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Abstract—Automatic function naming aims to generate a
concise and meaningful name for a function, and has become a
popular research area. Function naming models based on deep-
learning have made significant progress in recent years. Most
of the existing neural models represent a function based on
the granularity of token or AST (Abstract Syntax Tree) node.
However, generating function names requires more fine-grained
knowledge of code, but the representation of tokens or AST nodes
is not enough to capture global function semantics. In our work,
we propose Apker, a novel Adaptive prior-knowledge-assisted
function naming based on multi-level information explorer. The
Apker includes three modules: Multi-level Information Explorer
(MIE), Adaptive Prior Knowledge Adaptor (APKA) and the
Generator. The MIE captures the function semantics from a local
and global perspective, motivated by the understanding patterns
of humans, who will first understand the meaning of each
statement and then comb their logical relations to understand
the whole function. The APKA uses the pre-retrieved prior
knowledge to assist the model, motivated by our observation
that certain name tokens can be extracted directly from certain
statements and such probability differs significantly in different
types of statements. Finally, the Generator generates function
names. The experimental results demonstrate that our approach
outperforms the baselines by 5.4% in Precision, 12.7% in Recall,
and 7.4% in F1-score.

Index Terms—function name generation, code summarization

I. INTRODUCTION

A study has shown that developers spend more time in
program comprehension than coding [13]. Developers need
to provide an understandable function name because such
names can help them to understand a function quickly without
reading the body in detail for further information. What’s
more, inappropriate names may lead to software defects. For
example, Abebe et al. [1] find that inconsistent identifier use
contributes to the faultiness of classes. For novelties, it is
difficult to generate a function name that can directly re-
flect their intent. Therefore, automatically generating function
names becomes a critical task in reverse engineering, which
can suggest appropriate names for developers.

Most existing methods use data-driven models to mine
potential information from source code and then convert it
into forms that can be understood easily by neural networks,
e.g., some studies construct code representations from split
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String[] getReversedArray(final String[] array) {

① final String[] newArray = new String[array.length];

for (int index = 0; index < array.length; index++) {

② newArray[array.length - index - 1] = array[index];

}

③ return newArray;

}
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Fig. 1. Example to illustrate our motivations. We decompose the “getRe-
versedArray” function into five statements. Each statement has its own type
and we tag them respectively. The extraction probability is the prior knowledge
used in the Apker.

tokens [2] and parsed AST [3, 6, 7]. Despite their effective-
ness, such approaches are based on the granularity of token or
AST nodes. Specifically, they input tokens or AST nodes to an
encoder to learn their representations and then decode them to
generate a function name. Representing source code in such
way is not enough to capture global function semantics.

To solve this limitation, we propose a novel approach,
named Apker. There are two motivations behind the Apker.
First, to mine more fine-grained knowledge of code, we
follow the humans’ way of understanding a function. Given a
function, humans will try to understand the meaning of each
statement; then comb their logical relations to understand the
whole function [5]. Therefore, capturing the function semantics
based on statement-level may be more efficient than token or
AST node. Second, we observe that certain name tokens can
be extracted directly from certain statements and such proba-
bility differs significantly in different types of statements. Such
observations can be a branch to assist the model to generate
name tokens correctly. Take Figure 1 as an example, there
are three name tokens: “get”, “reversed” and “array”, among
which the first two tokens don’t appear in any statements,
thus, they couldn’t be extracted from any of them. For these
tokens, the model must predict them according to its captured
semantics. However, the token “array” can be extracted from
the statements and it is most likely to be extracted from the
“return statement” according to the prior knowledge.

