file 00:00:24 07:16:04
5 Infer Execution with compilation 00:00:55 16:03:19
6 Semgrep Source code 00:04:25 77:26:01

Average per tool 00:01:05 18:57:23

project, while Infer and Semgrep are the two that take the longest
time to execute (i.e., 55 seconds and over 4 minutes, respectively).

Besides, We find tools that intercept compilation processes to
retrieve intermediate information are not as expected to be slower
than tools that simply take binary files as inputs (i.e., not integrated
with compilation). For instance, Error Prone identifies bugs during
compilation, but its average execution time is less than the SpotBugs
and SonarQube which simply take the binary files as inputs. How-
ever, Infer, another tool that is required to be executed along with
compilation, doubles the execution time of SpotBugs and Sonar-
Qube. Such a difference in execution time between Error Prone
and Infer is probably because that Error Prone captures bugs by
checking the intermediate products along with compilation, while
Infer only retrieves related information into its own intermediate
language and reasons potential bugs with more complex techniques
(i.e., analysis based on abstract interpretation) after compilation.
This also explains why Infer achieves better results in detecting bugs
that are more complicated (i.e., null pointer dereference, memory
leakage, unavailable API, etc.) in previous experiments. Naturally,
some analyses performed by Infer, such as Pulse analysis, are not as

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Han Liu, Sen Chen, Ruitao Feng, Chengwei Liu, Kaixuan Li, Zhengzi Xu, Liming Nie, Yang Liu, and Yixiang Chen

Figure 4: Tool execution time with project size

resource-intensive if employed iteratively - that is, analyzing com-
mits where the preceding commit has already undergone analysis.

Answer to RQ4: On average, each tool takes 65s to scan a project,
while the execution time of each tool varies (7s to 265s). Error Prone
which intercepts compilation processes to scan is not as expected
to be slower than most of the tools that simply take binary files as
inputs, while Infer is much slower due to its complex analysis.

Furthermore, we notice that tools (PMD and Semgrep) that detect
bugs by directly scanning source code have completely different
performances. According to Table 8, PMD is the fastest tool, while
Semgrep is the slowest one. To further demystify the reason for the
difference, we further classify the projects into different clusters by
LOCs (Lines of code) of Java files.

Figure 4 shows the average execution time of each tool on the
project with different LOCs. Generally, the execution times of most
of these tools are heavily influenced by the size of projects except
Semgrep. PMD is always the fastest one regardless of the LOCs
of projects. SpotBugs, Error Prone, and SonarQube have similar
performance when the projects are small (i.e., less than 50K LOCs),
but the execution time of SonarQube rises rapidly when the projects
are larger. Besides, the execution time of Infer is mostly influenced
by the size of examined projects, and it is the slowest tool on projects
with over 100K LOCs. For Semgrep, the results show that the project
size can barely influence its execution time, and it takes around 265
seconds to examine projects regardless of their size.

This is because Semgrep splits a project into small components
and parallels the scanning tasks on different components to reduce
the influence of large projects, which makes it insensitive to the
size of projects. However, such an approach sacrifices some of the
accuracy (i.e., some inter-procedure communications could be lost
during the scans), leading to false negatives of bugs. Moreover,
unlike other QA tools, in order to have flexible and addable rules,
Semgrep fails to execute the rules in parallel and needs to initialize
each rule first, which makes the execution time much longer than
others even if on a small project. For instance, although the execu-
tion time for each rule of Semgrep is pretty fast, it still takes 265
seconds on average to examine each project against 164 rules in our
experiment. Such findings indicate the potential direction of high
parallel on not only the execution of rules but also the detection of
sliced projects when designing new QA tools in the future.

Findings in RQ4: The tool execution is influenced by the size of
examined projects in different degrees, PMD is always the fastest
tool, while Semgrep is barely influenced by the size of projects due
to its unique paralleled processing of splitted project components.

