
Inferring Loop Invariants for Multi-Path Loops

Yingwen Lin1, Yao Zhang1, Sen Chen1∗, Fu Song2, Xiaofei Xie3, Xiaohong Li1∗, Lintan Sun4

1College of Intelligence and Computing, Tianjin University, Tianjin, China, {linyingwen, zzyy, senchen, xiaohongli}@tju.edu.cn
2School of Information Science and Technology, ShanghaiTech University, Shanghai, China, songfu@shanghaitec.edu.cn

3Nanyang Technological University, Singapore, xfxie@ntu.edu.sg
4State Grid Customer Service Center, Tianjin, China

Abstract—Loop invariant plays an important role in program
analysis and verification. Equipping each loop with a sound and
useful invariant is a crucial step for full program verification
and program understanding. However, inferring sound and useful
loop invariants remains a challenge due to the complex control
structure of loops, especially for loops that contain multiple
paths. In this paper, we first analyze the main challenges in loop
invariant inference, then introduce a new approach to generate
sound and useful loop invariants using a divide-and-conquer
strategy. Specifically, we use Path Dependency Automaton (PDA)
to model loops by which we boil down the problem of loop
invariant inference to state invariant inference of the PDA. We
propose an algorithm to infer state invariants of the PDA and
construct loop invariants from state invariants. We implement
our approach in a tool named InvInfer. We evaluate InvInfer
on various benchmarks. The results show that our approach is
remarkably more effective and efficient than several state-of-the-
art approaches, especially on loops with multiple paths.

I. INTRODUCTION

Loop invariants play an important role in program verifi-
cation and program understanding. When designing an algo-
rithm, programmers usually use the concept of loop invariants
to intuitively ensure the correctness of the algorithm. But few
programmers would write them down or it is difficult to write
them down. Hence, generating loop invariants automatically is
one of the most important fundamental problems in program
verification. Given a Hoare triple [1] of a loop:

{pre}while c do L{post}

the problem of program verification is to judge if the Hoare
triple is valid, i.e., if the precondition pre holds, the post-
condition post then holds upon the termination of the loop.
Loop invariant is a predicate that holds before entering the loop
and after each iteration of the loop. If a predicate I meets the
following properties, it is a valid loop invariant:

pre⇒ I and {I ∧ c} L {I}

A loop invariant I is useful if it can be used to prove the
correctness of the loop, i.e., the following constraint holds:

(I ∧ ¬c)⇒ post

Various approaches have been proposed to infer loop invari-
ants. Though promising, it is fair to say that the loop invariant
∗Sen Chen and Xiaohong Li are the corresponding authors.

generation problem remains unsolved, even for simple arith-
metic programs. The difficulties of loop invariant inference
mainly lie on the following aspects:
A large number of candidate invariants. According to the
definition of loop invariants, any predicates that satisfy the
two properties are loop invariants, but may not be useful for
proving the post-condition. Taking a loop with three variables
{x, y, z} as an example, one can build many atomic predicates
using these three variables, expr = {x == y, x == z, x +
y == 0, . . .}. Since the form of loop invariants is incertitude,
each combination of such atomic predicates is a candidate
invariant. With the increase of the number of variables, there
will be a huge amount of candidate invariants to validate.
Complex control structure of loops. Loops can have complex
control structures due to branches, leading to multiple paths
in one loop, called multi-path loop. Different paths typically
show different properties, hence the invariants of multi-path
loops are composed by several atomic predicates. The combi-
nation of atomic predicates enlarges the search space of loop
invariant inference. Template-based approaches often suffer
from such problems [2–4].
Candidate invariants are difficult to validate. Some previ-
ous works [5, 6] reduce the validation of candidate invariants
to SMT solving using the above three properties. However,
SMT solving is computationally expensive, and hence may
fail to validate candidate invariants. Other works [2, 7] use
symbolic execution to validate candidate invariants. Such
approaches typically sacrifice soundness for efficiency [2].

The above three problems make the loop invariant inference
problem challenging and difficult. To overcome these prob-
lems, we propose a new approach to infer loop invariants. Our
approach is designed to deal with multi-path loops, which can
contain both inductive variables and non-inductive variables
with a deterministic upper bound. We use a divide-and-
conquer strategy to deal with multi-path loops. Specifically,
we introduce Path Dependency Automaton (PDA) [8] to model
multi-path loops and boil down the problem of loop invariant
inference to state invariant inference on the PDA, which
reduces the search space of the problem. We introduce a new
operator spk to derive the constraints of variables and use a
guess-and-check strategy to compute state invariants. Finally,
loop invariants are computed from the state invariants.



In summary, we make the following main contributions:
• We highlight the difficulties in loop invariant inference

and employ PDA to model loops by which the useful
loop invariants can be computed.

• We conclude that different paths show different properties
generally and propose a divide-and-conquer strategy to
boil down the problem of loop invariant inference to
the state invariant inference on the PDA. As a result,
our approach only need to infer simple atomic predicates
rather than compound predicates, so that the search space
of loop invariants is reduced.

• We implement our algorithm in a tool named InvInfer. We
compare InvInfer with several state-of-the-art invariant
inference tools: InvGen [9], FiB [10] and CLN2INV [5].
We also evaluate the effectiveness of the divide-and-
conquer strategy. The results show that our approach can
infer more useful loop invariants compared with the other
three tools, and the divide-and-conquer strategy can help
to reduce the search space and the number of SMT calls.

