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1 GUI-Squatting Attack: Automated Generation
2 of Android Phishing Apps
3 Sen Chen , Lingling Fan, Chunyang Chen , Minhui Xue , Yang Liu , and Lihua Xu

4 Abstract—Mobile phishing attacks, such as mimic mobile browser pages, masquerade as legitimate applications by leveraging

5 repackaging or clone techniques, have caused varied yet significant security concerns. Consequently, detection techniques have been

6 receiving increasing attention. However, many such detection methods are not well tested and may therefore still be vulnerable to new

7 types of phishing attacks. In this article, we propose a new attacking technique, named GUI-Squatting attack, which can generate

8 phishing apps (phapps) automatically and effectively on the Android platform. Our method adopts image processing and deep learning

9 algorithms, to enable powerful and large-scale attacks. We observe that a successful phishing attack requires two conditions, page

10 confusion and logic deception during attacks synthesis. We directly optimize these two conditions to create a practical attack. Our

11 experimental results reveal that existing phishing defenses are less effective against such emergent attacks and may, therefore,

12 stimulate more efficient detection techniques. To further demonstrate that our generated phapps can not only bypass existing

13 detection techniques, but also deceive real users, we conduct a human study and successfully steal users’ login information. The

14 human study also shows that different response messages (e.g., “Crash” and “Server failed”) after pressing the login button mislead

15 users to regard our phapps as functionality problems instead of security threats. Extensive experiments reveal that such newly

16 proposed attacks still remain mostly undetected, and are worth further exploration.

17 Index Terms—Android phishing apps, android GUI attacks, android apps

Ç

18 1 INTRODUCTION

19 DUE to the portability and convenience of mobile devices,
20 mobile apps have surpassed traditional desktop appli-
21 cations, as the primary way of accessing the Internet. Many
22 users heavily depend on their smartphones for daily tasks,
23 such as shopping, payments, and chatting through mobile
24 apps. This kind of popularity has attracted great attention
25 from attackers with a growing number of malicious apps
26 over the past few years. Among these malicious apps,
27 phishing is the most popular and widely used strategy [58]
28 involving the act of harvesting user names, passwords, and
29 other sensitive information from a user. This identity theft
30 poses a security threat for all mobile apps; however, the
31 consequences are particularly severe for financial and social
32 apps. It is reported that mobile phishing apps lead to the
33 loss of billion dollars every year [1].
34 In traditional phishing attacks, attackers send SMS or
35 emails containing malicious links to redirect the browser to
36 external phishing web pages or inducing download activi-
37 ties to install malicious applications on users’ devices [17].
38 Moreover, phishing attacks are not necessarily sent in bulks

39but can be highly targeted, such as credential spearphish-
40ing [39] and whaling attacks [40]. The effectiveness of such
41phishing methods have been reduced due to the increased
42public awareness of risk and a plethora of research about
43automatically detecting phishing web pages [73]. So attack-
44ers sought to propose more sophisticated methods, such as
45embedding attacks directly inside the apps. In particular,
46attacking the graphical user interface (GUI). For example,
47attackers will build a phishing app to masquerade as the
48original one by repackaging or cloning the original one to
49steal the private information entered in the login pages [15].
50There are two challenges to perform this attack successfully.
51First, these methods require substantial effort and strong
52domain knowledge to carry out static program analysis to
53understand and mimic the logic of the original apps. More-
54over, for cloning apps, the difficulty is increased when the
55UI pages in the original apps have dynamic loading areas
56which are not determined by the UI resources [21]. Second,
57the original apps may not be able to be replicated due to the
58development of app protection techniques (e.g., app pack-
59ing [2] and code obfuscation [29]). In addition, the state-of-
60the-art defenses (e.g., fuzz hashing technique [78] and cen-
61troid-based approach [20]) can detect repackaging and clon-
62ing phishing attacks successfully and effectively. Hijacking
63existing original apps (e.g., window overlay and task hijack-
64ing) could also be detected and mitigated by state-of-the-art
65detection techniques [15], [35], [59], [60].
66A Squatting attack [10] is a form of denial-of-service
67(DoS) attack where a program interferes with another pro-
68gram through the use of shared synchronization objects.
69There exist several attack derivatives for different scenarios,
70such as typo-squatting attack, skill-squatting attack, and
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71 voice-squatting attack. In this paper, we propose “GUI-
72 Squatting Attack”, a new approach to automatically generate
73 phishing apps effectively, within a few seconds, resulting in
74 a powerful new attack for the real world. The generated
75 phishing apps (called phapps in this paper) have very similar
76 login-related UI pages corresponding to the original apps.
77 Additionally, phapps have been encoded with deception
78 code which can steal sensitive information secretly. We
79 observe from the existing phishing techniques (e.g., repack-
80 aging and cloning phishing attacks, and zero-day phishing
81 attacks [45]) that a successful phishing attack requires two
82 conditions: page confusion and logic deception1 (i.e., deceiving
83 users with high similarity UI pages and stealing their infor-
84 mation with deceptive UI responses after clicking the
85 “login” button). Our GUI-Squatting attack optimizes these
86 two conditions by leveraging image processing and deep
87 learning methods, making a powerful attack, which can eas-
88 ily bypass state-of-the-art detection techniques.
89 To illustrate our phishing attack threat model, we follow
90 the assumption made by [21], [60], we assume that Alice
91 downloads a generated phishing banking app from an unre-
92 liable app market on her new smartphone. Installing the
93 app does not raise any concerns of Alice as it only requires
94 the permission to access the Internet. Launching the app
95 does not raise any concerns either as the phishing app has a
96 high similarity with the original app’s UI pages. Alice clicks
97 the “login” button after entering her personal banking cre-
98 dentials, and a dialog pops up, reminding Alice that the cur-
99 rent banking app is out of date, and needs to be updated to

