
SCIENCE CHINA
Information Sciences

. RESEARCH PAPER .

Towards Characterizing Bug Fixes through
Dependency-Level Changes in Apache Java Open

Source Projects

Di Cui1, Lingling Fan3, Sen Chen4, Yuanfang Cai5, Qinghua Zheng1, Yang Liu6 & Ting Liu2*

1School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
2School of Cyber Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China;

3College of Cyber Science, Nankai University, Tianjin 300350, China;
4College of Intelligence and Computing, Tianjin University, Tianjin 300350, China;

5Department of Computer Science, Drexel University, Philadelphia 19104, USA;
6School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract The complexity and diversity of bug fixes require developers to understand bug fixes from multi-

ple perspectives in addition to fine-grained code changes. The dependencies among files in a software system

are an important dimension to inform software quality. Recent studies have revealed that most bug-prone

files are always architecturally connected with dependencies, and as one of the best practices in industry,

changes in dependencies should be avoided or carefully made during bug fixing. Hence, in this paper, we

take the first attempt to understand bug fixes from the dependencies perspective, which can complement

existing code changes perspectives. Based on this new perspective, we conducted a systematic and compre-

hensive study on bug fixes collected from 157 Apache open source projects, involving 140,456 bug reports

and 182,621 bug fixes in total. Our study results show that a relatively high proportion of bug fixes (30%) in-

troduce dependency-level changes when fixing the corresponding 33% bugs. The bugs, whose fixes introduce

dependency-level changes, have a strong correlation with high priority, large fixing churn, long fixing time,

frequent bug reopening, and bug inducing. More importantly, patched files with dependency-level changes in

their fixes, consume much more maintenance costs compared with those without these changes. We further

summarized three representative patch patterns to explain the reasons for the increasing costs. Our study

unveils useful findings based on the qualitative and quantitative analysis and also provides new insights that

might benefit existing bug prediction techniques. We release a large set of benchmarks and also implement

a prototype tool to automatically detect dependency-level changes from bug fixes, which can push warnings

for developers and remind them to design a better fix.

Keywords Empirical Software Engineering, Software Maintenance, Software Evolution, Software Archi-

tecture, Software Design

Citation Cui D, Fan L L, Chen S, et al. Towards Characterizing Bug Fixes through Dependency-Level Changes

in Apache Java Open Source Projects. Sci China Inf Sci, for review

1 Introduction

Bug fixing is one of the most frequent activities in the software lifecycle [22]. To help developers un-
derstand how a bug fix is designed and its change impact, researchers have conducted a lot of empirical
studies [47, 56, 63] and proposed numerous easy-to-use tools [28, 37]. Most of these work analyzed a bug
fix by deriving its fine-grained changes on code elements/references and measures its local impact within
a single source file (e.g. code entropy [33]). While they are effective in characterizing small pieces of local-
ized code changes, they cannot provide a systematic view about the impact of a bug fix on dependencies
among files of the whole software system.

The dependencies among files are an important dimension to inform software quality. Recent stud-
ies [25,60] have empirically revealed that most bug-prone files are architecturally connected with depen-
dencies, which inevitably incurs significant maintenance costs over time if developers keep introducing

* Corresponding author (email: tingliu@mail.xjtu.edu.cn)

Cui D, et al. Sci China Inf Sci 2

changes on dependencies during bug fixing. Hence, for the best practice in industry [58], changes on
dependencies can be avoided or be carefully designed during bug fixing. The dependencies require sub-
stantial effort to maintain and the bug-proneness can also be propagated to other files through modified
dependencies, which may cause more issues and consequently result in ripple effects. If developers could
realize the changes in file dependencies as early as possible, they could save more effort through designing
a better fix. Therefore, we argue that it is necessary to understand and analyze bug fixes from one more
perspective – dependencies. This new perspective should be viewed as complementary to existing ones,
and it can be used together to help developers understand their bug fixes.

In this paper, we take the first attempt to conduct an empirical study on bug fixes from the perspective
of dependencies. The study results will provide insights on the potential of existing techniques and useful
suggestions for improving them by leveraging dependency attributes. Despite its significance, it is difficult
to conduct such an empirical study due to the following challenges. (1) It is challenging to collect a large-
scale dataset for carrying out such an empirical study. To ensure the generalization and credibility of
the study result, our study requires a large number of bug fixes and the corresponding dependency-
level changes1) on large-scale subjects rather than toy systems or selected ones, but no existing work
maintains such a dataset; (2) It is challenging to design such a study. Dependency-level changes as a
new dimension have never been studied in bug fixes by existing work. There also exists a gap between
software dependencies and fine-grained code changes in bug fixes. A systematic analytical method is
deserved to reveal the intrinsic relation between bug fixes and dependency-level changes.

To address these challenges, we collect 140,456 fixed bug reports and 182,621 commits for bug fixes from
157 most popular Apache open source projects. Based on these data, we conduct our study to characterize
bug fixes from the dependency-level change perspective involving 11 types of software dependencies. We
systematically analyze bug fixes with dependency-level changes from three aspects including ratio analysis,
bug characteristic analysis, and patched file analysis. Several findings are presented as follows:

• Ratio Analysis. Our results present that it is imperative to concentrate on the perspective of the
dependency-level changes in bug fixes: on average, 30% of bug-fix commits2) contain dependency-
level changes involving over 33% bugs since a bug-fix commit may fix several bugs and multiple
commits may be needed to fix a single bug, which is prevalent in most subjects. These bug fixes are
not concerned by existing state-of-the-art approaches, for they are involved in changes on multiple
types of dependencies among files. This result encourages us to further explore these bugs/fixes
related to dependency-level changes in depth.

• Bug Characteristic Analysis. Our results present that dependency-level changes are more
likely to be introduced when fixing bugs with high priority, large fixing churn (lines of code), long
fixing time, reopening again, and inducing the presence of new bugs. These results reveal the
scenarios of bug fixes with dependency-level changes. It implies that we should conduct rigorous
code review and testing on bug-fix commits by taking dependency-level changes into consideration
before committing.

• Patched File Analysis. Our results present that patched files with dependency-level changes
capture a significant proportion and incur huge maintenance costs on fixing frequency and churn
compared with patched files without dependency-level changes. The patched files with dependency-
level changes interact through changed dependencies in multiple bug-fix commits with three rep-
resentative patterns that incur repeated patches. Patched files in different patterns incur dras-
tically different maintenance costs and files with the greater numbers of patterns consume more
efforts. These results reveal the difference in maintenance costs between patched files in bug fixes
with/without dependency-level changes. It implies that developers should test or review patched
files with dependency-level changes.

In summary, we make the following contributions:

• A novel dependency-level change perspective to understand and analyze bug fixes. It complements
existing fine-grained code differences/reference perspectives by providing a systematic view about
the impact of a bug fix on dependencies among files of the whole software system.

1) The modification of dependencies between source files, which are defined and illustrated in Section 2.3

2) code changes committed to fix bugs.

Cui D, et al. Sci China Inf Sci 3

Commit ID

Issue Number

Fixing ChurnModified Files

Figure 1 The record of Bug Fix: Commit 11be3f7 in Hadoop

• A systematic and comprehensive study towards characterizing bug fixes from the dependency-level
change perspective. Our study has revealed, for the first time, there exist a significant proportion of
bugs and fixes introducing dependency-level changes, which advanced our understanding. Moreover,
we also found that bug fixes with dependency-level changes consume much more maintenance efforts,
from which we can learn that dependency-level changes should be carefully introduced during bug
fixing.

• Our study enables several follow-up research directions with a large-scale benchmark, including
46,164 bug reports and 54,218 bug fixes involving dependency-level changes, and a reusable toolkit
(named DependDiff) to detect dependency-level changes from bug fixes. Our findings can also
provide useful suggestions to improve existing approaches, such as change-level bug prediction and
just-in-time bug prediction. The benchmarks are publicly available [3], which can assist developers
to design a better fix.

2 Preliminary

In this section, we explain the terminologies used in our study.

2.1 Bug Fix

Bug Fix is an instance of code commit which is applied to fix bugs in version control systems such as
SVN [19] and Git [7]. Typically, this commit adds code changes to source files and also reports textual
description as commit message. Figure 1 shows such a record of bug fix: commit 11be3f7 [1] in Hadoop [8].
In this bug fix, we marked commit ID, issue number in the commit message. We also outlined the number
of modified source files and fixing churn (i.e., lines of code).

2.2 Code Dependency

Code Dependency, according to the work of Cai et al. [60], can be modeled as a directed multi-graph,
composed of a set of code elements and multiple types of dependencies between them. This model is also
consistent with the definition of Bass et al. [23]: software modular structure contains multiple aspects,
each type of dependencies is one of them. In our paper, we study 11 types of dependencies, including
call (method invoke), cast (type cast), contain (variable/field definition), create (create an instance of
a certain type), extend (parent-child relation), implement (implement interface), import (import header
files), parameter (as a parameter of a method), return (returned type), throw (throw exceptions), and use
(use or set variables). These dependency types are also widely and frequently considered by both academy
and industry communities [25, 50]. Table 1 describes the description of each dependency type including
definition, granularity, and example. In our paper, we use the file as the basic unit and aggregate code
dependencies within files as the target.