II. PRELIMINARIES

A. Loop Modeling

The control flow graph (CFG) G of a loop is defined as
a tuple, G = (B,E, bpre, Bh, Be), where B is a set of basic
blocks each of which is a sequence of straight-line instructions,
E ⊆ B × B is a set of edges between basic blocks, bpre is
the pre-header of the loop after which the control flow goes
to the loop guard condition, Bh is a set of header blocks and
Be is a set of exit blocks.

To model the loop in the Hoare triple, we introduce the
PDA model from our previous work [8]. It is a general
approach for modeling loop, whether it is nested or unnested.
For a CFG G, the corresponding PDA model is a tuple:
A = {Q,L, q0, accept, T}, which is detailed as follows:

• Q = {q0, . . . , qn} is a finite set of states, each of
which corresponds to a path in the loop. Each path is a
sequence of basic blocks in the CFG without containing
any repeated basic blocks except for the starting and
ending ones.

∏
G is a finite set of paths.

• L is a labeling function that maps each state q ∈ Q to its
corresponding path L(q).

• q0 ∈ Q is the initial state with head(L(q0)) = bpre
• accept = {q ∈ Q|tail(L(q)) ∈ Be} is a finite set of

accepting states.
• T is a set of transitions between states.
As an equivalent model of the loop, PDA not only describes

the loop paths, but also contains their dependency relation.
Algorithm 1 describes the approach to construct the PDA
model A from a CFG G. It first extracts paths

∏
G from the

CFG and defines states G for those path. Then it computes the
transitions between the states during the outer for-loop at lines
7–17. We use kij to denote the number of iterations of the state
qi, after which the path L(qj) of qj will be executed. If qi (i.e.,
L(qi)) can execute more than once before it transits to qj , it is
an iterative state. Otherwise qi is a one-time state. At line 15,

Algorithm 1: PDA Construction
Input: G = (B,E, bpre, Bh, Be): CFG
Output: A: PDA

1
∏
G = {σ0, . . . , σn}

2 Q = {q0, . . . , qn};
3 T = ∅;
4 q0 is a state, where head(σ0) = bpre;
5 L = {(q0, σ0), . . . , (qn, σn)}
6 accept = {q ∈ Q|tail(L(q)) ∈ Be};
7 foreach qi ∈ Q do
8 foreach qj ∈ Q do
9 if tail(qi) = head(qj) ∧ i 6= j then

10 Let kij be a state counter for (qi, qj)
11 if qi is an iterative state then
12 kij > 1;
13 else
14 kij = 1;

15 θij = θσi ∧ θσi [X
σ
kij−1
i

/X] ∧ θσj [X
σ
kij
i

/X];

16 if sat(θij) then
17 T = T ∪ {(qi, qj)};

18 return A = (Q,L, q0, accept, T );

we compute the guard condition of the transition from qi to qj ,
where θσi

denotes the guard condition of σi and θσj
[X

σ
kij
i

/X]

denotes the guard condition of σj after executing σi kij times.
If the guard condition θij can be satisfied, qi can transit to qj .

A variable is inductive if we can derive its general form
in the form of a sequence [11], e.g., the constant sequence
(xn = c), arithmetic sequence (xn = x0+d∗n) and geometric
sequence (xn = x0 ∗ cn). A state q in PDA is inductive if all
the variables defined in L(q) are inductive variables.

To generate loop invariants from the PDA model, we
customize the original PDA model as follows. For the non-
inductive states which contain non-inductive variables, we add
them to the model according to the reachability in the CFG.
Supposing there are two states, an non-inductive state qi and
an inductive state qj such that tail(qi) = head(qj). In order
to ensure the integrity of the model, we view qi can transit
to qj , and the real transition relation is determined when we
traverse the model.

B. Strongest Post-condition Operator

In traditional forward analysis [12], the predicate transform-
ers are defined as a set of strongest post-condition operators
in Fig. 1.

sp(pre, skip)⇔ pre
sp(pre, abort)⇔ false
sp(pre, x = e)⇔ ∃x0 : pre[x0/x] ∧ x = e[x0/x]
sp(pre, c1; c2)⇔ sp(sp(pre, c1), c2)
sp(pre, if b then c1 else c2) ⇔ (b ⇒ sp(pre, c1)) ∧ (¬b ⇒
sp(pre, c2))
sp(pre, if b then c)⇔ (b⇒ sp(pre, c)) ∧ (¬b⇒ pre)

Fig. 1: Strongest post-condition

As shown in Fig. 2, we introduce the spk operator to calcu-
late the constraints that the variables form after k iterations of
an inductive state. Given a precondition pre and a sequence of
assignment statements, which correspond to an iterative path
of a loop, we can directly derive the post-condition after exe-



cuting these statements for k times. Thus, we use the general
form x = GFk(x = e) of x to represent the result after x = e
executing k times, but the intermediate steps are omitted. For
example, for Hoare triple {x == y}while(∗)x = x+1; {Q},
we denote the iteration times as k, the general form of x is
x = x0+k, then Q is spk(x == y, x = x+1)⇒ x−k == y.
While traditional forward analysis needs to iterate k steps to
get the constraint, which is quite time-consuming.

spk(pre, skip)⇔ pre
spk(pre, x = e)⇔ ∃x0 : pre[x0/x]∧ x = GFk(x = e)[x0/x]
spk(pre, c1; c2)⇔ spk(spk(pre, c1), c2)

Fig. 2: spk operator

Since we only need to apply spk operator to a single state,
there is no need to define it on branches.