4 DISCUSSION
4.1 Lessons Learned
We discuss actionable suggestions for the different stakeholders to
improve, select, and use QA tools.
For Developers of QA Tools. Existing QA tools cannot effectively
detect bugs as expected, we conclude with some tips for developers
to improve the tools: (1) Increase the coverage of scanning rules,
especially for the domain-specific rules. (2) Provide users with a
flexible and simple method to adjust the granularity of rules and
augment the rules. (3) Combine the different tools which have a spe-
cific focus (e.g., Infer) to increase the detection rate and reduce false
positives. (4) Optimize the imbalance caused by the scanning rule in
parallelism and scanning module in parallelism and automatically
adjust the method according to the different sizes of projects.
For Users of QA Tools. To improve software quality, we suggest
users select and use QA tools according to the following guide-
lines: (1) In specific domains, users should not rely on the original
scanning rule. On the one hand, they can select tools that augment
rules (e.g., PMD and Semgrep) and rewrite domain-specific rules to
execute QA tools. On the other hand, they can choose tools with
a specific focus. For example, they can select Infer to detect point
issues. (2) In a security-related area, users should use the static
application security testing tools to analyze vulnerability instead
of general QA tools. (3) In other areas, users can select tools with
higher coverage of rules (e.g., SonarQube). Noted that, when the
projects are enormous, Sonarqube is not a good choice.

4.2 Threats to Validity
External Validity. A potential threat to external validity is related
to the fact that the datasets we used as benchmark may not be an
accurate representation of all bugs in software development. We
tried to reduce this threat by collecting 5 different datasets and
selecting constantly updated and widely-used datasets. Another
concern is that although we tried to establish 6 criteria to select
tools, the selection of the QA tools may not be representative and
popular enough. Moreover, the projects we used in large-scale
experiments may be biased and not large enough. We attempted to
select more projects and reduce the filtering criteria to minimize
threats. There is also an external threat from the analysis of the time
performance of each tool. We attempted to exclude the interference
of external factors in the time count, and we put the analysis items
into the RAM disk and tried to reduce CPU usage at the same time.
Internal Validity. A potential threat to internal validity refers
to the rule mapping to CWE manually. In this study, we mapped
the rules to CWE categories and CWE weaknesses, which is a task
needing expert knowledge and experience. Although we tried to
reduce the subjectivity of mapping by one-person mapping and
two-person confirmation, it could not eliminate the mapping errors
and subjectivity. Apart from that, the process of manually labeling
the benchmark suffers from the same threat with the scanning rules
mapped. We also reduce this threat by cross-validation. The last

A Comprehensive Study onQuality Assurance Tools for Java ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

threat is that the benchmark may contain bugs that have not been
disclosed so far, and the selected tools can detect some new bugs
which are still disclosed. However, we consider it feasible to draw
valid findings by only focusing on known and existing bugs in the
dataset, and discussing the warnings sensitive to the fixed versions.

5 RELATEDWORK
5.1 Studies of Quality Assurance Tools
Most current studies on QA tools only focused on the detection
effectiveness of the tools. On the one hand, some works studied the
precision and recall of tools. For example, Habib et al. [18] discussed
the recall of 3 QA tools (SpotBugs, Error Prone, and Infer) based
on the Defects4J dataset. They used a new method that manually
validates each detected bug and found that the tools miss 95.5% of
bugs. Thung et al. [49] [50] also focused on the recall of 5 tools, Find-
Bugs, JLint, PMD, CheckStyle, and JCSC, based on iBUGS Dataset.
They automatically matched the warning with the buggy lines and
found the tools could detect most bugs. Tomassi [51] inspected
the capability of Error Prone and SpotBugs with a new benchmark
dataset BugSwarm. It is a preliminary work with findings similar
to [18]. Our work is different from theirs: (1) We collected 5 bench-
marks to evaluate the recall of 6 selected QA tools which is more
than twice the size of the previous largest dataset. Owing to the
comprehensive set of benchmarks and tools, our study results are
more representative in practice. (2) We apply a new method that
compares the warning with the manual labeling dataset to investi-
gate the real effectiveness of the warnings reported by QA tools.
(3) Apart from the detection rate and the reasons for missing bugs,
our findings in the benchmark experiment also present the specific
focus of different QA tools.