2.3 Dependency-Level Change

Dependency-Level Change can be defined as a set of code changes that modify dependencies between
the source files. An instance of dependency-level change between two source files can be further classified
into the following four cases as illustrated in Figure 2:

Cui D, et al. Sci China Inf Sci 4

Table 1 The description of 11 types of code dependencies.

Type Definition Granularity Example

Import
Import is a relation between files, which indicates

File A imports from File B
File-level

Package a;

import b.B;

Use
Use is a relation of an expression and the types or

variables used by the expression
Statement-level

void foo(){
int b=A.a*10;}

Call Call is a relation of method invocation Statement-level
void foo(){
m.bar();}

Contain

Contain is a relation between code elements, which

indicates Element A contains Element B. For example,

A class contains a method, a method contains a variable

Method-level

Statement-level

void foo(){
B b;}

Create Create is a relation of the function and objects it created Statement-level
void foo(){

A a=new A();}

Parameter
Parameter is a relation between method

and its parameter

Method-level

Statement-level
void foo(B b){}

Return Return is a relation of method and its return type
Method-level

Statement-level
B foo(){}

Cast Cast is a relation of an expression and the casted type Statement-level
void foo(){

A a= (B) b;}

Extend Extend means inheritance of OO Language Class-level
class A extends B{

}

Implement
Implement is a relation between a function

or class implementation, and its interface

Class-level

Method-level

class A implements I{
}

Throw
Throw is similar as Return, it is a relation of

method and its throw type

Method-level

Statement-level

void foo(){
throw new B();}

• Case-1. Dependencies between two independent source files are first introduced, which is illustrated
in Figure 2 (a).

• Case-2. Dependencies between two connected source files are all deleted, which is illustrated in
Figure 2 (b).

• Case-3. Some but not all types of dependencies are introduced between two source files that
already have dependencies, which is illustrated in Figure 2 (c).

• Case-4. Some but not all types of dependencies are deleted between two source files connected
with dependencies, which is illustrated in Figure 2 (d).

We still use the commit 11be3f7 [1] of Hadoop [8] in Section 2.1 as an illustrative example. Figure 3
presents dependency-level changes in this commit, where each node represents a file and each edge
represents the modified dependencies between files. As presented, this commit contains 6 instances
of case-1 dependency-level changes, 4 instances of case-3 dependency-level changes, 5 instances of case-4
dependency-level changes. For example, the change between f6 and f7 is an instance of case-1 dependency-
level change, since the dependency is firstly introduced between them. The change between f6 and f1

contains instances of both case-3 and case-4 dependency-level change, since a new type of dependency
(i.e., parameter) is added and an existing type (i.e., use) is deleted.

2.4 Dependency Change-Related Bug and Fix

In our paper, we term the overlap between dependency-level changes and bug/bug fix as follows:

Dependency Change-Related Fix, is a bug fix which introduces dependency-level changes.

Dependency Change-Related Bug, is a bug where at least one of its fixes introduces dependency-level
changes (i.e., dependency change-related fix). Note that one bug may be fixed through several commits.

For example, commit 11be3f7 illustrated in Section 2.1 and 2.2, is identified as a dependency change-
related fix because this commit is a bug fix and also introduces dependency-level changes. Therefore, the
bug: YARN-4212 [21] fixed by this commit is regarded as a dependency change-related bug.

Cui D, et al. Sci China Inf Sci 5

d

d
d
d

a

a
a
af1 f2

f1 f2

f1 f2

f1 f2

(a) Case-1

d

d
d
d

a

a
a
af1 f2

f1 f2

f1 f2

f1 f2

(b) Case-2
d

d
d
d

a

a
a
af1 f2

f1 f2

f1 f2

f1 f2

(c) Case-3

d

d
d
d

a

a
a
af1 f2

f1 f2

f1 f2

f1 f2

(d) Case-4

Figure 2 Four cases of Dependency-Level Changes. “Nodes”: files. “Edges”: dependencies.
a→: adding dependencies.

d→:

deleting dependencies.

X

X
+-

+

f1
f2

f1 f2

f1 f2

f1 f2

f2

f3

f4

f5

f5

f6

f7

f8

f9

a

a

a a

a

a

a
a

ad

Case-1a

a

1: SchedulingPolicy.java
2: FSQueue.java
3: DominantResourceFairnessPolicy.java
4: AllocationConfiguration.java
5: FSParentQueue.java
6: FairSharePolicy.java
7: FifoPolicy.java
8: FSLeafQueue.java
9: QueueManager.java

Case-3

d Case-4

ad Case-3&Case-4

Figure 3 Dependency-level changes of a bug fix: commit 11be3f7 in Hadoop. Nodes: files,
a→: adding dependencies;

d→: deleting

dependencies;
ad→: both adding and deleting dependencies.

3 Overview

Figure 4 presents the overview of our study. We select 157 open source projects from Apache [2] as
our subjects (Section 3.2), and gather dependency change-related fixes and bugs by: 1) mining code
repositories to collect bugs fixes and to distill dependency change-related fixes, and (2) crawling bug
reports from issue repositories and matching related reports as dependency change-related bugs. Based
on the collected data, we conduct an empirical study to understand bug fixes through dependency-level
changes by answering three research questions in Section 4. This study enables several follow-up research
detailed in Section 5.

3.1 Studied Subjects

We choose Apache open source projects as our subjects for they are active in the open-source community
and most of them are also frequently investigated in bug prediction/detection research [25, 52, 56, 63].
According to the ranking in OpenHub [15], we finally selected 157 Apache open source projects, varying
in sizes, domains, and functionalities.

3.2 Data Collection

Table 2 summarizes the statistics of the collected data, including bug reports, bug fixes, and dependency
change-related bugs, and fixes. The details are explained as follows:

Repos

Bug Fixes

Crawling

match

(a) Data Collection

Ratio Analysis

Bug Characteristics
Analysis

Patched Files Analysis

(b) Empirical Study (c) Applications

DC Bugs and DC Fixes
Benchmark

Improve Change-Level
Bug Prediction

Improve Just-in-time
Bug Prediction

Dependency-level
Change Detection Tool

JIRA

Bug Reports DC Bugs

DC Fixes

DistillingMining

Figure 4 Overview of our study and its applications. (DC Bugs: Dependency Change-Related Bugs, DC Fixes: Dependency

Change-Related Fixes)

Cui D, et al. Sci China Inf Sci 6

Table 2 Statistics of collected dataset

Bug Reports Bug Fixes Dependency Changes

#Bugs 183,428 #Commits 970,786 #Related Bugs 46,164

#Fixed Bugs 140,456 #Bug Fixes 182,621 #Related Fixes 54,218

Bug Report Collection. In our study, we focus on bug reports that contain fixed bugs. To automat-
ically crawl bug reports of the 157 projects, we implement a web crawler based on the Python library:
jira-python [11] to crawl reports from JIRA [10]. For each bug report, our crawler gathers its issue num-
ber, create time, resolution time, priority, issue links, and tracking traces. These attributes are further
used in Section 4. Finally, we collected 183,428 bug reports of the 157 studied subjects from JIRA till
November 2019, among which 140,456 are fixed bugs.
Bug Fix Collection. Following the previous work [29, 56, 59, 63], we collect bug fixes from commits
by heuristically mapping the commit messages and issue numbers of studied bugs. In JIRA, the issue
number is a unique identifier to each bug, following a “name-number” format where the name represents
the project name. For example, shown in Figure 1, this commit is identified as a bug fix in Hadoop for
containing the issue number: YARN-4212 [21]. In total, we collect 182,621 commits (i.e., bug fixes) which
fixed the collected 140,456 bugs.
Dependency Change-Related Bugs and Fixes Collection. To identify whether a bug fix is a
dependency change-related fix, for each bug fix, we take the following three steps (i.e., check out target
files, extract dependencies among files, and obtain dependency-level changes).

• Step1: check out target files. In this step, given a bug fix, we first need to determine target
files that have the potential to cause dependency-level changes. We heuristically use the committed
files and their imported files as target files. The reason is that code changes in committed files
may modify dependencies among them. As a result, we employ JGit [9], a git assistant tool, to
automatically check out the two versions of these files before and after the fix.

• Step2: extract dependencies among files. In this step, we employ Depends [6], a state-of-
the-art static analysis tool, to extract dependencies among target files before and after the fix.
Depends can analyze 11 types of dependencies between files. It also supports incomplete analysis
due to its implementation of Partial Program Analysis (PPA [18]).

• Step3: obtain dependency-level changes. For extracted file dependencies before and after the
fix, we deem them as a pair of graphs and compute their differences using graph edit distance algo-
rithm [41]. Based on these collected differences, we further distill several instances of dependency-
level changes. We implement a toolkit to label the detection results of dependency-level changes
automatically. For each instance of two files, our toolkit first collects the set of dependency types
between them before and after the commit as: DepSet0 and DepSet1. Next, our artifact compares
these two sets, calculates its differences, and classifies them as follows:

1. |DepSet0| = 0 ∧ |DepSet1| > 0: this case can be mapped to the Figure 7.(a).