III. MOTIVATING EXAMPLE

We will illustrate our approach using the example shown
in Fig. 3(a). The CFG, extracted paths and PDA model are
shown in Fig. 3(b), Fig. 3(c), and Fig. 3(d).

int x;
int y = 50;
assume(x < 50)
while(x < 100){

if(x < 50){
x = x + 1;

}else{
x = x + 1;
y = y + 1;

}
}
assert(x == y);

(a) Example

int x;
int y=50;

a

x <100?

b

x <50?c assert(x==y)

d

x=x+1;
e

x=x+1;
y=y+1;f

Yes

Yes No

No

(b) CFG

σ0 : a b
True

σ1 : b c
x<100

e
x<50

b
True

σ2 : b c
x<100

f
x≥50

b
True

σ3 : b d
x≥ 100

(c) Paths

σ0

[1]
q0

σ1

[∗] q1

σ2

[∗] q2
σ3

[1]
q3

(d) PDA

Fig. 3: Motivating example

The loop (denoted as l) in the program contains two
branches due to the if statement. We can extract four paths
from the CFG, σ0 ∼ σ3. The corresponding PDA model
consists of four states, where [∗] indicates iterative states and
[1] indicates one-time states. The initial state q0 corresponds
to the path from the entry block to the guard block of the
loop while the accept state q3 corresponds to the path from
the guard block to the exit block. For other states, each state
is an abstraction of a path inside the loop. We denote the
constraint in assume and the assignment statements in q0 as
the precondition prel of the loop, prel : x < 50 ∧ y == 50.

The constraint in the assert statement in q3 is viewed as the
post-condition postl of the loop, postl : x == y. Our goal
is to generate a loop invariant to prove postl if prel holds.

We first generate some candidate invariants V by mutating the
post-condition using the variables x and y:

V = {x == y, x ≤ 50, x ≤ y, y ≥ 0, y == 50, . . .}.

Then we start from the initial state of the PDA model and
analyze each state and squeeze the state invariant during this
process.

For the state q1, since preq1 = postq0 , we have preq1 : x <
50 ∧ y == 50. In this state, only variable x is inductive. We
can deduce that the general form of x is x = x0 + k12 ∗ 1,
where x0 denotes the value of x in q0 and k12 is the iteration
times of q1. The guard condition of σ1 is θσ1

: x < 50. We can
derive the max iteration times of this state using an optimizer
in SMT solver to get the minimal value of k which makes
x = x0+k12∧x < 50∧k12 > 0 unsat, k12min = 50−x0. So
after k12 iterations of this state, we can derive the constraints
that the variables form using the spk operator, i.e.:

spk12(preq1 , x = x+ 1)⇔ x− k12 < 50 ∧ y == 50.

The constraint set of q1 is Cq1 =
⋃k12min

k12=0 spk12(preq1 , x =
x + 1). For a candidate invariant v in V , if we can prove
∀c ∈ Cq1 , c ⇒ v, v is a valid state invariant of q1. Suppose
that the mutation strategy gives y == 50 and x == y, we can
prove that y == 50 is a valid state invariant of q1 and x == y
is not. Similarly, we can prove that x ≤ 50 and y ≥ 0 are valid
state invariants and they can be used to strengthen the invariant
y == 50, i.e., the state invariant of q1 is y == 50 ∧ x ≤ 50.
We denote the state invariant of q1 as Iq1 : y == 50∧x ≤ 50.

Then we can get the post-condition postq1 of q1 using the
spk operator:

postq1 : spk12min(preq1 , x = x+ 1)⇔ x == 50 ∧ y == 50.

Next, we analyze q2, the successor of q1. Since preq2 =
postq1 , we have postq1 : x == 50 ∧ y == 50. In q2, both
variables x and y are inductive and we can derive their general
forms: x = x1 + k23 and y = y1 + k23, where x1 and y1
are the values of x and y after q1 terminates. Then we can
get the maximal iteration time k23min = 50 of q2 using the
guard condition of σ2: x < 100 ∧ x == x1 + k23 ∧ y ==
y1 + k23 ∧ y1 == 50. So after k23 iterations of this state, the
constraint that the variables form becomes: spk23(preq2 , x =
x+ 1; y = y + 1).

The constraint set of q2 is Cq2 =
⋃k23min

k23=0 spk23(preq2 , x =
x+ 1; y = y + 1). So if a candidate invariant v satisfies ∀c ∈
Cq2 , c⇒ v, it is a valid state invariant of q2.

We can prove that x == y and y ≥ 0 are valid state
invariants of q2. We denote them as Iq2 : x == y ∧ y ≥ 0,
which is sufficient to prove the post-condition of loop l. Since
this state is the predecessor of the accept state q3, we get the
invariant Il of the loop l:
Il = Iq1 ∨ Iq2 = (y == 50∧ x ≤ 50)∨ (x == y ∧ y ≥ 0).
For this example, we have successfully computed a dis-

junctive invariant. Actually, there is no loop invariant in a
conjunction normal form and strong enough to prove the post-
condition of l.