To model the above working patterns, Apker introduces
three modules, i.e., Multi-level Information Explorer (MIE),
Adaptive Prior Knowledge Adaptor (APKA) and the Genera-
tor. The MIE captures each statement semantics from a local
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public class ProfilerTimerFilter {

public long getMaximumTime(

IoEventType type) 

{
if (!timeManager.containsKey(type)) 

{

……

}

return timeManager.get(

type).getMaximum();

}

}
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Fig. 2. Illustration of our proposed approach. This only shows the procedure
of generating function names at the first time step.

perspective, based on which, it captures the whole function
semantics from a global perspective. The APKA uses the prior
knowledge to assist the model. Here, the prior knowledge
means The extraction probability for certain name tokens
differs significantly in different types of statements. Finally,
the Generator decodes function names auto-regressively.

In summary, our main contributions are as follows:
• To explore global information by aggregating more fine-

grained local information, we design the multi-level in-
formation explorer for the task of function naming.

• We fuse the prior knowledge in an adaptive way to assist
the model to learn.

• The experiments and analysis on the public dataset ver-
ify the effectiveness of our approach, which is able to
outperform previous state-of-the-art approaches.

II. RELATED WORK

In this section, we introduce the related works according to
the granularity of representing a function.

Early studies regard source code as plain text and employ
split tokens to learn code semantics [2, 12, 14, 17, 23]. A brief
history of relevant works starts with [12]. In their work, they
aim to automatically generate summaries from code snippets
collected from StackOverflow. They split a code snippet into
tokens and apply neural machine translation networks with
attention [21] to generate code summaries. Later, Allamanis
et al. [2] designs a novel attention network purely based
on convolutional blocks for extreme code summarization and
evaluates that their network performs better than general
attention.

Code is more structural than plain text. Therefore, re-
searchers devote themselves to parsing code structure by using
code analysis tools. Parsing source code into an AST is
leveraged by various approaches as AST can obtain the syntax
structure information [4, 5, 6, 10, 11, 15, 16, 18, 22]. At
the first stage, researchers convert the ASTs into sequences
before they are fed into the model. For example, deep learning
similarity [22] expresses its parsed AST as a stream of the
nodes by performing a pre-order visit of the sub-tree. However,
converting AST to a flattened sequence destroys the original
structural information. Thus, later works focus on finding
a way of representing code structure directly. For example,
Shido et al. [18] designs Tree-LSTM as the extension of
LSTM. Tree-LSTM can learn tree structures in ASTs directly
by propagating information from leaves to the root and is more
effective than a sequential model used for machine translation
in natural language process (NLP) when applied to source
code summarization. Besides AST, other information such as
data-flow and control-flow is captured [3, 7, 8].

Despite their effectiveness, all these approaches represent
the source code based on the granularity of token or AST
node, which is limited to capture global semantic informa-
tion. What’s more, they obey humans’ reading habits when
understanding a function.

III. THE OVERALL ARCHITECTURE OF APKER

In this section, we first give a problem definition, and then
introduce the three modules separately.

A. Problem Definition

The goal of this study is to create a model able to generate
a function name in Java source code. As shown in Figure 2,
given a function F = {S0, S1, · · · , Sn−1}, where Si denotes
a statement, e.g., we decompose the function into five types
of statements and the number behind them is the pre-counted
prior knowledge, the Apker receives embedded statements as
input and outputs name tokens step by step. All name tokens
compose the final function name N = {n0, n1, · · · , nm−1},
where m is the number of tokens composing the predicted
function name.

The prior knowledge of Si is a probability and it is
calculated as the number of tokens that compose the target
function divided by the total number of tokens under such
a statement. For example, there are 33,128,737 tokens under
statements with “ClassName” type in total, among which



5,359,581 tokens exist in target function name. Therefore,
the prior knowledge of statements with “ClassName” type is
0.1618. As Coganc [23] has counted the probability of 33
types of statements, we directly use it as our prior knowledge.

B. Multi-level Information Explorer (MIE)

In this paper, we introduce MIE, which includes a local-
level part (MIE-L) and a global-level part (MIE-G).