2. |DepSet1| = 0 ∧ |DepSet0| > 0: this case can be mapped to the Figure 7.(b).

3. |DepSet1 − DepSet0| > 0 ∧ |DepSet0| 6= 0 ∧ |DepSet1| 6= 0: this case can be mapped to the
Figure 7.(c).

4. |DepSet0 − DepSet1| > 0 ∧ |DepSet0| 6= 0 ∧ |DepSet1| 6= 0: this case can be mapped to the
Figure 7.(d)

Our toolkit iteratively and automatically runs each instance and gathers all the calculated differ-
ences as the label results, which can further be integrated.

In total, we identify 54,218 dependency change-related fixes from 182,621 fixes. Furthermore, 46,164
dependency change-related bugs from 140,456 bugs are obtained.

4 Empirical Study

Based on the collected data, in this paper, we aim to explore the following three research questions:

Cui D, et al. Sci China Inf Sci 7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50%

% in Bugs/Fixes

%Dependency Change-Related Bugs in %Projects

%Dependency Change-Related Fixes in %Projects

151

132

94

47

17

149

126

76

29

5

0

20

40

60

80

100

120

140

160

180

>10% >20% >30% >40% >50%

#P
ro

je
ct

s

% in Bugs/Fixes

Dependency Change-Related Bugs

Dependency Change-Related Fixes
0% 20% 40% 60% 80% 100%

Throw

Implement

Extend

Cast

Return

Parameter

Create

Contain

Use

Call

Import

% of Dependency Change-Related Fixes

D
ep

en
d

en
cy

 T
yp

e

Figure 5 The proportion of Dependency Change-Related

Bugs/Fixes in 157 studied projects accumulate.

Figure 6 The distribution of dependency types in Depen-

dency Change-Related Fixes.

RQ1: What percentage of bug fixes introduces dependency-level changes for each project?
The answer to this question would help us better understand the relation between bugs/fixes and

dependency attributes.
RQ2: What characteristics of bugs make it more prone to introduce dependency-level changes when

fixing them?
The answer to this question would shed light on the scenarios of introducing dependency-level changes

through the bug characteristic analysis.
RQ3: Do patched files with dependency-level changes tend to incur more maintenance costs than

patched files without dependency-level changes?
The answer to this question would explore the differences between bug fixes with/without dependency-

level changes in depth through its patched file analysis.

4.1 RQ1: Ratio Analysis

To investigate the percentage of bug fixes that introduce dependency-level changes, we conduct a quan-
titative analysis of dependency change-related bugs and fixes in the 157 subjects collected in Section 3.2.
We further conduct an analysis of the types of dependency-level changes introduced by fixing bugs.

4.1.1 Quantity Analysis

To investigate the number of bugs and fixes that are related to dependency-level changes, for each subject,
we compute the proportion of bug fixes that introduce dependency-level changes in all the fixes and the
proportion of bugs whose fixes lead to dependency-level changes in all the bugs.
Result. Figure 5 plots the distribution, where the horizontal axis shows the proportion of dependency
change-related bugs (%Dependency Change-Related Bugs) or dependency change-related fixes (%Depen-
dency Change-Related Fixes), and the vertical axis shows the proportion of projects (%Projects) that own
the corresponding dependency change-related bugs and fixes. As presented in Table 2, we can find that
in total, 30% of bug fixes (54,218/182,621) introduce dependency-level changes. These fixes are further
involved in 33% of the bugs (46,164/140,456) since a bug-fix commit may fix several bugs and multiple
commits may be needed to fix a single bug. This result is also prevalent in most of the studied projects.
As presented in Figure 5, 60% of the subjects (94/157) contain at least 30% dependency change-related
bugs, and 48% of subjects (76/157) contain at least 30% dependency change-related fixes.

4.1.2 Dependency Type Analysis

We further explore the dependency types involved in the bug-fix commits that introduce dependency-level
changes. To achieve it, we conduct a multi-label classification for the 54,218 dependency change-related
fixes. Specifically, 11 labels, illustrated in Section 2.2, can be individually assigned to each fix with
dependency-level changes. Each label corresponds to a dependency type. For example, if a dependency
change-related fix introduces changes on two dependency types: import and call, it can be assigned both
labels, namely, import and call.

Cui D, et al. Sci China Inf Sci 8

Result. Figure 6 presents the results, where the vertical axis shows various types, and the horizontal axis
shows the proportion containing each type in dependency change-related fixes. As presented in Figure 6,
all of these dependency types are involved in bug fixes with dependency-level changes. 9 of these 11 types
of dependencies, except Implement (implementing interfaces) and Throw (throw exceptions), are involved
in at least 20% of dependency change-related fixes. We also observed that, import (importing header
classes), call (method call), and use (use/set variables of other classes) are the three most common
changed dependency types in bug fixes related to dependency-level changes. These three types are
frequently involved in over 60% dependency change-related fixes.

Answer to RQ1: About one third of bugs (33%) and their fixes (30%) are related to dependency-
level changes, involving multiple types of dependencies. The non-trivial quantities and multiple
aspects in dependencies of these bugs/fixes inform us to further explore the impact of dependency-
level changes on other quality attributes such as the severity of involved bugs and maintenance costs
of involved patched files.

Implications. This result advanced our understandings: (1) when fixing bugs, developers not only
modified a few lines of code as we expected, but they may also commit numerous complex dependency-
level changes in bug-fix commits like commit 11be3f7 presented in Figure 3; (2) The dependency change-
related bugs are not well supported by current bug prediction techniques [26, 40] for they focus on bugs
on the per-file level and do not reflect dependencies among files. The dependency change-related fixes are
also not well supported by current bug fix/code change analysis techniques [28, 37, 63] for they focus on
low-level differences on code elements/references rather than high-level abstractions of multiple types of
dependencies among files. This result encourages us to further explore dependency change-related bugs
and fixes in depth.

4.2 RQ2: Bug Characteristics Analysis through Dependency-level Changes

To understand the scenarios of introducing dependency-level changes, we revisit the 140,456 bugs in these
157 subjects from five aspects by considering dependency-level changes, including bug priority, bug fixing
churn (lines of code), bug fixing time, bug reopening, and bug inducing, which are frequently investigated
in bug characteristics research [24,29,52,62].

4.2.1 Bug Priority Analysis.

Bug priority reflects the awareness of developers towards bugs. To understand the relation between
introducing dependency-level changes and bug priority, we investigate whether fixing bugs with high
priority are more likely to introduce dependency-level changes by using the priority data from bugs
reports collected in Section 3.2.
Result. Table 3 presents the results. The column: Priority presents five types of bug priorities, where
Blocker > Critical > Major > Minor > Trivial. The columns: #Bugs and #Dependency Change-Related
bugs present the number of bugs and dependency change-related bugs for each priority respectively.
As presented in Table 3, fixing bugs of high priorities (Blocker (34.7%), Critical (33.3%), and Major
(34.9%)) are prone to introduce dependency-level changes compared with the average value (33% of all the
bugs related to dependency-level changes). One possible reason might be that developers carelessly and
unconsciously introduce these changes due to the time pressure of fixing according to the work of Nenad et
al. [31,32,46,51]. Fixing bugs of low priorities (Minor (16.0%) and Trivial (28.4%)) presents a relative low
probability of causing dependency-level changes. A possible explanation is that developers may commit
fixes on trivial program anomalies (e.g. exception handling, problems with a return value) during fixing
these bugs with trivial/minor priority. Bugs with minor priorities present the lowest probability. The
reason might be bugs with this priority contain the least number compared with bugs with other priorities.

4.2.2 Fixing Churn/Time Analysis.

Fixing churn/time reflects the efforts spent on bug fixes by developers. To understand the correlation
between fixing churn/time and introducing dependency-level changes, we measure whether fixing bugs
with large churn or long time is more likely to introduce dependency-level changes from bugs reports
collected in Section 3.2. The fixing churn is gathered from collected bug-fix commits. For a bug containing

Cui D, et al. Sci China Inf Sci 9

Table 3 The dependency change-related bugs in bugs with various priorities.

Priority #Bugs #Dependency Change-Related Bugs

Blocker 7,302 2,531 (34.7%)

Critical 11,395 3,799 (33.3%)

Major 92,300 32,193 (34.9%)

Minor 5,918 948 (16.0%)

Trivial 23,541 6,693 (28.4%)

Table 4 The dependency change-related bugs in bugs with various fixing churn.