Source Code
Control Flow

Graph
Path Dependency

Automaton Proved? End

Assertion Candidate
Invariants

Mutation

Yes

No

Fig. 4: The overflow of our approach

IV. OUR APPROACH

The overflow of our approach is shown in Fig. 4. The input
is a .c source file which contains the property ϕ to be verified.
We first convert the input into LLVM IR from which the CFG
is constructed. Then we build the PDA model from the CFG.
The assertions and the variables in the program are extracted
and used to generate candidate state invariants. The candidates
are checked after we traverse the model. The result I generated
by our approach is a general arithmetic formula and it is in
DNF for a multi-path loop.

To efficiently generate loop invariants, we use the idea
of divide-and-conquer to split the problem into several sub-
problems. We notice that the branches in a loop will bring
multiple paths and different paths show unique properties. As
mentioned above, a state in the PDA model corresponds to a
path in the loop, we introduce state invariant below.

Definition 1: A state invariant of a state in a PDA is a
predicate that always holds once the state is visited.

Inferring invariants for each path is equal to inferring
invariants for each state. The loop invariant is a disjunction
of state invariants. For each state we use a guess-and-check
approach to get the state invariant. We only need to construct
simple atomic predicates and check if they are state invariants.
The invariant is strengthened step by step until it suffices to
prove the correctness of the loop, i.e., post-condition. In fact,
as long as we can derive the state invariant of the predecessor
of the accept state, the post-condition of the loop is proved.
But for integrity, we still infer loop invariant.

A. Candidate Invariant Generation

Since loop invariants are used to prove the correctness of a
program, the form of an invariant is related to the properties
to be proved. To generate candidate invariants, we first extract
the assertions that appear in the program. The assertions can
be divided into two types according to their positions:
Assertion inside the loop. If the assert statement is inside
the loop, the problem is to check if the assertion ϕ is a
loop invariant or state invariant. So we treat ϕ as a candidate
invariant. If we can prove that ϕ is a valid invariant, then we
proved the correctness of the program.
Assertion that exists as post-condition. A loop invariant is
usually a weakened form of the loop’s post-condition. So if the
assertion appears as the post-condition of the loop, we mutate
the assertion ϕ to generate candidates using the following
mutation strategies.

• Constant relaxation. Replacing the each constant that
appears in ϕ with a variable in the program. For example,
the post-condition to be verified is ϕ : x == 10 and the

Algorithm 2: Constraint Set Calculating (CSC)
Input: qi: visiting state, preqi : precondition of qi
Output: Cqi : the constraint set qi holds

1 Cqi = ∅;
2 if qi ∈ accept then
3 return;

4 if qi is an iterative state then
5 if qi is inductive then
6 if θσi is nondeterministic then
7 Cqi = Cqi ∪ {spk(preqi , Xi = Ei)|k ∈ [0,+∞]};
8 postqi = spk(preqi , Xi = Ei);
9 else

10 exit = spk(preqi , Xi = Ei) ∧ ¬θσi ∧ k > 0;
11 opt.add(exit);
12 kmin = opt.min(k);
13 Cqi = Cqi ∪ {spk(preqi , Xi = Ei)|k ∈ [0, kmin]};
14 postqi = spkmin

(preqi , Xi = Ei);

15 else
16 c = preqi ;
17 while sat(c ∧ θσi ) do
18 c = sp(c,Xi = Ei);
19 Cqi = Cqi ∪ {c};
20 postqi = c;

21 else
22 postqi = sp(preqi , Xi = Ei);

23 foreach q in succ(qi) do
24 if sat(postqi ∧ θL(q)) and preq 6= postqi then
25 preq = postqi ;
26 CSC(q, preq , Cq);

variables are {x, y}, we use y to substitute the constant
in ϕ and take the result x == y as a candidate invariant.

• Negation. For a post-condition ϕ, if we can prove that
¬ϕ always holds, then the Hoare triple is not valid.

• Splitting. If ϕ is a conjunction of several atomic pred-
icates, ϕ = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn, we split ϕ into
atomic predicates ϕ1, ϕ2, . . . , ϕn and apply the previous
strategies to generate candidates.

• Constructing predicates using the variables that appear in
the program. This is similar to the invariant generation
approaches using template, but we only need to con-
struct simple atomic predicates, thus the number of the
predicates is much less than using template. The degree
of the predicate is determined by the degree of ϕ. For
example, for a program with variables {x, y}, we take
ax + by + c = 0 as a candidate, the parameters can be
obtained by solving a simple system of linear equations.

B. Loop Invariant Generation

For each candidate state invariant, we need to check if it is a
valid one or not and then construct loop invariants from state
invariants via Algorithm 3. Algorithm 2 traverses the PDA
model and computes the constraint set that the variables form,
which are used to check the candidates in Algorithm 3.

Algorithm 2 is invoked by CSC(q0, prel, Cq0), where q0
is the initial state of the PDA, prel is the precondition of the
loop l, Cq0 is the constraint set of q0 which is empty initially.
It visits states in each feasible trace from the initial state to
the accept state, where a trace τ is a sequence of states from
the initial state to the accept state, τ = (q0, q1, . . . , accept).