On the other hand, some work presented the analysis of the
warnings reported by QA tools. For example, Lu et al. [29] ana-
lyzed the validity of 5 C/C++ warnings and concentrated on how
machine learning methods can be used to improve the validity of
warnings. Zheng et al. [59] studied 3 C/C++ QA tools in three large
industrial software systems by using an orthogonal defect classi-
fication scheme. They found that the number of the results of the
tools can be effective in identifying problematic modules. Wagner
et al. [56] evaluated 3 Java QA tools (FindBugs, PMD, and QJ Pro)
on several projects from the industry. They believed that different
tools are complementary and could be used in an integrated way.
Rutar et al. [40] analyzed 5 QA tools(Bandera, ESC/Java, FindBugs,
JLint, and PMD) on Java projects. They found that there was no
substitution between the different tools, and developed a meta-tool
to combine their results. Compared with their studies, (1) our study
focused on evaluating the effectiveness of warnings of Java QA
tools by comparing the real reasons for bugs with the warnings
in open-source benchmarks. (2) We conduct a manual analysis on
investigating the help of the warnings in finding bugs.

There are a few studies on the scanning rules. Lenarduzzi et
al. [24] investigated the fault-proneness of the SonarQube rules by
comparing the classification results of machine learning models.
They confirmed the SonarQube rules have a low ability for bug

prediction. The most difference between theirs and ours is that we
investigate the coverage and granularity of the scanning rules by
manual mapping CWE for 6 QA tools.

5.2 Studies of Other Analysis Tools
Some empirical studies concentrate on other analysis tools for
detecting specific bugs [2, 8, 9, 14, 42, 53]. One of these studies
considered null pointer exceptions [53]. Aloraini focused on the
other specific bug: buffer errors. They analyzed the effectiveness of
the static analysis tools on the buffer errors [2]. Another section of
the static analysis tools research focuses on security, vulnerabilities,
and cryptography. Lipp et al. analyzed the effectiveness of vulner-
ability detection in C and C++ tools [28]. Cheirdari et al. studied
the false positive trends of static analysis tools on vulnerability de-
tection [7]. Braga et al. analyzed the effectiveness of static analysis
tools in identifying cryptography-related vulnerabilities [4, 5]. Fur-
thermore, there exist many studies focusing on usability research
regarding static analysis tools [11, 21, 31, 36, 54, 55] and analysis
of static analysis tools for smart contracts [12, 16].

6 CONCLUSION
In this paper, we presented a comprehensive study on 6 Java QA
tools in multi-level dimensions. To better understand the coverage
and granularity of the scanning rules of the tools, we mapped a total
of 1,813 rules to CWE. Based on selected benchmarks, we conducted
a benchmark experiment to reveal the effectiveness of tools. We also
mapped 311 bugs to CWE to investigate the effectiveness. Finally,
we conducted a large-scale experiment on 1,049 projects to analyze
the time performance. Our study unveils many useful findings,
including the comparison of the coverage and granularity between
scanning rules of different tools, detection rate and reasons for
missed bugs, the role of warnings in bug detection, execution time,
and reasons for the difference between tools. We hope the findings
are helpful and informative for developers and users.