Fixing Churn #Bugs #Dependency Change-Related Bugs

Top 10% 14,046 12,626 (89.9%)

Top 20% 28,091 23,568 (83.9%)

Top 30% 42,137 32,203 (76.4%)

Top 40% 56,182 38,204 (68.0%)

Top 50% 70,228 42,108 (60.0%)

Top 60% 84,274 44,967 (52.8%)

Top 70% 98,319 45,817 (46.6%)

Top 80% 112,365 45,957 (40.9%)

Top 90% 126,410 46,140 (36.5%)

Top 100% 140,456 46,164 (32.9%)

multiple bug-fix commits, we sum up fixed lines of code of each commit as the fixing churn. The fixing
time is calculated using the create time and resolution time from tracking traces. For a bug reopening
multiple times, we sum up the time of each fix as the fixing time.
Result. Table 4 presents the results of fixing churn. The column: Fixing Churn presents three sets of
bugs, which are top 10% to 100% percentile of bugs ranking with fixing churn. The columns: #Bugs and
#Dependency Change-Related bugs present the number of bugs and dependency change-related bugs in
each set. As presented in Table 4, bugs with the most fixing churn: top 10% have an extremely high
probability (89.9%) to cause dependency-level changes compared with the average value: 33% of all the
bugs. Bugs with the moderate fixing churn: top 30% and major fixing churn: top 50% also have a high
probability (76.4% and 60.0%) to introduce dependency-level changes in bug fixes. Intuitively, the reason
for high probabilities of dependency-level changes in bugs with large churn might be that these code
changes are complex on modifying dependency attributes and thus consume more fixing lines of code.

Table 5 presents the results of fixing time. The column: Fixing Time presents three sets of bugs,
which are top 10% to 100% percentile of bugs ranking with fixing time. The columns: #Bugs and
#Dependency Change-Related bugs present the number of bugs and dependency change-related bugs in
each bug set. As presented in Table 5, bugs with the most fixing time: top 10% have a relatively high
probability (40.9%) to cause dependency-level changes compared with the average value: 33% of all the
bugs. Bugs with moderate fixing time: top 30% and major fixing time: top 50% also have a relatively
high probability to introduce dependency-level changes in fixes. The possible explanation for relative
high probabilities of dependency-level changes in bugs with a long time might be these code changes
present complexity on dependency attributes and thus consume more fixing time. Some of these bugs
are also assigned with high priorities presented in Section 4.2.1 and required to be fixed in a short time,
thus causing not extremely high probabilities as we expected.

4.2.3 Bug Reopening/Inducing Analysis.

Bug reopening or inducing reflects the risk of fixing bugs. To understand this correlation, we investigate
whether bugs reopened again are more likely to introduce dependency-level changes. Furthermore, we also
measure whether bugs that induce the presence of new bugs during fixing are prone to cause dependency-
level changes. The reopening bugs are gathered based on the tracking traces (i.e., marked as “reopen”)
collected in Section 3.2. The inducing bugs are gathered based on the issue link from bug reports collected
in Section 3.2. If a bug has the issue link to other bugs marked with “break”, “cause”, and etc., it can
be identified as the inducing bug [57].
Result. Table 6 presents the results. The column: Type presents two bug sets that reopen again
(reopening bugs) or induce the presence of new bugs during fixing (inducing bugs). The columns: #Bugs

Cui D, et al. Sci China Inf Sci 10

Table 5 The dependency change-related bugs in bugs with various fixing time.

Fixing Time #Bugs #Dependency Change-Related Bugs

Top 10% 14,045 5,747 (40.9%)

Top 20% 28,091 11,489 (40.9%)

Top 30% 42,137 17,149 (40.7%)

Top 40% 56,182 22,529 (40.1%)

Top 50% 70,228 27,541 (39.2%)

Top 60% 84,274 32,108 (38.1%)

Top 70% 98,319 36,378 (37.0%)

Top 80% 112,365 40,114 (35.7%)

Top 90% 126,410 43,359 (34.3%)

Top 100% 140,456 46,164 (32.9%)

Table 6 The dependency change-related bugs in reopening/inducing bugs. Inducing Bugs: the bugs whose fixes induce new bugs

during fixing.

Type #Bugs #Dependency Change-Related Bugs

Reopening Bugs 9,599 4,116 (42.9%)

Inducing Bugs 5,627 2,945 (52.3%)

and #Dependency Change-Related bugs present the number of bugs and dependency change-related
bugs in each bug set, respectively. As presented in Table 6, bugs reopening again have a high probability
to introduce dependency-level changes (42.9%) compared with the average value: 33% of all the bugs.
Similarly, bugs inducing the presence of new bugs have a higher probability (52.3%) to cause dependency-
level changes. A possible explanation of these results is that, the introduced dependency-level changes
during fixing propagate the bug-proneness among files through changed dependencies and thus cause bugs
difficult to be eradicated. Table 7 presents the distribution of dependency types in dependency change-
Related Bugs from reopening bugs and inducing bugs. We found that the rankings of the proportion of
11 studied dependency types in these two kinds of bugs are almost the same. However, there still exists
several differences: 1) the proportions of 11 studied dependency types in dependency change-related
bugs from inducing bugs are slightly higher than the proportions in dependency change-related bugs
from reopening bugs. It pointed out that dependency change-related bugs from inducing bugs present
higher complexity in dependency types than dependency change-related bugs from reopening bugs; 2)
The proportion of Use type is higher than the proportion of Call type in dependency change-related
Bugs from inducing bugs. The opposite result occurs in dependency change-related Bugs from reopening
bugs. It indicates that the call dependency type is more significant in dependency change-related Bugs
from reopening bugs. When a dependency change-related bug with potential risks is identified, these
observations on dependency types will assist developers to further classify it into the reopening bug or
the inducing bug. The corresponding measurements on this dependency change-related bug will be taken
according to the classification result.

Table 7 The distribution of dependency types in dependency change-related bugs in reopening/inducing bugs.

Dependency Type Inducing Bugs Reopening Bugs

Import 84.5% 82.9%

Use 82.8% 78.4%

Call 81.9% 81.0%

Contain 67.1% 61.0%

Create 56.0% 52.3%

Parameter 44.7% 33.4%

Return 34.2% 24.8%

Cast 28.8% 23.9%

Extend 27.4% 23.2%

Implement 13.8% 9.4%

Throw 10.3% 7.7%

Cui D, et al. Sci China Inf Sci 11

Table 8 The maintenance cost of patched files with dependency-level changes.

Subjects Prop PF BF inc BC inc

Pig 55.7% 42.2% 9.1%

Hadoop 67.8% 29.7% 28.6%

Cassandra 71.0% 27.5% 23.4%

Camel 57.8% 19.4% 44.9%

Cxf 62.6% 25.0% 35.6%

Openjpa 48.2% 41.8% 6.2%

Hbase 61.2% 32.8% 29.6%

Pdfbox 66.5% 27.5% 31.2%

Avg 61.3% 30.7% 26.1%

Answer to RQ2: Dependency-level changes in bug-fix commits are more likely to be introduced
when fixing bugs with high priority, large fixing churn (lines of code), long fixing time, reopening
again, and inducing the presence of new bugs. These results inform us to conduct rigorous code
review and testing on bug-fix commits with dependency-level changes before integration. The de-
pendency attributes in bug-fix commits can be further leveraged as features to improve change-level
bug prediction research.

Implications: The result of RQ2 is intuitive and advanced our understanding as follows: (1) dependency-
level changes are more likely to be introduced when fixing bugs with high costs and risks from studied five
characteristics. For these bugs, although many possible factors are explored in previous work [49,57,61,65],
dependency attributes are not considered yet. This result implies that the tool is needed to report
warnings when developers commit dependency-level changes, which may further undergo rigorous code
review and testing as needed; (2) The dependency attributes in bug-fix commits can be further leveraged
as features to improve change-level bug prediction research. During software evolution and maintenance,
developers always face challenges for non-trivial quantities and fast delivery of commits on a day-to-day
basis [51, 55]. Change-level bug prediction techniques can assist to detect bug-introducing commits as
first introduced. Although existing techniques improved its performance by deriving features from fine-
grained code changes in commits [27,39,61], dependency-level changes as a new dimension have not been
fully exploited in this area yet. Our results provide hints to further improve change-level bug predicting
research deriving features from dependency-level changes in commits.

4.3 RQ3: Patched File Analysis through Dependency-level Changes

As presented in Section 4.2, dependency-level changes are introduced when fixing bugs with high costs
and risks. In this section, we further explore the differences between files with or without dependency-
level changes. Following the definition of bug-prone files in most bug prediction work, we regard the
files that are modified in at least one bug-fixing commit as patched files. To investigate the impact of
dependency-level changes on attributes of patched files, we need to go deep into each bug fix for each
project. We gather all patched files and further classify them into two categories: with dependency-level
changes and without dependency-level changes. It is not realistic to conduct such a study on the whole
dataset used in RQ2 for some projects that may have noise in their bug fixes. Thus, we limit our scope
and focus on 8 representative Apache open source projects as our subjects. The bug fixes in these projects
have high quality and most of them are also frequently investigated in related research [44, 45, 50]. We
intensively studied 12,722 dependency change-related fixes involving 11,037 bugs in these 8 subjects.

4.3.1 Impact on Patched Files.

To explore how dependency-level changes in bug-fix commits impact patched files, we first compute
the proportion of patched files involved in dependency change-related fixes, and also investigate the
maintenance cost of these patched files compared with patched files without dependency-level changes.
Specifically, for each project, we use Top x%BF to represent the top x% percentile of patched files in a
project based on the number of fixing times, which indicates the files that are most frequently modified
in bug-fixing commits. We use Top x%BC to represent the top x% percentile of patched files based on
the fixing lines of code, which indicates the files that are modified with most lines of code in bug-fixing
commits.