MIE-L MIE-L is to capture each input statement semantics
from a local perspective. As different tokens have different in-
fluences on a statement, we first use a Convolutional Attention
Network (ConvAttn) [2] to weight tokens, then calculate their
weighted sum and use it as the statement semantics vector. The
detailed implementation is shown in Algorithm 1.

Algorithm 1 Generate a statement semantics vector
1: ConvAttn(Embedded Statement ESi)
2: L1 ← RELU(CONV 1D(ESi ,Kl1)
3: L2 ← CONV 1D(L1,Kl2)
4: Lfeat ← L2/||L2||2
5: Li

weight ← SOFTMAX(CONV 1D(Lfeat,K))

6:
∧
ni ←

∑T−1
j=0 (Li

weight)j(ESi
)j

7: return
∧
ni

Here, Li
weight = {Li

weight0
, Li

weight1
, · · · , Li

weightT−1
},

where Li
weightj

is the jth token weight under the ith statement,

and
∧
ni is our obtained statement vector.

MIE-G MIE-G is to learn correlations between obtained
statement vectors

∧
nis and then score each statement according

to its influence on the whole function semantics, which will
be used for generating the final function vector. We use
GRU to learn correlations in Equation (1) and employ the
standard attention mechanism (GenAttn) to score statements
in Equation (2).

CL = Concat(
∧
n0,

∧
n1 · · · ,

∧
nn−1)

H,ut = GRU(CL)
(1)

where CL is the concatenated statement vectors and H =
{h0, h1 · · · , hn−1}.

αit =
exp(e(hi, ut−1))∑n−1
i=0 exp(e(hi, ut−1))

(2)

Here, e(hi, ut−1) = a(ut−1, hi), a is a feedforward neural
network (FNN). αit denotes scores of statement Si at time
step t.

C. Adaptive Prior Knowledge Adaptor (APKA)

In fact, most of the words composing a function name can be
extracted from the statements directly. Thus, when predicting
a name token, if there is a thing that can assist the model
to locate the statement, it will generate a correct result more
quickly and correctly. This is just the functionality of the prior
knowledge.

In APKA, we fuse the prior knowledge and the model in an
adaptive way as shown in Equation (3). The reason we design

in such way is that the model should judge if this name token
can be extracted or predicted at each time step.

C1 =

n−1∑
i=0

αithi

P = SOFTMAX(p0, p1, · · · , pn−1)

C2 =

n−1∑
i=0

Phi

λ1, λ2 = σ(utWu + C1WC1
+ C2WC2

)

C = λ1C1 + λ2C2

(3)

Here, C1 and C2 are context vectors generated by statement
attentions and the prior knowledge respectively. pi is the prior
knowledge of Si. Wu, WC1 and WC2 are learnable parameters.
The computed λ1, λ2 ∈ [0, 1] weight the expected importance
of C1 and C2 respectively and their values can show the
adaptability.

D. Generator

Generator aims to decode the final function vector C into an
actual function name. For each step t, we predict the tth word
by generating the vocabulary distribution. Generator takes the
current input word xt(x0 =< s >), last hidden state ut−1 and
C as input. We describe it with Algorithm 2.

Algorithm 2 Generate vocabulary distribution of each step t

1: Generator(xt, ut−1, C)
2: ext

← Embed(xt)
3: input← Concat(ext

, C)
4: output, st ← GRU(input, ut−1)
5: output← Linear(Concat(output, C))
6: Pwt ← SOFTMAX(output)
7: return Pwt , ut

During training, the overall loss for the whole sequence
is calculated as the average loss at each time step shown in
Equation (4), which is the negative log likelihood of the word
wt for that step:

loss =
1

T

T∑
t=0

(−logP (wt)) (4)

IV. EXPERIMENTS

In this section, we firstly describe used dataset as well as
some widely-used metrics and experimental settings in detail.
Then we present the evaluation and analysis of the proposed
approach.