100 the latest version. In parallel, her credentials have been
101 recorded and transmitted to a remote server owned by the
102 malicious app author. When Alice clicks “Update Now”,
103 Google Play is launched and redirected to the download
104 page of the corresponding original app. Alice continues to
105 use the original app without noticing that her sensitive
106 information has already been stolen. Similar malicious apps
107 by repackaging or cloning have been previously discov-
108 ered [15], [21].
109 Motivated by the scenario above, we implement a new
110 approach to automatically and effectively generating a new
111 phishing app within a few seconds. Given only the login
112 page(s) of an app, with no other requirements, we first
113 extract all GUI components by adopting image processing
114 techniques, next we obtain the component types through
115 image classification. According to these identified compo-
116 nents and their attributes in the original page, we generate
117 the corresponding GUI code. Finally, we add deception
118 code for the interactive GUI components to collect users’
119 information and return a certain response to resolve the
120 users’ doubts about the phishing app. To increase the
121 authenticity under real-world scenarios, we collected 10
122 types of responses following the “login” button from 50 real
123 apps, to have our generated phapps randomly return one of
124 these real responses.
125 Our approach is able to conduct a new powerful phish-
126 ing attack in the real word due to the following three

127characteristics: (1) It is difficult for the generated app to be
128spotted as a phishing one. The generated login-related page
129(s) are very similar to those of the original app, with subse-
130quent responses sourced from the original apps, mobile
131users cannot distinguish between the phapp and the origi-
132nal app (Section 5). In addition, the generated apps require
133very few permissions (only Internet access), and is therefore
134undetected by both users and existing malware detection
135techniques. (2) The generation process is fully automated
136without a need for humans to understand the complicated
137deception code of the app. Therefore, the attackers can eas-
138ily generate a large number of phishing apps in a short
139amount of time (each new app takes 3 seconds on average)
140to launch large-scale attacks. (3) The generation method is
141platform-independent. Although the current implementa-
142tion is based on the Android platform, it can be extended to
143other mobile platforms like iOS as long as we can collect
144data from those platforms. In addition, according to the
145recent news headlines [9], phishing attackers have started
146leveraging GDPR [5] as a themed (bait) in an attempt to steal
147users’ information. Users usually receive scam emails with
148malicious links, showing that they should update their apps
149to comply with a new Privacy Policy, which reflects changes
150introduced by GDPR. Such hotspot can be used as an actual
151bait to make GUI-Squatting attacks possible in the real
152world. Android malware can be spread through a variety of
153techniques [37], [78], they can all be used to propagate and
154push the phapps to the users’ mobile devices, which is out
155of scope of our research in this paper.
156The experiments show that our method can accurately
157segment and classify most GUI components (83.2 percent
158accuracy) in the UI screenshot, and the generated login
159pages are on average 96 percent similar to the original page
160in a pixel comparison.2 We then further demonstrate that
161the generated apps cannot only bypass existing malware or
162phishing app detection methods, but can also successfully
163capture mobile users’ credentials without alerting users of
164the human study. The human study involved 20 real partici-
165pants and 100 apps (50 original apps and 50 generated
166phapps). This study demonstrates that the different
167response messages, such as “Crash” or “Server failed” after
168pressing the “login” button, make users incorrectly regard
169the phapp as a functionality problem instead of a security
170threat. Our study also reveals insights that users care more
171about the security of financial apps than social ones, and
172that gender or profession does not result in much difference
173to the experimental results.