Cui D, et al. Sci China Inf Sci 12

Table 9 The impact of dependency-level changes on the bug frequencies of patched files.

Subjects Prop x%BF

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pig 96.3% 92.6% 84.5% 80.2% 74.5% 69.9% 64.9% 62.0% 58.8% 55.7%

Hadoop 97.2% 93.4% 88.8% 84.9% 82.6% 77.7% 73.2% 70.0% 67.8% 67.8%

Cassandra 99.2% 96.5% 93.5% 89.9% 85.9% 82.8% 79.3% 75.3% 73.0% 71.0%

Camel 84.1% 72.1% 64.3% 60.8% 59.8% 58.8% 58.2% 58.4% 58.1% 57.8%

Cxf 92.5% 86.2% 78.9% 74.0% 70.3% 67.8% 66.4% 64.9% 63.3% 62.6%

Openjpa 89.6% 82.6% 80.0% 69.0% 61.7% 56.5% 53.2% 51.0% 49.4% 48.2%

Hbase 97.4% 89.8% 82.1% 78.3% 74.9% 71.8% 68.1% 65.3% 63.1% 61.2%

Pdfbox 94.8% 90.7% 86.4% 83.1% 79.6% 76.0% 72.5% 69.1% 67.4% 66.5%

Avg 93.9% 88.0% 82.3% 77.5% 73.7% 70.2% 67.0% 64.5% 62.6% 61.3%

Table 10 The impact of dependency-level changes on the bug churn of patched files.

Subjects Prop x%BC

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pig 54.6% 56.7% 58.1% 60.0% 62.7% 62.6% 62.1% 60.2% 57.9% 55.7%

Hadoop 88.5% 87.0% 84.7% 83.4% 81.5% 79.2% 76.1% 73.2% 69.9% 67.8%

Cassandra 91.2% 86.9% 84.6% 84.1% 82.8% 80.9% 80.5% 78.3% 74.7% 71.0%

Camel 88.4% 89.6% 89.4% 89.0% 86.0% 81.4% 75.2% 67.8% 62.7% 57.8%

Cxf 92.1% 88.5% 84.5% 82.9% 80.5% 78.5% 74.0% 70.5% 67.1% 62.6%

Openjpa 46.8% 47.2% 45.1% 42.5% 40.5% 41.5% 42.9% 47.1% 50.1% 48.2%

Hbase 70.4% 77.8% 79.1% 78.8% 77.5% 75.2% 72.5% 68.9% 65.3% 61.2%

Pdfbox 91.1% 88.9% 86.4% 84.8% 84.4% 83.1% 79.8% 75.8% 71.1% 66.5%

Avg 77.9% 77.8% 76.5% 75.7% 74.5% 72.8% 70.4% 67.7% 64.8% 61.3%

To represent the proportion of patched files with dependency-level changes, for each project, we gather
the involved files in dependency change-related fixes and compute its proportion on all patched files,
denoted by Prop PF; its proportion on the top x% percentile of patched files based on bug-fixing
frequency (Top x%BF), denoted by Prop x%BF; and its proportion on top x% percentile of patched
files base on bug-fixing churn (Top x%BC) as Prop x%BC. Following the work of Mo et al. [50], we
further measure the maintenance costs of patched files with dependency-level changes using BF inc and
BC inc, which are defined as follows:

If one bug involves multiple files containing both maintenance costs of dependencies and non-dependencies,
we intuitively count all the costs on files having dependency-level changes as dependency costs and count
the cost on other files as non-dependency costs. This measurement requires high quality of bug fixes and
we use bug fixes in JIRA to limit this threat. If one file relates to the dependency bug, we only count its
costs on bug fixes when causing dependency-level changes as dependency costs. Other costs are regarded
as non-dependency costs. Based on these definitions, we obtain two collections as follows:

DepFreCost = {(fi, DepFre(fi), DepCost(fi)) | i = 1, 2, · · · ,m ∧DepFre(fi) 6= 0} (1)

NonDepFreCost = {(fj , DepFre(fj), DepCost(fj)) | j = 1, 2, · · · , n ∧DepFre(fj) 6= 0} (2)

DepFreCost and NonDepFreCost represent the collections of dependency costs and non-dependency
costs. For a file, it may both have dependency costs on DepFreCost and non-dependency costs on
NonDepFreCost. We further define BF inc and BC inc as:

BF inc =
1
m

∑m
i=1 DepFre(fi)− 1

n

∑n
j=1 NonDepFre(fj)

1
n

∑n
j=1 NonDepFre(fj)

× 100% (3)

BC inc =
1
m

∑m
i=1 DepCost(fi)− 1

n

∑n
j=1 NonDepCost(fj)

1
n

∑n
j=1 NonDepCost(fj)

× 100% (4)

BF inc represents the average frequency of involving dependency costs for each file over the average
frequency of involving non-dependency costs for each file. BC inc represents the increase of the average
dependency costs for each file over the average non-dependency costs for each file.

Cui D, et al. Sci China Inf Sci 13

Table 11 The impact of different dependency-level change patterns on patched files in studied projects.

Dissemination Concentration Domino

Subjects Prop PF BF inc BC inc Prop PF BF inc BC inc Prop PF BF inc BC inc

Pig 50.2% 50.0% 13.9% 36.2% 79.9% 28.2% 45.2% 53.8% 15.1%

Hadoop 53.9% 47.1% 48.7% 37.9% 83.5% 73.1% 45.9% 60.2% 62.3%

Cassandra 58.0% 47.9% 40.1% 50.5% 60.0% 52.1% 58.4% 44.2% 33.8%

Camel 47.9% 26.3% 57.5% 14.4% 153.9% 124.8% 41.5% 27.9% 66.7%

Cxf 40.6% 57.5% 70.2% 25.1% 104.3% 97.3% 31.2% 75.6% 89.1%

Openjpa 26.3% 95.9% 43.5% 18.3% 129.9% 56.5% 22.6% 108.4% 48.8%

Hbase 49.0% 51.4% -13.2% 37.8% 77.5% 95.1% 46.3% 55.3% 58.2%

Pdfbox 52.3% 45.1% 46.8% 33.5% 92.2% 91.1% 45.3% 57.3% 55.7%

Avg 47.3% 52.7% 38.4% 31.7% 97.7% 77.3% 42.1% 60.3% 53.7%

Result. Table 8, Table 9 and Table 10 present these results of studied subjects. As presented in
column Prop PF of Table 8, patched files with dependency-level changes capture a significant proportion
of all the patched files. 48.2% to 71% of patched files (61.3% on average) are involved in dependency
change-related fixes. Moreover, these files capture the most severe patched files. Actually, as presented in
column 10% on Prop x%BF of Table 9, 84.1% to 99.2% of the top 10% percentile patched files with fixing
frequency (93.8% on average) are fixed with dependency-level changes. As presented in column 10% on
Prop x%BC of Table 10, 46.8% to 92.1% of top 10% percentile patched files with fixing churn (77.8%
on average) are also captured by dependency change-related fixes. Patched files with dependency-level
changes also consume expensive maintenance costs. The columns: BF inc and BC inc of Table 8 suggest
that, on average, patched files with dependency-level changes consume an extra 30.7% fixing times (bug
frequency) and 26.1% fixing lines of code (bug churn) over patched files without dependency-level changes.

4.3.2 Patch Pattern Analysis.

Since patched files with dependency-level changes take significant maintenance efforts and costs, we
further investigate the reasons for it. Specifically, we study the increasing costs of patched files with
dependency-level changes in multiple bug-fix commits by manually analyzing how two of these fixes
interact with each other and thus make overlapped files incurring repeated patches. We first assume a
dependency change-related fixes as a pair of files having modified dependencies with them. Given two
dependency change-related fixes, they may overlap with 0, 1, and 2 files. We only consider the case of
overlapping with one file because this case modified dependencies among the most three files and also can
propagate the bug-proneness to a group of files causing significant costs later. For the case of overlapping
with one file, the possible interaction pattern can be summarized into three representative patch patterns
shown in Figure 7, where each node represents a file involving in a bug-fixing commit that introduces
dependency-level changes and each edge (f1 → f2) represents the dependency between these files modified
by the certain bug-fixing commit. For an edge, f1 → f2, f1 is called the leading file and f2 is called the
subordinate file. Thus, an instance of the pattern can be described as follows:

• Dissemination. This pattern describes the case: for two fixes with dependency-level changes
above, they share the same leading file, and two different subordinate files shown in Figure 7 (a).
We term this case as the dissemination pattern for its branch-like shape. For example, developers
modify dependencies between AppInfo.java (f1) and YarnApplicationState.java (f2) when fixing
YARN-1407 [20]. Dependencies between AppInfo.java (f1) and AppInfoXmlVerifications.java (f3)
are also modified when fixing YARN-7451 [21]. Frequent dependency-level changes on AppInfo.java
(f1) may make it evolve as an unstable utility/library class depended by other files that consume
more costs during maintenance.

