
Poster: Towards Adversarial Detection of Mobile Malware

Sen Chen†, Minhui Xue†‡, Lihua Xu†

†East China Normal University, Shanghai, China
‡NYU Shanghai, Shanghai, China

Email: {ecnuchensen, minhuixue}@gmail.com; lhxu@cs.ecnu.edu.cn

ABSTRACT
Android malware has been found on various third-party online mar-
kets, which poses drastic threats to mobile users in terms of se-
curity and privacy. Machine learning is one of the promising ap-
proaches to discriminate the malicious applications from the be-
nign ones. Despite its higher malware detection capability, a sig-
nificant challenge remains: in adversarial environment, an attacker
can adapt by maximally sabotaging classifiers by polluting training
data. This paper proposes KuafuDet, a two-phase learning enhanc-
ing approach that adversarially detects the Android malware. Ex-
periments on more than 50,000 Android applications demonstrate
the effectiveness and scalability of our approach.

1. INTRODUCTION
There has been a plethora of research in malware detection for

Android, wherein machine learning is one of the promising tech-
niques [2]. Machine learning approaches also have a weakness:
they are susceptible to adversarial countermeasures by attackers
aware of their use. First, through reverse-engineering, attackers
may become aware of classifiers and their parameters used to evade
detection. Second, more sophisticated attackers can actively tam-
per with the classifiers by injecting the well-crafted data into train-
ing data. Therefore, with Android’s policy of open-source kernel,
malware writers can gain an in-depth understanding of the mobile
platform, hence intentionally alter the training set to reduce or elim-
inate its detection efficacy.

In this paper, we consider a threat model within a specific class
of attacks, named poisoning attacks, in which the attacker is as-
sumed to control a subset of samples or inject additional seeds at
will in order to mislead the learning algorithm. We also assume the
attacker has full access to the classifier used, and can inject as many
variants’ features as possible at will to the given classifier. To test
the ramifications of causative attacks, we incrementally develop an
adversarial model with three types of attackers and then propose
KuafuDet, a learning enhancing system with effective self-adaptive
learning. KuafuDet includes an offline training phase wherein se-
lects and extracts contributing features from the training set, and
an online detection phase wherein utilizes the classifier trained by

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MobiCom’16 October 03-07, 2016, New York City, NY, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4226-1/16/10.

DOI: http://dx.doi.org/10.1145/2973750.2985246

the first phase. Compared to the state of the art, these two phases
act together, through a self-adaptive learning scheme, as an itera-
tive adversarial detection process. In addition, we intuitively intro-
duce the camouflage detection for verifying false alarms to protect
against poisoning attacks.

To the best of our knowledge, our work is the first to detect An-
droid malware in adversarial environment by designing a two-phase
machine-learning detection system.

2. OVERALL ARCHITECTURE
The overall architecture of KuafuDet is shown in Figure 1, which

is comprised of two intertwined phases: In the Training Model
phase, KuafuDet extracts features from labelled application based
on our combined set of contributed features and trains classifier
model offline; In the Online Detection phase, KuafuDet classi-
fies large sets of online Android applications into different cat-
egories, benign and malicious; Meanwhile, KuafuDet, through a
Self-adaptive Learning scheme, discovers new information from
both the identified malware and the filtered suspicious false nega-
tives from Camouflage Detector, and incorporates into Training
to stabilize the detection accuracy.

Online Detection

Feature Extractor ML Classifier

Offline Training

Self-adaptive Learning

Adversarial Detection

Camouflage
Detector

Training Process

Malware Malware

Feature ExtractorFeature Selector

Figure 1: The KuafuDet Framework through Adversarial De-
tection

2.1 Implementation
In order to perform accurate and scalable adversarial detection,

our proposed adversarial detection approach contains two phases,
training and detection, intertwined by the self-adaptive learning
(SAL) scheme. The implementation of KuafuDet involves the fol-
lowing steps:

(i) In the feature selection stage, we decompile APKs to gen-
erate Smali code via Apktool,1 we extract 224 out of 564
features using manual pruning along with information gain
validated, as partially shown in Table 1.

(ii) In the training stage, we use different machine learning clas-
sifiers, such as Support Vector Machines (SVM), Random

1http://ibotpeaches.github.io/Apktool/

http://dx.doi.org/10.1145/2973750.2985246
http://ibotpeaches.github.io/Apktool/

Table 1: Features

Syntax Features Semantic Features

Permission Intent Hardware API Call Sequence
READ_PHONE_STATE INTENT.CATEGORY.VIEW HARDWARE.TELEPHONE URL.getContent (“chmod 777”, getRuntime, exec, “su”)

SEND_SMS INTENT.CATEGORY.HOME HARDWARE.CAMERA Runtime.getRuntime (“phone”, getSimSerialNumber, URL, openConnection)
INSTALL_PACKAGES INTENT.ACTION.SEND HARDWARE.TOUCHSCREEN SmsManager.getDefault (“wifi”, getConnectionInfo)

. .