Algorithm 3: Loop Invariant Inferring
Input: Q: state set of the PDA, C: constraint set for each state, ϕ:

assertion in the program, X: variables in the program
Output: I: Loop invariant

1 V = mutate(ϕ,X);
2 I = false;
3 foreach qi in Q do
4 Iqi = true;
5 if head(qi) = tail(qi) = lh then
6 foreach v in V do
7 if ∀c in Cqi , c⇒ v then
8 Iqi = Iqi ∧ v;

9 I = I ∨ Iqi ;
10 return I;

For each state qi, its corresponding path is σi and its
precondition is the post-condition of its predecessor. We use
Xi = Ei to denote the assignment statements in σi. If qi
is not an iterative state, we directly obtain its post-condition
and continue to visit its successors. Otherwise, if qi is an
inductive state and its path condition θσi

is non-deterministic,
we can directly get the general forms of the variables. We
can derive the constraints from preqi using the spk operator.
We compute the constraint set and add them to Cqi . Then we
compute postqi using the spk operator. If θσi

is deterministic,
we use exit to represent the exit condition of qi and can get
the maximal iteration time kmin directly. Then the termination
of qi is transformed to find a minimal value of k which makes
the constraints violate the path condition θσi

, i.e., a minimal
k such that spk(preqi , Xi = Ei)∧ θσi

∧ k > 0 is unsat. If the
minimal k is kmin, the constraint set of qi can be expressed
as

⋃kmin

k=0 spk(preqi , Xi = Ei). The traces considered in our
paper are finite, as it does not make sense to prove the post-
condition of infinite traces. For a finite trace, it starts from the
initial state can end in the accept state in the PDA model, so
Algorithm 2 always terminates.

If qi is not inductive, we cannot directly derive the constraint
set after qi iterates k times. Thus, we compute the constraint
set Cqi via forward analysis until the exit condition is satisfied.

For multi-path loops, Algorithm 3 starts by mutating the
assertion ϕ to be verified using variables in the loop l. For
state q in the PDA, if its head and tail are head blocks of the
loop, q corresponds to a path inside the loop. We first assign
a trivial invariant Iq = true for q and then strengthen it with
valid candidates.

For a candidate v, if v is implied by each constraint in Cq ,
it is a valid state invariant. By checking all the candidates
in V , Iq is strengthened gradually. For a multi-path loop, the
loop invariant is a disjunction of state invariants which can
be proved using the definition of loop invariants. Fianlly, I is
implied by each constraint in the constraint set.

V. EVALUATION

A. Experimental Setup

We implement our algorithm for loop invariant inference in
a tool named InvInfer, using the LLVM1 framework (version

1https://llvm.org/

10.0.1) and Z32 solver (version 4.7.1). InvInfer takes a .c
program as its input and output the loop invariant it derives.

To evaluate our invariant inference algorithm and other
approaches, we select a set of programs from sv-benchmarks3.
These programs are selected from categories of loop-
acceleration, loop-crafted, loop-invariants, loop-lit, loop-new,
loops, and loops-crafted-1. These test cases are widely-used in
previous works, e.g., [7, 13–15]. They are small but non-trivial
to test the performance of invariant generation tools, thus we
removed the test cases which contain complex data structures
and function calls because these programs cannot be handled
by all evaluated tools. As a result, there are 63 programs left
and they are converted to the proper format supported by each
tool for comparison.

All our experiments are done on a machine with a Intel
six-core processor, running Ubuntu 20.04. We use benchexec4

to run these tools and monitor the resource consumption. For
each run, the memory limit is 8GB and the time limit is set
to 900s. If the tool exceeds the resource limit, it is terminated
automatically.

B. Research Questions and Results

RQ1: How does our approach perform in invariant infer-
ence compared with other existing tools?

We choose to compare InvInfer with three existing invariant
generation tools: InvGen [9], FiB [10], and CLN2INV [5].
These three tools all aim at generating loop invariants to prove
the correctness of programs. InvGen [9] uses a constraint-
based approach to synthesize invariants. It uses both static
analysis and dynamic analysis to obtain the constraints over
invariants. FiB [10] is a tool which utilizes forward and back-
ward analysis and squeezes loop invariants during this process
using Craig interpolants. CLN2INV [5] uses continuous logic
networks to get the parameters for the invariant templates. We
choose to compare our approach with it because our tool also
uses the concept of guess-and-check.

Since loop invariants are used to prove the correctness of
programs, our evaluation criterion is if the invariants generated
by each tool could prove the post-condition.

We run these four tools on the benchmarks built from sv-
benchmarks and record the results in Table I. The first column
and the second column indicate the name of categories from
sv-benchmarks and the number of test cases. For each tool the
Solved column reports the number of test cases solved by this
tool. The Time and Memory column report average time and
memory consumed by the tool.