ACKNOWLEDGMENT
This research is supported by the East China Normal University
Graduate Student International Conference Special Fund, Natural
Science Foundation of China and the Israel Science Foundation
(NSFC-ISF) Joint Program (62161146001, 3420/21), China Scholar-
ship Council (202106140088,202206140052), Cyber Security Coop-
erative Research Centre (CSCRC), Australia, National Research
Foundation, Singapore, the Cyber Security Agency under its Na-
tional Cybersecurity R&D Programme (NCRP25-P04-TAICeN), the
National Satellite of Excellence in Trustworthy Software Systems
(NSOE-TSS) project under the National Cybersecurity R&D (NCR)
Grant award no. NRF2018NCR-NSOE003-0001, and the National Re-
search Foundation Singapore and DSO National Laboratories under
the AI Singapore Programme (AISG Award No: AISG2-RP-2020-
019). Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not
reflect the views of National Research Foundation, Singapore and
Cyber Security Agency of Singapore.

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Han Liu, Sen Chen, Ruitao Feng, Chengwei Liu, Kaixuan Li, Zhengzi Xu, Liming Nie, Yang Liu, and Yixiang Chen

REFERENCES
[1] Edward Aftandilian, Raluca Sauciuc, Siddharth Priya, and Sundaresan Krishnan.

2012. Building Useful Program Analysis Tools Using an Extensible Java Compiler.
In 2012 IEEE 12th International Working Conference on Source Code Analysis and
Manipulation. 14–23. https://doi.org/10.1109/SCAM.2012.28

[2] Bushra Aloraini and Meiyappan Nagappan. 2017. Evaluating State-of-the-Art
Free and Open Source Static Analysis Tools Against Buffer Errors in Android
Apps. In 2017 IEEE International Conference on SoftwareMaintenance and Evolution
(ICSME). IEEE, Shanghai, 295–306. https://doi.org/10.1109/ICSME.2017.77

[3] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian
Zhou. 2007. Evaluating Static Analysis Defect Warnings on Production Software.
In Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (San Diego, California, USA) (PASTE ’07).
Association for Computing Machinery, New York, NY, USA, 1–8. https://doi.
org/10.1145/1251535.1251536

[4] Alexandre Braga, Ricardo Dahab, Nuno Antunes, Nuno Laranjeiro, and Marco
Vieira. 2017. Practical Evaluation of Static Analysis Tools for Cryptography:
BenchmarkingMethod and Case Study. In 2017 IEEE 28th International Symposium
on Software Reliability Engineering (ISSRE). IEEE, Toulouse, 170–181. https:
//doi.org/10.1109/ISSRE.2017.27

[5] Braga, Alexandre and Dahab, Ricardo and Antunes, Nuno and Laranjeiro, Nuno
and Vieira, Marco. 2019. Understanding How to Use Static Analysis Tools for
Detecting Cryptography Misuse in Software. IEEE Transactions on Reliability 68,
4 (2019), 1384–1403. https://doi.org/10.1109/TR.2019.2937214

[6] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Pur-
brick, and Dulma Rodriguez. 2015. Moving Fast with Software Verification. In
NASA Formal Methods, Klaus Havelund, Gerard Holzmann, and Rajeev Joshi
(Eds.). Springer International Publishing, Cham, 3–11.

[7] Foteini Cheirdari and George Karabatis. 2018. Analyzing False Positive Source
Code Vulnerabilities Using Static Analysis Tools. In 2018 IEEE International
Conference on Big Data (Big Data). IEEE, Seattle, WA, USA, 4782–4788. https:
//doi.org/10.1109/BigData.2018.8622456

[8] Sen Chen, Lingling Fan, Guozhu Meng, Ting Su, Minhui Xue, Yinxing Xue,
Yang Liu, and Lihua Xu. 2020. An empirical assessment of security risks of
global Android banking apps. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. 1310–1322.

[9] Sen Chen, Yuxin Zhang, Lingling Fan, Jiaming Li, and Yang Liu. 2022. AUSERA:
Automated Security Vulnerability Detection for Android Apps. In 37th IEEE/ACM
International Conference on Automated Software Engineering. 1–5.