• Concentration. This pattern describes the case: for two fixes with dependency-level changes
above, they share the same subordinate file and two different leading files. We term this case
as an instance of concentration pattern for its merging-like shape. For example, developers mod-
ify dependencies between IntrospectionSupport.java (f1) and MailConsumer.java (f3) when fixing
CAMEL-6905 [5]. Dependencies between SynchronizationAdapter.java (f2) and MailConsumer.java
(f3) are also modified when fixing CAMEL-5376 [4]. Frequent dependency-level changes on Mail-
Consumer.java (f3) may make it evolve as a God class [43], which are more bug-prone for its

Cui D, et al. Sci China Inf Sci 14

Fix1 Fix2
Fix1 Fix2

Fix1 Fix2

f1

f2 f3

f1 f2
f1 f2 f3

f3

(a) Dissemination

Fix1 Fix2
Fix1 Fix2

Fix1 Fix2

f1

f2 f3

f1 f2
f1 f2 f3

f3

(b) Concentration

Fix1 Fix2
Fix1 Fix2

Fix1 Fix2

f1

f2 f3

f1 f2
f1 f2 f3

f3
(c) Domino

Figure 7 Patterns of patched files with dependency-level changes. (node:fixed files. edges:changed dependencies.)

Table 12 The correlation between maintenance costs and the number of patterns. PCC: Pearson Correlation Coefficient. #pat-

terns: the number of involved patterns. *: p-value<0.05. $: Cohen’d>0.8. +: Effect Size(r)>0.5.

Pig Hadoop Cassandra Camel

#Patterns #BF #BC #BF #BC #BF #BC #BF #BC

0 2.1 176.3 1.9 48.3 2.0 91.3 1.7 42.8

1 2.8 106.9 2.1 57.8 2.9 74.0 2.0 45.7

2 2.7 110.8 2.4 87.9 2.8 165.4 1.6 72.6

3 6.3 224.2 7.7 223.6 10.2 314.6 6.2 137.4

PCC 0.85∗ 0.34∗ 0.82∗ 0.88∗ 0.82∗ 0.90∗ 0.76∗ 0.91∗

Cohen’d 1.39$ 4.43$ 1.07$ 2.06$ 1.19$ 2.38$ 0.87$ 2.71$

Effect Size (r) 0.57+ 0.91+ 0.47 0.71+ 0.51+ 0.76+ 0.40 0.80+

Cxf Openjpa Hbase Pdfbox

#Patterns #BF #BC #BF #BC #BF #BC #BF #BC

0 1.6 43.1 1.4 106.0 2.2 366.6 2.4 113.6

1 2.1 57.7 1.7 127.5 2.7 178.2 2.4 135.0

2 2.4 79.2 2.2 190.2 2.9 1491.5 2.4 110.1

3 7.1 165.5 6.5 384.3 8.9 931.0 8.5 349.7

PCC 0.85∗ 0.92∗ 0.85∗ 0.91∗ 0.83∗ 0.65∗ 0.77∗ 0.76∗

Cohen’d 1.02$ 2.52$ 0.87$ 2.58$ 1.27$ 2.03$ 1.19$ 2.48$

Effect Size (r) 0.45 0.78+ 0.39 0.79+ 0.53+ 0.71+ 0.51+ 0.77+

increasing complexity and size.

• Domino. This pattern describes the case: for two fixes with dependency-level changes above, the
subordinate file in one fix is also the leading file in the other. We term this case as an instance of
domino pattern for a cascade of fixes can be correlated in this way. For example, developers mod-
ify dependencies between Column.java (f1) and DBDictionary.java (f2) when fixing OPENJPA-
274 [16]. Dependencies between DBDictionary.java (f2) and SQLErrorCodeReader.java (f3) are
also modified when fixing OPENJPA-458 [16]. Dependency-level changes may cause a chain from
Column.java(f1) to SQLErrorCodeReader.java(f3), having probability to form a cycle [43] with
more efforts and costs.

We first discover these three patch patterns using two steps: (1) First, for two fixes with dependency-
level changes, we identify several instances of patch patterns by recursively examining each overlapped
patched file for it may contain more than three files causing the propagation of bug-proneness; (2) Then,
we exhaustively detect all instances of patterns given all fixes with dependency-level changes. For involved
patched files, we aim to investigate the impact of different patterns and pattern combinations on these
patched files.
Result. Table 11 presents the impact of different patterns. For patched files in each pattern, we measure
its proportion on all patched files using Prop PF and its maintenance cost over patched files without
dependency-level changes using BF inc and BC inc, which are illustrated in Section 4.3.1. As presented
in the column: Prop BF in Table 11, the dissemination pattern covers the largest number of patched
files (47.3% on average), while the concentration pattern captures the minimum number of patched files
(31.7% on average). The domino pattern is in between (42.1% on average). These results suggest each
pattern only captures a subset of all the patched files. As presented in columns: BF inc and BC inc in
Table 11, the concentration pattern consumes the most maintenance costs with extra 97.7% fixing time
and 77.3% fixing churn. However, the dissemination pattern consumes the least with extra 52.7% fixing
time and 38.4% fixing churn. The domino pattern is in between with an extra 60.3% fixing time and
53.7% fixing churn. This result also reveals that each pattern consumes different costs. If a dependency

Cui D, et al. Sci China Inf Sci 15

change-related fix is committed, we should avoid the presence of concentration pattern and employ the
dissemination way, which will attempt to avoid the propagation of bug-proneness from upstream files to
downstream files. The features of patterns can further assist us to predict the bug of committed files for
the concentration pattern is riskier than the dissemination pattern and the domino pattern. We should
further take these into account during fixing bugs.

Table 12 presents the correlation between maintenance costs and the number of patterns using Pearson
correlation analysis [50]. We classify all the patched files into four file sets according to the number of
involved dependency-level change patterns: 0→3. For files in each set, we measure the average fixing
frequency in the column: #BF and the average fixing lines of code in the column: #BC. As presented
in the column: PCC in Table 12, files in greater numbers of patterns incur more efforts and costs. The
correlation between bug frequency and the number of patterns ranges from 0.76 to 0.85. The average
value is 82% through calculating. The correlation between bug churn and the number of patterns ranges
from 0.36 to 0.91. The average value is 78% through calculating. From the statistics of p-value, Cohen’d,
and effect size (r), its strong correlation is also validated. This result implies that, with the increasing
number of patterns, files are captured with expensive costs. When fixing bugs, we should realize pattern
combinations and their severe consequences in time.

Answer to RQ3: Patched files with dependency-level changes capture a significant proportion
(61.3%) and incur huge maintenance costs on fixing frequency (30.7%) and churn (26.1%) com-
pared with patched files without dependency-level changes. These files interact through changed
dependencies in multiple bug-fix commits with three representative patterns and thus incur repeated
patches. Patched files in different patterns incur drastically different maintenance costs and files in
greater numbers of patterns consume more efforts. These results inform developers to test/review
patched files with dependency-level changes before committing bug fixes in time. The dependency
attributes in patched files in bug-fix commits can further be leveraged as features to improve file-level
bug prediction research, especially just-in-time bug prediction.

Implications: The result of RQ3 advanced our understanding as follows: (1) Patched files with
dependency-level changes capture a large proportion and consume significant maintenance costs. Al-
though previous work [50,60] indicated files with complex dependencies are hard to fix, our work pointed
out that continuous dependency-level changes may be the root cause for increasing bug-proneness. Com-
pared with the work analyzing large quantities of files and involved dependencies in the whole project,
our results suggest that concentrating on modified dependencies among several files per bug-fix commits
to ease developers’ burden deserve our more attention. We believe the tool is needed to report warnings
of files with dependency-level changes in time before committing bug fixes. These files may further be
reviewed or tested as needed; (2) The dependency attributes in bug-fix commits can be further leveraged
as features to improve just-in-time bug prediction research. During software evolution and maintenance,
developers may be lost in non-trivial quantities and fast delivery of commits on a day-to-day basis [51,55].
Just-in-time bug prediction techniques can assist developers to detect bug-prone files in commits and re-
duce its potential threats through fixing. Although existing techniques improved its performance by
deriving low-level features from code hunks within the single file [36,38,42,48,53], high-level abstractions
of multiple types of changed dependencies among files as a new dimension have not been fully exploited
in this area yet. Our results provide hints to further improve just-in-time bug predicting research by de-
riving features from files with dependency-level changes. Our results of patterns and their combinations
can provide useful suggestions to improve these techniques.

5 Applications of our study

This section discusses the follow-up research motivated by our study, including the benchmark, toolkit,
and insights for improving existing research.

Benchmarks of dependency change-related bugs and fixes. Our study outputs a large and
comprehensive dataset of bugs containing dependency-level changes in fixes, including 46,164 dependency
change-related bugs and 54,218 dependency change-related fixes of 157 Apache open source projects. Each
bug is labeled with priority, fixing time, fixing churn, bug reopening, and bug inducing. Each fix is further
assigned labels based on its types of changed dependencies. We believe this dataset can (1) provide an

Cui D, et al. Sci China Inf Sci 16

effective and reliable basis for detecting dependency change-related bugs and fixes in open source projects;
(2) support the research on improving existing approaches on dependency change-related bugs and fixes.