On 55 programs out of 63, InvInfer is able to generate
valid invariants that are sufficient to prove these programs
and outperforms the other three tools as shown in Table I.
Invgen, FiB and CLN2INV prove the correctness of 18, 39,
and 11 programs respectively. For most test cases, InvInfer
can derive useful invariants in 10 seconds using memory no
more than 10MB. For 8 programs out of 63, InvInfer failed

2https://github.com/Z3Prover/z3
3https://github.com/sosy-lab/sv-benchmarks
4https://github.com/sosy-lab/benchexec



TABLE I: Results on sv-benchmarks

Category Number InvGen FiB CLN2INV InvInfer

Solved Time
(s)

Mem
(MB) Solved Time

(s)
Mem
(MB) Solved Time

(s)
Mem
(MB) Solved Time

(s)
Mem
(MB)

loop-acceleration 21 3 0.03 3.62 13 385.73 1700.26 4 47.24 116.97 19 0.42 7.17
loop-crafted 2 2 0.04 4.13 0 900.00 3638.09 0 132.75 115.49 2 2.14 12.71

loop-invariants 5 2 0.02 3.60 5 0.01 4.22 3 1.34 116.33 5 1.26 7.41
loop-lit 10 7 0.25 4.61 9 93.63 670.01 1 22.594 117.17 8 6.86 12.52

loop-new 3 1 0.05 4.19 1 300.34 1353.71 1 2.289 118.84 3 0.72 8.48
loops 9 2 0.09 4.22 9 0.02 5.71 2 46.37 117.39 6 1.23 7.85

loops-crafted-1 13 0 0.67 5.16 2 609.82 4007.89 0 65.03 117.94 12 1.91 8.04
Total 63 17 0.21 4.22 39 312.15 1681.24 11 43.81 117.25 55 1.89 8.55

to infer useful invariants. For 5 of them, the mutation strategy
failed to give the correct form of the candidate invariants. For
diamond_1-1.c, the transition relation between two paths
cannot be decided by our algorithm. For vnew2.c, it has
three assertions and our approach proved two of them cor-
rectly. The last assertion is i%20000003 6= 0 and our approach
failed to find a useful invariant to prove it. FiB is out of time
when it tries to prove this assertion using forward/backward
analysis. The result shows that InvGen is quite efficient, but it
fails to prove many programs because it relies on the template
to generate invariants and it does not support some operations
like modulo and bit-wise operation and it has few support for
disjunctive invariants. For part of the benchmarks such as the
test cases in category loops, FiB is more efficient than InvInfer,
this is because InvInfer should first analyze the compiler IR
and then construct the PDA model, which will take certain
of time. For many other test cases, FiB runs out of time or
memory. This is because FiB needs to calculate the interpolant
when it performs forward/backward analysis. For most of the
benchmarks, CLN2INV failed to construct valid invariants
that are sufficient to prove the programs. The reason is that
CLN2INV needs to generate invariant templates for the whole
loop and its template generation strategy failed to generate
proper templates for these test cases. Besides, CLN2INV
sets an upper bound for the loop when it samples data by
instrumentation, which makes it misjudges the properties to
be verified as false.

Answer to RQ1: InvInfer outperforms the other three
tools (i.e., InvGen, FiB, and CLN2INV) and it is effective
and efficient. InvInfer can infer more useful invariants
with less time and memory consumption.

RQ2: Does the divide-and-conquer strategy help to reduce
the number of candidate invariants and SMT calls?

The number of candidate invariants and SMT calls are
two key performance factors of our approach. The more
candidates, the more SMT calls used to prove the validity
of candidates. To answer this question, we compare InvInfer
with and without the divide-and-conquer strategy. Without the
divide-and-conquer strategy, we need to construct candidate
loop invariants for the whole loop and check if they are
valid. So under this circumstance, the mutation module needs
to construct complex candidates composed by disjunction of
atomic predicates. We choose to record the average number of
candidates and SMT calls on sv-benchmarks and another test

0 100 200 300 400 500
loop upper bound

10−1

100

101

102

103

Ti
m
e/
s Invgen

CLN2INV
FiB
InvInfer

(a) Time cost
0 100 200 300 400 500

loop upper bound

101

102

103

M
em

or
y/
M
B

Invgen
CLN2INV
FiB
InvInfer

(b) Memory cost

Fig. 5: Results on the influence of loop upper bound.

set cln2inv5. The results are shown in Table II.
TABLE II: The effect of the divide-and-conquer strategy

Dataset
InvInfer

(with divide-and-conquer)
InvInfer

(without divide-and-conquer)
Candidates SMT calls Candidates SMT calls

sv-bench 39.0 72.3 67.7 156.3
cln2inv 22.0 62.7 35.1 125.0

The results show that with the divide-and-conquer strategy,
the number of candidates has been reduced by 42.4% on the
sv-benchmarks and 37.7% on the cln2inv benchmarks. The
number of SMT calls has been reduced by nearly 50%. Most
loops in these two test sets contain one or two branches. If
the number of the branches increases further, the advantage of
the divide-and-conquer strategy will be more significant.

Answer to RQ2: The divide-and-conquer strategy helps
to significantly reduce the number of candidate invariants
and SMT calls, i.e. improve the efficiency of the invariant
inference.

RQ3: How does loop upper bound affect the efficiency of
invariant inference tools?

In RQ1, we notice that FiB runs out of time or memory
in many test cases. These programs have a common ground:
they all have a large loop upper bound. So we select several
test cases and change the upper bound of the loop gradually
and record the time and memory consumption. The results are
shown in Fig. 5(a) and Fig. 5(b).