174In summary, this papermakes the following contributions:

175� We introduce a new approach for automated mobile
176phishing app (phapp) generation, which can be used
177on different mobile platforms, such as Android and
178iOS. The costless method enables a new powerful
179and large-scale attack (“GUI-Squatting Attack”) to dif-
180ferent apps in a short time (2.51 seconds for each app
181on average).

1. In this paper, logic deception refers to reasonable app responses
(i.e., deception code) when clicking interactive components in login-
related pages. Since our goal is to steal users’ credentials, we do not
attempt to generate the actual logic/back-end code that is similar to the
original apps.

2. More results about the extracted components and the similarity
comparison can be found on https://sites.google.com/view/gui-
squattingattack/
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182 � Our generated phishing apps can bypass the state-of-
183 the-art anti-phishing techniques (e.g., DROIDEA-

184 GLE [66] and WINDOWGUARD [59]). Meanwhile, mal-
185 ware detection (e.g., DREBIN) and anti-virus
186 techniques (e.g., VirusTotal) are weak in identifying
187 phapps.
188 � Our comprehensive experiments and human study
189 also show the effectiveness and practicality of our
190 generated phishing apps which successfully steal
191 users’ information imperceptibly in the real world.
192 The analysis of users’ feedback is also valuable to
193 future research.
194 At a high level of this work, our experimental results
195 reveal that phishing defenses should effectively respond to
196 such newly proposed attacks. Our approach can aid the pro-
197 cess to further understanding and to explore the characteris-
198 tics of new mobile phishing apps.

199 2 MOBILE PHISHING ATTACK

200 In this section, we introduce the Android GUI framework
201 and potential security threats arising due to consistent UI
202 design principles. Additionally, we briefly introduce the
203 types of mobile phishing attacks that have been exhibited.

204 2.1 Android GUI Framework

205 The Android GUI framework is famous for multi-interac-
206 tive activities. The GUI is what the user can see and interact
207 with. The Android GUI provides a variety of pre-built com-
208 ponents, such as structured layout objects (e.g., LinearLay-
209 out) and components (e.g., Button and EditText). These
210 elements allow developers to build the graphical user inter-
211 faces for the app. The layout structure uses a GUI-hierarchy
212 to follow UI design principles.
213 The Android GUI framework is a reusable and extensible
214 set of components with well-defined interfaces that can be
215 specialized. However, the security of Android GUI frame-
216 work remains an important yet under-scrutinized topic.
217 The Android GUI framework does not fully consider secu-
218 rity issues. For example, a weaker form of GUI confidential-
219 ity can be breached in the form of GUI state by a
220 background app without requiring any permissions. The
221 design of the GUI framework can potentially reveal each
222 GUI state change through a newly-discovered public side
223 channel – shared memory, giving a chance for attackers to
224 steal sensitive user input [21]. The UI pages of Android
225 apps are usually rendered by static XML files, which
226 reduces the attack costs to control every pixel of the screen.
227 If the attackers can extract the GUI components and their
228 attributes, they can generate the corresponding GUI code
229 smoothly.
230 Furthermore, when a user is interacting with the target
231 GUI component like clicking or through voice controlling, it
232 can actually trigger some other actions in the background
233 such as tapjacking attack [61], which was not intended by
234 the user. In fact, the Android platform has been plagued by
235 various GUI attacks in recent years, such as phishing
236 attacks, task hijacking [60], and the full screen attack [15].
237 Malware on the device that takes screenshots also breaches
238 GUI confidentiality [46].

2392.2 Existing Mobile Phishing Attacks

240Phishing, as a type of social engineering attack [15], [58], is
241often used to steal user information, such as login creden-
242tials. It occurs when an attacker masquerades as a trusted
243entity (resembling the original web page or application) [43].
244Web phishing attacks date back to 1995 [57], but recently,
245attackers have shifted their attention to mobile devices [37].
246Due to the small screen size and lack of identity indicators
247of URLs seen next to online web sites, mobile users have
248become more vulnerable to phishing attacks. On mobile
249devices, 81 percent of phishing attacks are carried out using
250phishing apps, SMS, or web pages [71]. Mobile oriented
251phishing attacks are classified into two strategies: (1) mas-
252querade as original apps; or (2) hijack existing original
253apps. Mobile phishing attacks can be classified into three
254types based on the above two strategies.