[10] Valentin Dallmeier and Thomas Zimmermann. 2007. Extraction of Bug Localiza-
tion Benchmarks from History. In Proceedings of the Twenty-Second IEEE/ACM
International Conference on Automated Software Engineering (Atlanta, Georgia,
USA) (ASE ’07). Association for Computing Machinery, New York, NY, USA,
433–436. https://doi.org/10.1145/1321631.1321702

[11] Lisa Nguyen Quang Do, James R. Wright, and Karim Ali. 2022. Why Do Software
Developers Use Static Analysis Tools? A User-Centered Study of Developer Needs
and Motivations. IEEE Transactions on Software Engineering 48, 3 (March 2022),
835–847. https://doi.org/10.1109/TSE.2020.3004525

[12] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical
Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts. In Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering.
530–541. https://doi.org/10.1145/3377811.3380364 arXiv:1910.10601 [cs].

[13] Thomas Durieux and Martin Monperrus. 2016. IntroClassJava: A Benchmark of
297 Small and Buggy Java Programs. Technical Report hal-01272126. Universite
Lille 1. https://hal.archives-ouvertes.fr/hal-01272126/document

[14] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang Pu,
and Zhendong Su. 2018. Large-scale analysis of framework-specific exceptions
in Android apps. In Proceedings of the 40th International Conference on Software
Engineering. 408–419.

[15] The International Organization for Standardization. 2021. Information technology
— Software measurement — Software quality measurement — Automated source
code quality measures. https://www.iso.org/standard/80623.html

[16] Asem Ghaleb and Karthik Pattabiraman. 2020. How effective are smart contract
analysis tools? evaluating smart contract static analysis tools using bug injection.
In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, Virtual Event USA, 415–427. https://doi.org/10.1145/
3395363.3397385

[17] GitHub. 2022. GitHub Static Analysis Tool List. https://github.com/analysis-
tools-dev/static-analysis (Accessed on 10/11/2022).

[18] Andrew Habib and Michael Pradel. 2018. How many of all bugs do we find? a
study of static bug detectors. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. ACM, Montpellier France, 317–
328. https://doi.org/10.1145/3238147.3238213

[19] Tim Hepher. 2015. Exclusive: A400M Probe Focuses on Impact of Accidental Data
Wipe. Technical Report. AEROSPACE AND DEFENSE.

[20] David Hovemeyer and William Pugh. 2004. Finding Bugs is Easy. SIGPLAN Not.
39, 12 (dec 2004), 92–106. https://doi.org/10.1145/1052883.1052895

[21] Brittany Johnson. 2012. A study on improving static analysis tools: Why are we
not using them?. In 2012 34th International Conference on Software Engineering
(ICSE). IEEE, Zurich, 1607–1609. https://doi.org/10.1109/ICSE.2012.6227228

[22] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(San Jose, CA, USA) (ISSTA 2014). Association for Computing Machinery, New
York, NY, USA, 437–440. https://doi.org/10.1145/2610384.2628055

[23] Kompar. 2022. The Kompar catalog of software analyzers. https://catalog.
kompar.tools/analyzers (Accessed on 10/11/2022).

[24] Valentina Lenarduzzi, Francesco Lomio, Heikki Huttunen, and Davide Taibi.
2020. Are SonarQube Rules Inducing Bugs?. In 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER). 501–511.
https://doi.org/10.1109/SANER48275.2020.9054821

[25] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2020. Some SonarQube
issues have a significant but small effect on faults and changes. A large-scale
empirical study. Journal of Systems and Software 170 (2020), 110750. https:
//doi.org/10.1016/j.jss.2020.110750

[26] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: A Multi-Lingual Program Repair Benchmark Set Based on the Quixey
Challenge. In Proceedings Companion of the 2017 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (Vancouver, BC, Canada) (SPLASH Companion 2017). Association for
Computing Machinery, New York, NY, USA, 55–56. https://doi.org/10.1145/
3135932.3135941

[27] Jacques-Louis Lions. 1996. ARIANE 5 Flight 501 Failure: Report by the Enquiry
Board. Technical Report.