Dependency-level change detection tool. Our study outputs a dependency-level change detection
tool: DependDiff to assist us in detecting dependency change-related fixes committed by developers
in time during software evolution. We extract the core component of our analysis framework and im-
plemented the automatic tool, DependDiff. The input is a bug fix, and the output is the contained
dependency changes. It has three steps, including checking out target files, extracting dependencies
among files, and obtaining dependency changes, which are described in Section 3.2; DependDiff can
report warning of dependency-level changes in time to avoid increasing costs and endless fixing. The
output of DependDiff can be further leveraged as the feature (e.g. pattern studied in Section 4.3.2) to
improve change-level and file-level bug prediction techniques.

Useful insights for improving bug prediction techniques by leveraging dependency-level
changes. Although great efforts are spent on bug prediction techniques, they cannot support dependency
change-related bugs and fixes, as they cannot support the analysis of multiple types of dependencies
among files in bug fixes. (1) Our study provides useful insights and hints on improving change-level bug
prediction techniques. Our results shed light on the correlation between dependency change-related bugs
and five characteristics of bugs with high severity (§ 4.2). We can leverage dependency-level changes as
features to improve change-level bug prediction. For state-of-the-art techniques rely on deriving features
from fine-grained code changes within singles files, while our study of dependency change-related fixes
provide new insights from a high-level abstraction of multiple dependencies among files; (2) Our study
provides useful insights and hints on improving file-level bug prediction techniques especially just-int-
time bug prediction. Our results shed light on patched files with dependency-level changes that capture a
significant proportion and incur expensive maintenance costs. We also derive three representative patterns
to reflect the dependency-level change features in these files, which can be leveraged in improving just-in-
time bug prediction. For state-of-the-art techniques rely on deriving metrics from low-level code hunks
as features and our study target for multiple types of changed dependencies in file level. Overall, our
study of dependency change-related bugs and fixes can provide useful insights to improve existing bug
prediction research.

6 Threats to Validity

In this section, we discuss the threats to validity and limitation of our study.

Internal threats. First, we only investigate the correlation between dependency-level changes and bug
fixes but not causality. We investigated the proportion of dependency-level changes in other intents such
as adding new features, refactoring/improvement, testing, etc. We observed that adding new features
and fixing bugs are the two types that are most likely to introduce dependency-level changes. This result
encourages us to further explore the causality relation in depth by studying each bug report in our future
work.

Second, we focus on syntactic dependencies among source files excluding dependencies with third-party
libraries. As previous work pointed [25], historical dependencies and semantic dependencies also have an
impact on software quality while syntactic dependencies capture most of the patched files. In our future
work, we will consider changes with historical and semantic dependencies to further improve our work.

Third, Depends [6] we employed may produce wrong dependencies. To reduce this threat, we reported
our found defects. If they are not fixed, we tried to fix them by ourselves. This threat can be further
reduced by using more advanced tools.

Fourth, we employ some measures to extract findings on a large dataset. This opens up threats for the
correctness of measurements. We run statistical experiments to measure the statistical confidence in our
measurements and the results are proved to be significant. We also make all measurement results and
related artifacts publicly available [3] to further limit this threat.

External threats. The first threat comes from selected 157 Apache Java open source projects. We
only studied dependencies among Java files. It is still unclear whether our study results will generalize
to closed source industrial projects and open source projects from other communities. We are also
uncertain whether our results also generalize to projects with other types of programming languages,
such as functional languages. Replicating our study on more subjects is our ongoing work.

Cui D, et al. Sci China Inf Sci 17

The second threat comes from locating bug fixes from commits using bugID. Previous work [22] pointed
out that, developers may commit bug fixes using the wrong bugID or even without reporting the bugID.
To reduce this threat, we studied bug reports in the most influential issue tracking system: JIRA, and
most of them are manually entered by experts containing less noise. Studying the impact of missing links
on our study results is our future work.

The third threat comes from the quality of bug reports and bug fixes. Previous work [34, 35] pointed
out that a reported bug may not be a bug but a feature and a bug fix may not be committed to fix
bugs but to finish other tasks. To reduce this threat, we studied bug reports and fixes from open source
projects in the most popular community: Apache community. We use the original bug fixes from these
projects. These bug data are pragmatic and most of them are manually entered by experts/developers
on a day-to-day basis containing less noise, which is also widely studied in the research community. We
will further limit this threat by leveraging related methods like untangling changes [34].

7 Related Work

In this section, we compare our work with related research.

Bug Fix Analysis. Prior studies show that developers usually applied bug fixes to multiple code
locations in multiple files. Park et al. [52] studied supplementary fixes and find that complex code
references can be the root cause of frequent fixing. Zhong et al. [63] intensively conducted a large-
scale study of real-world bug fixes, and a significant proportion of these fixes contain changes of multiple
program entities, which cannot be solved by state-of-the-art automatic program repair techniques (APR).
Wang et al. [56] further studied the patterns of these bug fixes with editing multiple entities and provided
some insights for fixing them. This work revealed the fact that bug-prone files are somehow correlated
with each other, causing challenges for fixing and patching. Fan et al. [29] conducted a large-scale study on
the characteristics of Android framework-specific bug fixes from multiple aspects, including root cause,
fixing patterns, etc. Fan et al. [30] also proposed an approach to detect Android framework-specific
errors and suggested fixing solutions. Compared with these works leveraging multiple code locations to
automatically generate bug fixes, our results can motivate to early detect dependency-level changes in
bug fixes and report warnings in time avoiding extra maintenance efforts. Recently, the fixes of some new
types of bugs are also investigated by researchers. For example, Lou et al. [66] studied the symptom and
fixing pattern of build issues and Chen et al. [67] explore the bugs fixes in the scenario of deploying deep
learning applications on the mobile platform. These works mainly focus on fine-grained code analysis
for bug fixes although they are targeting for new scenarios. However, our work sheds insight on bug
fixes from high-level analysis of dependency-level changes. It is still uncertain whether dependency-level
changes can be applied to these new scenarios of bug fixes, which can be explored in our future work.

Correlation between Bug-proneness and Dependency. Selby and Basili [54] first studied software
structure to predict bug-prone files. Zimmermann et al. [64] reported that structure-based network
measures can be used to construct successful defect predictor. Lu et al. [60] further employed the to
capture the overlap of dependencies and bugs as the structural anti-patterns. Cui et al. [25] systematically
summarized the impact of various types of dependencies on bug detection. Compared with these works
studying the file bug-proneness from complex dependencies, our work reveals the introduction of complex
dependencies and we can avoid its increasing costs through early detection of these changes. Compared
with these works analyzing dependencies for the whole project, our results/tools focus on several files
with dependency-level changes in a bug fix, which are easier for developers to digest.

Architectural Change Analysis. Garcia et al. [31] reported the software architecture is difficult
to maintain for introduced architectural changes. Le et al. further conducted an empirical study of
architectural changes [44] and architectural decay [45] in open source projects. The results showed that
architectural changes are frequently induced, causing challenges for software maintenance. Harkman et
al. [51] reported, in most cases, developers are not aware of introducing architectural changes in their
commits. Compared with these studies, our work explores dependency-level changes, which can further
be distilled to detect architectural changes.

Cui D, et al. Sci China Inf Sci 18

8 Conclusion

In this paper, we presented our characterizing study of bug fixes from the dependency-level change per-
spective. We conducted our study on 157 Apache open source projects involving 140,456 bug reports and
182,621 bug fixes. Supported by our dependency-level change detection tool: DependDiff, we investigated
three research questions based on these collected data. The results demonstrated the ratio analysis, bug
characteristic analysis, and patch file analysis of bugs and bug fixes related to dependency-level changes.
We also presented a suite of qualitative and quantitative results, which provide new insights that may
benefit existing approaches such as change-level bug prediction techniques and just-in-time bug prediction
techniques.

Acknowledgements This work was supported by National Key R&D Program of China (2020AAA0108800), National

Natural Science Foundation of China (61632015, 61772408, U1766215, 61721002, 61532015, 61833015, 61902306, 62072351),

China Postdoctoral Science Foundation (2019TQ0251, 2020M673439), Youth Talent Support Plan of Xi’an Association for

Science and Technology (095920201303), Ministry of Education Innovation Research Team (IRT 17R86), and Project of

China Knowledge Centre for Engineering Science and Technology.

References

1 https://github.com/apache/hadoop/commit/11be3f7

2 http://www.apache.org

3 https://github.com/cuidi34/DCBug.git

4 https://issues.apache.org/jira/browse/CAMEL-5376

5 https://issues.apache.org/jira/browse/CAMEL-6905

6 https://github.com/multilang-depends/depends

7 https://git-scm.com

8 https://hadoop.apache.org

9 https://github.com/eclipse/jgit

10 http://issues.apache.org/jira

11 https://github.com/pycontribs/jira

12 https://ofbiz.apache.org/

13 https://issues.apache.org/jira/browse/OFBIZ-2353

14 https://issues.apache.org/jira/browse/OFBIZ-3557

15 https://www.openhub.net/

16 https://issues.apache.org/jira/browse/OPENJPA-274

17 https://issues.apache.org/jira/browse/OPENJPA-458

18 http://www.sable.mcgill.ca/ppa

19 https://subversion.apache.org

20 https://issues.apache.org/jira/browse/YARN-1407

21 https://issues.apache.org/jira/browse/YARN-4212

22 Bachmann A, Bird C, et al. The missing links: bugs and bug-fix commits. In Proceedings of the eighteenth ACM SIGSOFT

international symposium on Foundations of software engineering, 2010. 97–106.