As the results show, the time and memory cost of InvGen,
CLN2INV and InvInfer have nothing to do with the upper
bound. For FiB, the time and memory cost increase sharply
when the upper bound increases. The difference is due to the
divide-and-conquer strategy and spk operator we introduced.
The search space of InvInfer is small and it only needs few
steps to traverse the model, while FiB needs to invoke the
SMT solver many times when it does forward and backward

5https://github.com/gryan11/cln2inv



analysis, which is related to the loop upper bound. Another
reason is that when the upper bound increases, the answer
that FiB gives is simply a disjunction of program states. This
problem is caused by the SMT solver it uses. For simple
predicates, the SMT solver can derive correct interpolant.
When the predicates become complicated, the solver can
only give a disjunction of program states instead of proper
predicates. The size of invariants given by FiB increases with
the loop upper bound. For our motivating example, when the
loop upper bound is 10, the size of the invariant given by FiB
is 48, with 19 forward steps and 7 backward steps. When the
loop upper bound increases to 200, the invariant size is 957,
with 2,006 forward steps and 102 backward steps. It will cost
the SMT solver much time to calculate interpolants for such
predicates.

Answer to RQ3: When the loop upper bound increases,
the efficiency of FiB decreases sharply. The other three
tools are not affect by the loop upper bound.

C. Limitations

Our approach can generate loop invariants for multi-path
loops and the result can be applied in program verification.
But there are still some limitations. The first is the non-
inductive states in a PDA model. We cannot derive the general
form for these non-inductive variables and so we use forward
analysis to deal with them instead. This requires the non-
inductive states to have an upper bound. Forward analysis is
not as efficient as the spk operator. Another limitation is the
complexity of program structure. In this paper, we propose a
method to deal with loops with multiple paths. However, real-
world programs may be more complex, which may contain
complex function calls, reference type and other complex
operations, which need interprocedural analysis to deal with
them. For example, for the program below:

int x = 0;
unsigned int N = __VERIFIER_nondet_uint();
while (x < N){

x+= 2;
}

Our approach assigns the constraint (N ≥ 0 ∧ N ≤
UINT MAX) to the variable N . This constraint is a weak
constraint on N . For real-world programs, the function may
only return odd numbers or numbers in a specific interval,
which requires interprocedural analysis to determine a strong
constraint on N . At present, our approach and other ap-
proaches still have few support for such problems.

VI. RELATED WORK

In this work, we propose a novel approach to infer loop
invariants for multi-path loops, which converts the problem
to generating state invariants for states in the PDA model.
It improves the efficiency of loop invariant generation. A
previous work [16] uses a similar idea, which transforms
a multi-path loop into multiple single-path loops. However,
not all multi-path loops can be split into simple loops. For
example, if two paths in a loop execute one after another, the

trace forms a cycle. [16] cannot deal with such loops. Another
problem is that it does not propose an effective algorithm to
infer loop invariants for simple loops after splitting. It calls
other loop invariant generation tools to deal with these simple
loops. Our approach solves this problem further. Algorithm 2
and Algorithm 3 can also be used for loops with interleaving
paths, which only contain inductive variables. For example,
qi, qj are inductive states and qi can transit to qj and qj can
transit to qi, then the two states form a cycle. In this case, qi
and qj can be visited more than once in Algorithm 2 and the
constraint sets can be obtained to generate state invariants.

Traditional approaches utilize static and dynamic analysis
to generate loop invariants. They can be divided into sev-
eral categories according to the techniques: constraint solv-
ing [9, 15, 17, 18], interpolation [10, 19], abstract interpreta-
tion [20–23] and CEGAR (counter-example guided abstraction
refinement) [14]. Constraint solving based approaches, such
as InvGen [9], rely on invariant templates and the form of
the invariants is fixed. Compared with them, our approach
is more flexible and the form of invariants is a general
arithmetic formula. Compared with the interpolation based
approaches [10, 19], our approach is more efficient since it
does not need so many forward/backward steps to traverse the
loop. Abstract interpretation based approaches cannot generate
loop invariants in inequalities and do not support nested loops.

[2, 24–26] use dynamic analysis to construct a hull for the
trace of loop. [27–29] employ symbolic execution to verify
programs. [24] can also generate disjunctive loop invariants
for multi-path loops, while the form of the invariants is less
diverse. The reason is that the polyhedron for the trace is built
by max-plus and min-plus algebra, which is limited to a fixed
form. Compared with this method, our approach generates a
loop invariant for each path and the form of the loop invariants
is more diverse. A key problem of dynamic approaches is that
they don’t make use of the program structure, which is useful
in invariant inference. Our approach utilizes the structure to
simplify the loop invariant inference.

Recently, there have been works which utilize learning
methods to generate loop invariants. [7] proposes an active
learning approach to generate loop invariants. It utilizes se-
lective sampling to generate more samples and uses SVM
for classification. Similar to [2], it adopts KLEE to check
the invariants, so it is not sound. [6] uses graph neural
network to emulate the procedure of human expert to write
loop invariants. While its practical effect is not satisfactory,
especially on multi-path loops. [5, 30] propose continuous
logic networks, which convert the invariant to neural networks
and get the parameters during the training process. The search
space of this approach is large, so it needs to train many neural
networks to get invariants and invoke a SMT solver to check
them, which is quite time consuming. [5] and our approach
both uses the idea of guess-and-check. The key difference is
that our approach only needs to generate atomic predicates in
the guess step, which is more efficient.



VII. CONCLUSION

In this work, we propose a novel approach to infer strong
loop invariants for multi-path loops. We introduce PDA to
model loops and use the idea of divide-and-conquer to infer
loop invariants. And we develop the algorithm to verify
candidates and squeeze loop invariants using PDA model.
The result shows that our approach is efficient. Besides, we
evaluate the impact of loop upper bound on the performance
of these approaches.