[28] Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. 2022. An empirical
study on the effectiveness of static C code analyzers for vulnerability detection.
In Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, Virtual South Korea, 544–555. https://doi.org/10.
1145/3533767.3534380

[29] Bailin Lu, Wei Dong, Liangze Yin, and Li Zhang. 2018. Evaluating and Integrating
Diverse Bug Finders for Effective Program Analysis. In Software Analysis, Testing,
and Evolution, Lei Bu and Yingfei Xiong (Eds.). Vol. 11293. Springer International
Publishing, Cham, 51–67. https://doi.org/10.1007/978-3-030-04272-1_4 Series
Title: Lecture Notes in Computer Science.

[30] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. 2019.
Bears: An Extensible Java Bug Benchmark for Automatic Program Repair Studies.
In Proceedings of the 26th IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER ’19). https://arxiv.org/abs/1901.06024

[31] Marcus Nachtigall, Michael Schlichtig, and Eric Bodden. 2022. A large-scale
study of usability criteria addressed by static analysis tools. In Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis.
ACM, Virtual South Korea, 532–543. https://doi.org/10.1145/3533767.3534374

[32] Zhen Ni, Bin Li, Xiaobing Sun, Tianhao Chen, Ben Tang, and Xinchen Shi. 2020.
Analyzing bug fix for automatic bug cause classification. Journal of Systems and
Software 163 (2020), 110538. https://doi.org/10.1016/j.jss.2020.110538

[33] NIST. 2022. Source Code Security Analyzers. https://www.nist.gov/
itl/ssd/software-quality-group/source-code-security-analyzers (Accessed on
10/11/2022).

[34] Peter O’Hearn, John Reynolds, and Hongseok Yang. 2001. Local Reasoning about
Programs that Alter Data Structures. In Computer Science Logic, Laurent Fribourg
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–19.

[35] OWASP. 2022. Source Code Analysis Tools. https://owasp.org/www-community/
Source_Code_Analysis_Tools (Accessed on 10/11/2022).

[36] Sebastiano Panichella, Venera Arnaoudova, Massimiliano Di Penta, and Giuliano
Antoniol. 2015. Would static analysis tools help developers with code reviews?.
In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). IEEE, Montreal, QC, Canada, 161–170. https://doi.org/
10.1109/SANER.2015.7081826

[37] PMD. 2022. PMD Source Code Analyzer. https://pmd.github.io (Accessed on
10/11/2022).

[38] Kevin Poulsen. 2004. Software Bug Contributed to Blackout. Technical Report.
SecurityFocus.

[39] returntocorp. 2022. Semgrep. https://semgrep.dev
[40] N. Rutar, C.B. Almazan, and J.S. Foster. 2004. A Comparison of Bug Finding Tools

for Java. In 15th International Symposium on Software Reliability Engineering. IEEE,
Saint-Malo, Bretagne, France, 245–256. https://doi.org/10.1109/ISSRE.2004.1

[41] Ripon K. Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R. Prasad.
2018. Bugs.Jar: A Large-Scale, Diverse Dataset of Real-World Java Bugs. In
Proceedings of the 15th International Conference on Mining Software Repositories
(Gothenburg, Sweden) (MSR ’18). Association for Computing Machinery, New
York, NY, USA, 10–13. https://doi.org/10.1145/3196398.3196473

[42] Xiuhan Shi, Xiaofei Xie, Yi Li, Yao Zhang, Sen Chen, and Xiaohong Li. 2022. Large-
scale analysis of non-termination bugs in real-world OSS projects. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 256–268.