23 Bass L, Clements P, and Kazman R. Software architecture in practice. Addison-Wesley Professional, 2003.

24 Chen T H , Nagappan M, Shihab E, and Hassan E A. An empirical study of dormant bugs. In Proceedings of the 11th Working

Conference on Mining Software Repositories, 2014. 82–91.

25 Cui D, Liu T, Cai Y F, et al. Investigating the impact of multiple dependency structures on software defects. In Proceedings

of the 41st International Conference on Software Engineering, 2019. 584–595.

26 Costa D A D, McIntosh S, et al. A framework for evaluating the results of the szz approach for identifying bug-introducing

changes. IEEE Transactions on Software Engineering, 2016. 641–657.

27 Eyolfson J, Tan L, and Lam P. Do time of day and developer experience affect commit bugginess?. In Proceedings of the 8th

Working Conference on Mining Software Repositories, 2011. 153–162.

28 Falleri J R, Morandat F, et al. Fine-grained and accurate source code differencing. In Proceedings of the 29th ACM/IEEE

international conference on Automated software engineering, 2014. 313–324.

29 Fan L L, Su T, Chen S, et al. Large-scale analysis of framework-specific exceptions in Android apps. In 2018 IEEE/ACM

40th International Conference on Software Engineering, 2018. 408–419.

30 Fan, L., Su, T., Chen, S. et al. Efficiently manifesting asynchronous programming errors in android apps. In Proceedings of

the 33rd ACM/IEEE International Conference on Automated Software Engineering (pp. 486-497).

31 Garcia J, Ivkovic I, and Medvidovic N. A comparative analysis of software architecture recovery techniques. In Proceedings

of the 28th IEEE/ACM International Conference on Automated Software Engineering, 2013. 486–496.

32 Garcia J, Krka I, Mattmann C, and Medvidovic N. Obtaining ground-truth software architectures. In Proceedings of the 2013

International Conference on Software Engineering, 2013. 901–910.

33 Hassan A E. Predicting faults using the complexity of code changes. In Proceedings of the 31st International Conference on

Software Engineering, 2009. 78–88.

34 Herzig K. The Impact of Tangled Code Changes. In Working Conference on Mining Software Repositories, 2013.

35 Herzig K, Just S, Zeller A. 2013. It’s not a Bug, It’s a Feature: How Misclassification Impacts Bug Prediction, In Working

Conference on Mining Software Repositories, 2013.

36 Hoang T, Dam H K, Kamei Y, Lo D, and Ubayashi N. DeepJIT: an end-to-end deep learning framework for just-in-time defect

prediction. (2019), 34–45.

37 Huang K F, Chen B H, Peng X, et al. Cldiff: generating concise linked code differences. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering, 2018. 679–690.

Cui D, et al. Sci China Inf Sci 19

38 Kamei Y, Fukushima T, Mcintosh S, Yamashita K, Ubayashi N, and Hassan A E. 2016. Studying just-in-time defect prediction

using cross-project models. Empirical Software Engineering, 2016, 2072–2106.

39 Kim S, Jr E J W, and Zhang Y. Classifying software changes: Clean or buggy? IEEE Transactions on Software Engineering,

2008. 181–196.

40 Kim S, Zimmermann T, Jr E J W, and Zeller A. Predicting faults from cached history. In Proceedings of the 29th international

conference on Software Engineering, 2007. 489–498.

41 Joris Kinable and Orestis Kostakis. Malware classification based on call graph clustering. Journal in computer virology,

2011,233–245.

42 Kondo M, German D M, Mizuno O, and Choi E. The impact of context metrics on just-in-time defect prediction. Empirical

Software Engineering, 2020. 890–939.

43 Lanza M and Marinescu R. Object-oriented metrics in practice: using software metrics to characterize, evaluate, and improve

the design of object-oriented systems. Springer Science & Business Media, 2007.

44 Le D M, Behnamghader P, Garcia J, Link D, Shahbazian A, and Medvidovic N. An empirical study of architectural change in

open-source software systems. In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, 2015. 235–245.

45 Le D M, Link D, Shahbazian A, and Medvidovic N. An empirical study of architectural decay in open-source software. In

2018 IEEE International Conference on Software Architecture (ICSA), 2018. 176–17609.

46 Lutellier T, Chollak D, Garcia J, Tan L, Rayside D, Medvidovic N, and Kroeger R. Comparing software architecture recovery

techniques using accurate dependencies. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,

2015. 69–78.

47 Martinez M and Monperrus M. Mining software repair models for reasoning on the search space of automated program fixing.

Empirical Software Engineering, 2015. 176–205.

48 Mcintosh S and Kamei Y. Are Fix-Inducing Changes a Moving Target? A Longitudinal Case Study of Just-In-Time Defect

Prediction. IEEE Transactions on Software Engineering, 2018. 412–428.

49 Mi Q and Keung J. An empirical analysis of reopened bugs based on open source projects. In Proceedings of the 20th

International Conference on Evaluation and Assessment in Software Engineering, 2016. 37.

50 Mo R, Cai Y F, Kazman R, and Xiao L. Hotspot patterns: The formal definition and automatic detection of architecture

smells. In 2015 12th Working IEEE/IFIP Conference on Software Architecture, 2015. 51–60.

51 Paixao M, Krinke J, Han D, et al. Are developers aware of the architectural impact of their changes?. In Proceedings of the

32nd IEEE/ACM International Conference on Automated Software Engineering, 2017. 95–105.

52 Park J, Kim M, Ray B, and Bae D H. An empirical study of supplementary bug fixes. In Proceedings of the 9th IEEE Working

Conference on Mining Software Repositories, 2012. 40–49.

53 Pascarella L, Palomba F, and Bacchelli A. Fine-grained just-in-time defect prediction. Journal of Systems and Software, 2019.

22–36.

54 Selby R W and Basili V R. Analyzing error-prone system structure. IEEE Transactions on Software Engineering, 1991.

141–152.

55 Shihab E, Hassan A E, Adams B, and Jiang Z M. An industrial study on the risk of software changes. In Proceedings of the

ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, 1991. 1–11.

56 Wang Y, Meng N, and Zhong H. An empirical study of multi-entity changes in real bug fixes. In 2018 IEEE International

Conference on Software Maintenance and Evolution (ICSME), 2018. 287–298.

57 Wen M, Wu R X, et al. Exploring and exploiting the correlations between bug-inducing and bug-fixing commits. In Proceedings

of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering, 2019. 326–337.

58 Williams B J and Carver J C. 2010. Characterizing software architecture changes: A systematic review. Information and

Software Technology, 2010. 31–51.

59 Wu R X, Zhang H Y, et al. Relink: recovering links between bugs and changes. In Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of software engineering, 2011. 15–25.

60 Xiao L, Cai Y F, and Kazman R. Design rule spaces: A new form of architecture insight. In Proceedings of the 36th

International Conference on Software Engineering, 2014. 967–977.

61 Yin Z N, Yuan D, et al. How do fixes become bugs?. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th

European conference on Foundations of software engineering, 2011. 26–36.

62 Zaman S, Adams B, and Hassan A E. Security versus performance bugs: a case study on firefox. In Proceedings of the 8th

working conference on mining software repositories, 2011. 93–102.

63 Zhong H and Su Z D. An empirical study on real bug fixes. In Proceedings of the 37th International Conference on Software

Engineering, 2015. 913–923.

64 Zimmermann T and Nagappan N. Predicting defects using network analysis on dependency graphs. In 2008 ACM/IEEE 30th

International Conference on Software Engineering, 2008. 531–540.

65 Zimmermann T, Nagappan N, Guo P J, and Murphy B. Characterizing and predicting which bugs get reopened. In 2012 34th

International Conference on Software Engineering (ICSE), 2012. 1074–1083.

66 Lou Y L, Chen Z P, Cao Y B, Hao D, Zhang L. Understanding Build Issue Resolution in Practice: Symptoms and Fix

Patterns. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, 2020. 617–628.

67 Chen Z P, Yao H H, Lou Y L, Cao Y B, Liu Y Q, Wang H Y, Liu X Z. An Empirical Study on Deployment Faults of Deep

Learning Based Mobile Applications. In 2021 43th International Conference on Software Engineering (ICSE), 2021.

	Introduction
	Preliminary
	Bug Fix
	Code Dependency
	Dependency-Level Change
	Dependency Change-Related Bug and Fix

	Overview
	Studied Subjects
	Data Collection

	Empirical Study
	RQ1: Ratio Analysis
	Quantity Analysis
	Dependency Type Analysis

	RQ2: Bug Characteristics Analysis through Dependency-level Changes
	Bug Priority Analysis.
	Fixing Churn/Time Analysis.
	Bug Reopening/Inducing Analysis.

	RQ3: Patched File Analysis through Dependency-level Changes
	Impact on Patched Files.
	Patch Pattern Analysis.

	Applications of our study
	Threats to Validity
	Related Work
	Conclusion