Table 2: The performance of adversarial detection

Conventional Detection SVM RF KNN
FN 4.90% 2.50% 3.40%
Accuracy 94.95% 96.35% 95.80%
Attacker Weak Strong Sophisticated Weak Strong Sophisticated Weak Strong Sophisticated
Without AD SVM RF KNN
FN 8.60% 49.80% 62.60% 5.60% 41.80% 55.90% 5.90% 26.20% 45.40%
Accuracy 93.10% 72.50% 64.30% 94.80% 76.40% 67.85% 94.55% 84.40% 72.00%
Within AD SVM RF KNN
FN 5.80% 11.00% 16.40% 4.70% 15.80% 19.50% 4.10% 10.20% 15.40%
Accuracy 94.50% 91.90% 87.40% 95.65% 89.70% 86.35% 95.45% 92.40% 88.55%

Forests (RF), and K-Nearest Neighbors (KNN), based on
224 dimensional features we selected.

(iii) In the camouflage detection stage, we perform similarity-
based filtering to identify the false negatives that are the cam-
ouflaged malicious applications.

2.2 Camouflage Detector
To further discover camouflage in malware, we manually pick a

fair number of applications from the farthest very benign outcomes
and very malicious outcomes from the classification hyperplane,
respectively. Those hand-picked applications are the most benign
and most malicious predictions. We then use Jaccard index (JT)
and Cosine similarity (CT) to measure the similarity of applica-
tions. If the similarity between two applications exceeds a certain
threshold, the application will be selected as a malware candidate
and fed back to the training process for further fine-grained detec-
tion. We want to select as many malware candidates as possible for
periodically retraining the classifiers. To be specific, a low thresh-
old likely leads to high false negatives, while a high threshold leads
to low false negatives. During our experiments, we empirically
choose the 0.55 < JT < 0.70 and 0.35 < CT < 0.55 as the
thresholds for picking the camouflage malware.

3. EXPERIMENTAL EVALUATION
We evaluate KuafuDet on more than 50,000 applications down-

loaded from various popular third-party Android markets, as well
as from real industrial platforms, such as Pwnzen Infotech Inc.
(i) Evaluation on attacks against the detection. In adversarial
machine learning (AML) attacks [3], attackers may make great ef-
forts to have a direct influence by corrupting the training set. Here,
we analyze the robustness of our discriminative classifiers when
encountering three distinct attack strategies (see Table 2). The first
attack strategy is to launch a causative attack without any knowl-
edge of the training data or ground truth. This weak attacker in
principle amounts to injecting noise into the system. The second
attack strategy corresponds to the strong attacker, who only ma-
nipulates partial features in the training set. The third, the most
aggressive attacker we consider is the sophisticated attacker. This
attacker can fully manipulate almost all training features to launch
a sophisticated attack, which creates scenarios where relatively be-
nign mobile applications and real-world malicious mobile applica-
tions appear to have nearly identical attributes at the training stage.

The weak attacker is not able to force the accuracy of our mal-
ware detection below 90%. This suggests that discriminative clas-
sifiers can be relatively robust to this type of random noise-based

attack. When dealing with the strong attacker, performance de-
grades to approximately 90% accuracy. The sophisticated attacker
can cause the accuracy to drop to approximately 65% by incorpo-
rating thousands of training set. The sophisticated attacker repre-
sents a practical upper bound for the accuracy loss that a realistic
attacker can inflict on our detection system. We see that injecting
carefully crafted data into training data can significantly reduce de-
tection accuracy.

With the help of adversarial detection, holistic performance up-
grades by at least 15% accuracy with respect to each listed classi-
fier. Analysis on false negatives has an analogous interpretation.
(ii) Evaluation on accuracy. Our accuracy rate (96.35%) com-
pletely outperforms the accuracy rate in StormDroid (93.80%) [2]
and DREBIN (93.90%) [1]. We achieve the highest accuracy be-
cause of the feature selection and similarity-based filtering.
(iii) Evaluation on time cost and scalability. Average detection
time per application is less than 3 seconds, which is indeed capable
of scaling up to the massive data sets.

4. CONCLUSION
In this paper, we showed how the conventional machine learning

classifiers can fail against determined attackers. Based on these in-
sights, we designed and evaluated three types of attackers targeting
the training phases to poison our detection. Through simulation, we
presented practical bounds for the accuracy loss to each attacker.
To address this threat, we therefore proposed our detection system,
KuafuDet, and showed it significantly reduces false negatives and
boosts the detection accuracy by at least 15%.

Acknowledgements
This work was supported in part by the NSFC (No. 61502170,
No. 61361136002), and in part by the Science and Technology
Commission of Shanghai Municipality (No. 13ZR1413000).

5. REFERENCES
[1] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck.

Drebin: Effective and explainable detection of android malware in
your pocket. In NDSS, 2014.

[2] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu. Stormdroid: A
streaminglized machine learning-based system for detecting android
malware. In Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, pages 377–388. ACM, 2016.

[3] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar.
Adversarial machine learning. In Proceedings of the 4th ACM
workshop on Security and artificial intelligence, pages 43–58. ACM,
2011.

	Introduction
	Overall Architecture
	Implementation
	Camouflage Detector

	Experimental Evaluation
	Conclusion
	References