https://doi.org/10.1109/SCAM.2012.28
https://doi.org/10.1109/ICSME.2017.77
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1109/ISSRE.2017.27
https://doi.org/10.1109/ISSRE.2017.27
https://doi.org/10.1109/TR.2019.2937214
https://doi.org/10.1109/BigData.2018.8622456
https://doi.org/10.1109/BigData.2018.8622456
https://doi.org/10.1145/1321631.1321702
https://doi.org/10.1109/TSE.2020.3004525
https://doi.org/10.1145/3377811.3380364
https://hal.archives-ouvertes.fr/hal-01272126/document
https://www.iso.org/standard/80623.html
https://doi.org/10.1145/3395363.3397385
https://doi.org/10.1145/3395363.3397385
https://github.com/analysis-tools-dev/static-analysis
https://github.com/analysis-tools-dev/static-analysis
https://doi.org/10.1145/3238147.3238213
https://doi.org/10.1145/1052883.1052895
https://doi.org/10.1109/ICSE.2012.6227228
https://doi.org/10.1145/2610384.2628055
https://catalog.kompar.tools/analyzers
https://catalog.kompar.tools/analyzers
https://doi.org/10.1109/SANER48275.2020.9054821
https://doi.org/10.1016/j.jss.2020.110750
https://doi.org/10.1016/j.jss.2020.110750
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/3533767.3534380
https://doi.org/10.1145/3533767.3534380
https://doi.org/10.1007/978-3-030-04272-1_4
https://arxiv.org/abs/1901.06024
https://doi.org/10.1145/3533767.3534374
https://doi.org/10.1016/j.jss.2020.110538
https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers
https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://doi.org/10.1109/SANER.2015.7081826
https://doi.org/10.1109/SANER.2015.7081826
https://pmd.github.io
https://semgrep.dev
https://doi.org/10.1109/ISSRE.2004.1
https://doi.org/10.1145/3196398.3196473

A Comprehensive Study onQuality Assurance Tools for Java ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

[43] SonarSource. 2022. Sonarqube. https://www.sonarqube.org (Accessed on
10/11/2022).

[44] Spotbugs. 2022. Spotbugs. https://spotbugs.github.io (Accessed on 10/11/2022).
[45] CWE Team. 2022. Common Weakness Enumeration. https://cwe.mitre.org

(Accessed on 10/11/2022).
[46] CWE Team. 2022. CWE VIEW: Hardware Design. https://cwe.mitre.org/data/

definitions/1194.html (Accessed on 10/11/2022).
[47] CWE Team. 2022. CWE VIEW: Research Concept. https://cwe.mitre.org/data/

definitions/1000.html (Accessed on 10/11/2022).
[48] CWE Team. 2022. CWE VIEW: Software Development. https://cwe.mitre.org/

data/definitions/699.html (Accessed on 10/11/2022).
[49] Ferdian Thung, Lucia, David Lo, Lingxiao Jiang, Foyzur Rahman, and Premku-

mar T. Devanbu. 2012. To what extent could we detect field defects? an empirical
study of false negatives in static bug finding tools. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering - ASE
2012. ACM Press, Essen, Germany, 50. https://doi.org/10.1145/2351676.2351685

[50] Ferdian Thung, Lucia, David Lo, Lingxiao Jiang, Foyzur Rahman, and Premku-
mar T. Devanbu. 2015. To what extent could we detect field defects? An extended
empirical study of false negatives in static bug-finding tools. Automated Software
Engineering 22, 4 (Dec. 2015), 561–602. https://doi.org/10.1007/s10515-014-0169-
8

[51] David A. Tomassi. 2018. Bugs in the wild: examining the effectiveness of static
analyzers at finding real-world bugs. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, Lake Buena Vista FL USA, 980–982.
https://doi.org/10.1145/3236024.3275439

[52] David A. Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick, Yen-Chuan
Liu, Premkumar T. Devanbu, Bogdan Vasilescu, and Cindy Rubio-González. 2019.
BugSwarm: mining and continuously growing a dataset of reproducible failures
and fixes. In ICSE. IEEE / ACM, 339–349.