A. Datasets, Metrics and Settings

Dataset We use the Java dataset collected by [2], which
is obtained from 11 open-source Java projects on GitHub.
This dataset has been split into training/testing/validation by
projects. Particularly, we remove the functions whose length
of their names is less than 2 or longer than 6 because



TABLE I
COMPARISONS OF OUR APPROACH AND THE EXISTING METHODS

Approaches
Metrics Used Code Form

Precison↑ Recall↑ F1↑ tokens AST DE-AST CFG AST path stmts
Cognac 0.671 0.597 0.632

√

ConvNet 0.459 0.394 0.406
√

TBCNN 0.409 0.318 0.355
√

TreeCaps 0.526 0.414 0.468
√

GGNN 0.403 0.353 0.369
√

GREAT 0.473 0.400 0.436
√ √

Sequence GINN 0.648 0.562 0.602
√

Code2vec 0.234 0.220 0.214
√

Code2seq 0.504 0.354 0.426
√ √

Apker 0.701 0.673 0.679
√ √

TABLE II
EFFECTIVENESS OF MIE.

Attention type ConvAttn GenAttn APKA
Metrics

Precision Recall F1
Basic 0.469 0.411 0.431

+ConvAttn
√

0.609 0.556 0.573
+GenAttn

√
0.553 0.504 0.520

MIE
√ √

0.666 0.628 0.638

such functions are not practical. Our dataset contains 163,168
functions finally.

Metrics We measure prediction performance using Preci-
sion, Recall, and F1 over the sub-words in generated names,
following the metrics used by [5, 6, 7].

Settings To train our model, we optimize the objective using
stochastic gradient descent with RMSProp [20] and Nesterov
momentum [9]. We use dropout [19] on all parameters and
gradient clipping. Each of the parameters in the model is
initialized with normal random noise around zero, except for
Wu, WC1

, and WC2
in APKA are initialized with kaiming

normal. For ConvAttn, the best values for k1, k2, w1, w2, and
w3 are 8, 8, 24, and 29. The embed and hidden dimensions
are set to 100. The dropout rate is set to 25%. The batch size
is set to 32.

B. Comparison with State-of-the-art Methods

We compare our approach with a wide range of state-of-the-
art function naming models, i.e., Cognac [23], ConvNet [2],
TBCNN [16], TreeCaps [6], GGNN [3], GREAT [8], Sequence
GINN [24], Code2Vec [5] and Code2Seq [4]. As shown in
Table I, our Apker outperforms state-of-the-art approaches
across all metrics. Compared to these best scores of different
metrics, our method has a Precision improvement of 5.4%, a
Recall improvement of 12.7% and an F1-score improvement
of 7.4%. The improved performance demonstrates the validity
of our approach.

C. Effect of MIE

ConvAttn and GenAttn are the two key components to
implement the MIE module. Therefore, to evaluate the effec-
tiveness of MIE, we make an ablation study.

Here, we construct four baseline networks. Note that we
all remove the APKA module in these four networks. The

first one (denoted as “Basic”) is to remove the two attention
mechanisms. The second one (“+ConvAttn”) employs the
original MIE-L to weight token attentions for each statement,
while the third one (“+GenAttn”) uses the same MIE-L as
the first one but adds GenAttn after getting final statement
vectors. The last baseline network (“MIE”) is our approach
without APKA.

Table II shows the effectiveness of MIE. From this table, we
can know that both “+ConvAttn” and “+GenAttn” outperform
”Basic” on all metrics and “+ConvAttn” has a significant
improvement compared to “+GenAttn”. It indicates that the
generated statement vector considering different weights of
tokens reflects the statement semantics better. Moreover, MIE
outperforms “+ConvAttn” for all different evaluation metrics.
These results show that our proposed MIE makes significant
contributions to accurate function name generation.

TABLE III
EFFECTIVENESS OF APKA.