ACKNOWLEDGMENT

This work is partially supported by the National Science
Foundation of China (Nos.61872262 and 62072309).

REFERENCES

[1] C. A. R. Hoare, “An axiomatic basis for computer
programming,” Commun. ACM, vol. 12, no. 10, pp. 576–
580, 1969.

[2] T. Nguyen, T. Antonopoulos, A. Ruef, and M. Hicks,
“Counterexample-guided approach to finding numerical
invariants,” in ESEC/SIGSOFT FSE, 2017, pp. 605–615.

[3] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao, “The daikon
system for dynamic detection of likely invariants,” Sci.
Comput. Program., vol. 69, no. 1-3, pp. 35–45, 2007.

[4] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest, “Us-
ing dynamic analysis to discover polynomial and array
invariants,” in ICSE, 2012, pp. 683–693.

[5] G. Ryan, J. Wong, J. Yao, R. Gu, and S. Jana,
“CLN2INV: learning loop invariants with continuous
logic networks,” in ICLR, 2020.

[6] X. Si, H. Dai, M. Raghothaman, M. Naik, and L. Song,
“Learning loop invariants for program verification,” in
NeurIPS, 2018, pp. 7762–7773.

[7] J. Li, J. Sun, L. Li, Q. L. Le, and S. Lin, “Automatic loop-
invariant generation and refinement through selective
sampling,” in ASE, 2017, pp. 782–792.

[8] X. Xie, B. Chen, Y. Liu, W. Le, and X. Li, “Proteus: com-
puting disjunctive loop summary via path dependency
analysis,” in SIGSOFT FSE, 2016, pp. 61–72.

[9] A. Gupta and A. Rybalchenko, “Invgen: An efficient
invariant generator,” in CAV, 2009, pp. 634–640.

[10] S. Lin, J. Sun, H. Xiao, Y. Liu, D. Sanán, and H. Hansen,
“Fib: squeezing loop invariants by interpolation between
forward/backward predicate transformers,” in ASE, 2017,
pp. 793–803.

[11] W. F. Trench, “Introduction to real analysis introduction,”
Library of Congress Cataloging-in-Publication Data.,
2003.

[12] E. W. Dijkstra and C. S. Scholten, Predicate Calculus
and Program Semantics, ser. Texts and Monographs in
Computer Science. Springer, 1990.

[13] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “ICE:
A robust framework for learning invariants,” in CAV,
2014, pp. 69–87.

[14] T. Welp and A. Kuehlmann, “Property directed invariant
refinement for program verification,” in DATE, 2014, pp.
1–6.

[15] P. Cadek, C. Danninger, M. Sinn, and F. Zuleger, “Using
loop bound analysis for invariant generation,” in FM-
CAD, 2018, pp. 1–9.

[16] R. Sharma, I. Dillig, T. Dillig, and A. Aiken, “Simpli-
fying loop invariant generation using splitter predicates,”
in CAV, 2011, pp. 703–719.

[17] S. Gulwani, S. Srivastava, and R. Venkatesan, “Program
analysis as constraint solving,” in PLDI, 2008, pp. 281–
292.

[18] A. R. Bradley, “Sat-based model checking without un-
rolling,” in VMCAI, 2011, pp. 70–87.

[19] Y. Chen, C. Hong, B. Wang, and L. Zhang,
“Counterexample-guided polynomial loop invariant gen-
eration by lagrange interpolation,” in CAV, 2015, pp.
658–674.

[20] P. Cousot and R. Cousot, “Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints,” in POPL,
1977, pp. 238–252.

[21] P. Cousot and N. Halbwachs, “Automatic discovery of
linear restraints among variables of a program,” in POPL,
1978, pp. 84–96.

[22] V. Laviron and F. Logozzo, “Subpolyhedra: A (more)
scalable approach to infer linear inequalities,” in VMCAI,
2009, pp. 229–244.

[23] E. Rodrı́guez-Carbonell and D. Kapur, “Automatic gen-
eration of polynomial invariants of bounded degree using
abstract interpretation,” Sci. Comput. Program., vol. 64,
no. 1, pp. 54–75, 2007.

[24] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest, “Using
dynamic analysis to generate disjunctive invariants,” in
ICSE, 2014, pp. 608–619.

[25] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to
support program evolution,” in ICSE, 1999, pp. 213–224.

[26] X. Allamigeon, S. Gaubert, and E. Goubault, “Inferring
min and max invariants using max-plus polyhedra,” in
SAS, 2008, pp. 189–204.

[27] C. S. Pasareanu and W. Visser, “Verification of java
programs using symbolic execution and invariant gen-
eration,” in SPIN, 2004, pp. 164–181.

[28] T. Nguyen, M. B. Dwyer, and W. Visser, “Syminfer:
inferring program invariants using symbolic states,” in
ASE, 2017, pp. 804–814.

[29] C. Csallner, N. Tillmann, and Y. Smaragdakis, “Dysy:
dynamic symbolic execution for invariant inference,” in
ICSE, 2008, pp. 281–290.

[30] J. Yao, G. Ryan, J. Wong, S. Jana, and R. Gu, “Learning
nonlinear loop invariants with gated continuous logic
networks,” in PLDI, 2020, pp. 106–120.