[53] David A. Tomassi and Cindy Rubio-Gonzalez. 2021. On the Real-World Effec-
tiveness of Static Bug Detectors at Finding Null Pointer Exceptions. In 2021 36th

IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, Melbourne, Australia, 292–303. https://doi.org/10.1109/ASE51524.2021.
9678535

[54] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Har-
ald C. Gall, and Andy Zaidman. 2020. How developers engage with static analysis
tools in different contexts. Empirical Software Engineering 25, 2 (March 2020),
1419–1457. https://doi.org/10.1007/s10664-019-09750-5

[55] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy
Zaidman, and Harald C. Gall. 2018. Context is king: The developer perspective
on the usage of static analysis tools. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, Campobasso,
38–49. https://doi.org/10.1109/SANER.2018.8330195

[56] Stefan Wagner, Jan Jürjens, Claudia Koller, and Peter Trischberger. 2005. Com-
paring Bug Finding Tools with Reviews and Tests. In Testing of Communicating
Systems, Ferhat Khendek and Rachida Dssouli (Eds.). Vol. 3502. Springer Berlin
Heidelberg, Berlin, Heidelberg, 40–55. https://doi.org/10.1007/11430230_4 Series
Title: Lecture Notes in Computer Science.

[57] Dave Wichers. 2022. Free for Open Source Application Security Tools.
https://owasp.org/www-community/Free_for_Open_Source_Application_
Security_Tools (Accessed on 10/11/2022).

[58] Wikipedia. 2022. List of tools for static code analysis. https://en.wikipedia.org/
wiki/List_of_tools_for_static_code_analysis (Accessed on 10/11/2022).

[59] J. Zheng, L.Williams, N. Nagappan,W. Snipes, J.P. Hudepohl, andM.A. Vouk. 2006.
On the value of static analysis for fault detection in software. IEEE Transactions
on Software Engineering 32, 4 (April 2006), 240–253. https://doi.org/10.1109/TSE.
2006.38

[60] Michael Zhivich and Robert K. Cunningham. 2009. The Real Cost of Software
Errors. IEEE Security & Privacy 7, 2 (2009), 87–90. https://doi.org/10.1109/MSP.
2009.56

Received 2023-02-16; accepted 2023-05-03

https://www.sonarqube.org
https://spotbugs.github.io
https://cwe.mitre.org
https://cwe.mitre.org/data/definitions/1194.html
https://cwe.mitre.org/data/definitions/1194.html
https://cwe.mitre.org/data/definitions/1000.html
https://cwe.mitre.org/data/definitions/1000.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://doi.org/10.1145/2351676.2351685
https://doi.org/10.1007/s10515-014-0169-8
https://doi.org/10.1007/s10515-014-0169-8
https://doi.org/10.1145/3236024.3275439
https://doi.org/10.1109/ASE51524.2021.9678535
https://doi.org/10.1109/ASE51524.2021.9678535
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1007/11430230_4
https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools
https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://doi.org/10.1109/TSE.2006.38
https://doi.org/10.1109/TSE.2006.38
https://doi.org/10.1109/MSP.2009.56
https://doi.org/10.1109/MSP.2009.56

	Abstract
	1 Introduction
	2 Overview
	2.1 Tool Selection
	2.2 Datasets
	2.3 Mapping Scanning Rules to CWEs

	3 Empirical Study
	3.1 Research Questions
	3.2 Coverage and Granularity of Rules (RQ1)
	3.3 Effectiveness of Tools (RQ2)
	3.4 Effectiveness of Warnings (RQ3)
	3.5 Time Performance (RQ4)

	4 Discussion
	4.1 Lessons Learned
	4.2 Threats to Validity

	5 related work
	5.1 Studies of Quality Assurance Tools
	5.2 Studies of Other Analysis Tools

	6 conclusion
	References