Measure MIE +SPKA +APKA
Precision↑ 0.666 0.682 0.701

Recall↑ 0.628 0.659 0.673
F1-score↑ 0.638 0.663 0.679

D. Effect of APKA

In order to evaluate the performance of APKA, we imple-
ment a static prior knowledge adaptor named SPKA to make
comparisons in Equation (5). The difference between SPKA
and APKA lies in the way to fuse the prior knowledge.

αit = αit + P

C =

n−1∑
i=0

αithi

(5)
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Fig. 3. We give the visualization of our approach. In the Statements with Prior knowledge step, each dashed box refers to a statement and it has the prior
knowledge behind. Si refers to the ith statement. Tokens highlighted in yellow and statements highlighted in purple represent their attention scores. All colors
follow a principle: the darker a color is, the more important an item is. Each pair of λ1 and λ2 denotes the weights of the model and the prior knowledge at
each time step respectively.

As shown in Table III, it is clear that our APKA successfully
boosts the performance, verifying its effectiveness. Adding the
prior knowledge to the statement attentions directly means the
totally same extraction probability for all time steps, ignoring
the dynamic probability to extract or to predict at each time
step.

E. Visual Analysis

In Figure 3, we give an illustrative example to better
understand our approach. As we can see, in Apker, the
ConvAttn first learns statement semantics by scoring their
inner tokens, e.g., the first statement S0 only has a token
“void”, thus ConvAttn scores it high; S1 attends more to the
token “service” and the last two statements both attend more to
the token “portlet” than others. Then the GenAttn scores these
statements according to their influence on the whole function
semantics.

Now, look at how APKA takes effect. As the name token
“set” doesn’t appear in any statement, the APKA is expected
to weigh more in the model rather than the prior knowledge.
As we can see, the λ1 and λ2 are 0.998 and 0.053 respectively,
satisfying our expectations. But When generating “portlet” and
“preferences”, the APKA should attend to the prior knowledge
because the two tokens can be extracted from the last two
statements directly. Their λ1s and λ2s are also corresponding
to our expectations. Though the last name token “finder” is
not predicted rightly, the presented result can still verify the
capability of Apker to generate function names.

V. DISCUSSION

In this section, we discuss the strength and some threats of
Apker.

A. Strength of Apker

We have evaluated three main advantages of Apker that
may explain its effectiveness in function naming: (a) A more
comprehensive representation of source code. The Apker
decomposes a function into several types of statements. The
experiments also validate the capability of statement-level
approach than token or AST nodes. (b) A multi-level attention

mechanism. The Apker uses a multi-level attention mecha-
nism, among which, local-level attention infers the contribu-
tion of each token to the statement and global-level infers the
contribution of each statement to the whole function.

B. Threats to Validity and Limitations

Our proposed Apker may suffer from two threats. One
threat is on the prior knowledge. The obtained statement prior
knowledge is highly dependent on the empirical study. The
correctness of the prior knowledge has an influence on the
predicted results.

Another threat lies in the extensibility of Apker. Our model
needs to identify different types of statements based on a static
analysis tool. There are many tools to analyze Java source code
but few in other programming languages. Therefore, it may be
difficult to extend our approach to other languages. Besides,
we also consider the class name of the target function and other
statements in caller/callee functions. However, they can only
be parsed from a whole program. Therefore, it is challenging to
extend Apker to some datasets collected from other channels
where only a small code snippet can be extracted.

VI. CONCLUSION

In this paper, we proposed a novel prior-knowledge-guided
neural network for the task of function naming. It includes a
multi-level information explorer to capture local information
with learning to aggregate them to global information and
an adaptive prior knowledge adaptor. Two attention mecha-
nisms (ConvAttn and GenAttn) were used so that different
contributions of tokens to a statement and statements to a
function can be inferred. In particular, we fuse prior knowledge
in Apker to assist the model. We demonstrate the superior
performance of the proposed framework. For future work, we
plan to look into more accurate and valuable prior knowledge.
Furthermore, we will conduct comprehensive experiments on
other programming languages such as Python and C.
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