255� Similarity attacks (spoofing attacks) analyze the GUI
256code of the original app and partially modify the
257GUI code. Attackers then add logic code to manipu-
258late the original app logic [66]. For example, attack-
259ers can crack payment apps to bypass the payment
260functionality.
261� Window overlay attacks render a window on top of
262mobile screen, either partially (e.g., Toast and Dia-
263log) or completely (e.g., similar UI pages) overlap-
264ping the original app window [15], [21], [61]. For
265example, attackers choose a particular time to render
266the phishing UI pages by monitoring the occurrence
267of the original app’s login activity. This attack usu-
268ally leverages the flaws of design mechanism in
269mobile OS (e.g., using ActivityManager#getRun-
270ningTasks() to get “topActivity” before Android 5.1).
271� Task hijacking attacks trick the system into modifying
272the app navigation behaviors or the tasks (back
273stacks) in the system [35], [60]. For example, The back
274button is popular with users because it allows users
275to navigate back through the history of activities.
276However, attackers may abuse the back button to
277mislead the user into a phishing activity (e.g., misus-
278ing “taskAffinity”). In short, attackers try to modify
279the tasks and back stack to execute phishing attacks.

2802.3 Newly-Proposed Attack: GUI-Squatting Attack

281We follow the assumption summarized by the existing
282mobile phishing attack techniques: a successful phishing
283app requires two conditions: page confusion and logic decep-
284tion. In this paper, we propose a new powerful and large-
285scale attack (called “GUI-Squatting Attack”) based on fully
286automated generation of phishing UI pages and apps.
287Moreover, our approach can generate similar UI pages for
288the phishing attacks mentioned above.
289The following differences make the GUI-Squatting attack
290more threatening than previous attacks. (1) Only the login
291page(s) of an app is required and no other inputs are neces-
292sary, making a large-scale attack possible, regardless of plat-
293form limitations. (2) No requirements of domain knowledge
294and traditional attack techniques (e.g., repackaging and
295clone techniques) make the result harder to detect. (3) It can
296conduct a wide range of attacks due to the low cost of the
297generation process, and it can launch targeted attacks like
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299 ing apps can successfully control every pixel of the screen
300 and capture real users’ credentials without raising the user’s
301 attention under practical GUI-Squatting attacks in the real
302 world. We detail the new strategy in Section 3.

303 3 OUR APPROACH

304 In this section, we first propose our threat model, and then
305 introduce our new approach with three phases to automati-
306 cally generate mobile phishing apps and UI pages.

307 3.1 Threat Model

308 We follow the assumption made in [60] that our generated
309 phishing apps have been installed on the users’ mobile devi-
310 ces. There aremany propagation techniques capable of push-
311 ing malicious apps to user devices [37], which we consider
312 beyond the scope of this paper. The generated apps only
313 need the “INTERNET” permission, frequently requested by
314 Android apps. Due to the high similarity between the origi-
315 nal UI pages and the ones in our phapp, the app that the user
316 does not realize is a phishing replica. The credentials will be
317 collected and transmitted to a remote server after the user
318 enters personal credentials and clicks the “login” button. At
319 the same time, a response is shown (e.g., “update required”
320 dialog, crash dialog, no response) to create a diversion so
321 that the user does not suspect that their sensitive information
322 has been stolen.

323 3.2 Approach Overview

324 The goal of our approach is to take in the login-related
325 screenshots of a mobile app lui, the icon of a mobile app
326 icon, and output a phapp that can collect user credentials.
327 In order to generate phapps that are able to deceive users
328 and successfully steal users’ sensitive information imper-
329 ceptibly, our approach needs to address two challenges: �1
330 To enable page confusion, the generated login-related UI
331 pages should have a high similarity with the original ones. �2
332 To enable logic deception, deception responses need to
333 be provided, especially for interactive components, includ-
334 ing the functionality of interacting with other UI pages,
335 hence corresponding deception code needs to be generated
336 automatically.
337 To meet these conditions and successfully generate
338 mobile phishing apps, we propose our approach to fully
339 automate phishing app generation in Fig. 1. Our approach
340 has three phases: (1) we extract the GUI components from
341 the target UI screenshots by segmenting the components
342 with image processing techniques (i.e., canny edge detection

343and edge dilation), and classify the types of GUI components
344with a deep learning algorithm (i.e., CNN); (2) we then
345assemble these components in assistance with the layout
346code snippet of each component along with their attributes,
347to generate layout code (i.e., XML file) for the imitation login
348page that is still highly similar to the original; (3) we further
349generate the deception code and assign responses for interac-
350tive components (ICs), such as ImageButton and EditText.
351The generated phishing apps can secretly collect users’ cre-
352dentials without causing users’ awareness through these
353responsemessages.

3543.3 Interactive Components Extraction (Phase 1)

355The extraction of interactive GUI components involves two
356steps: component segmentation and component classification.
357GUI Component Segmentation. To segment the compo-
358nents from UI screenshots, we first detect the edges of all
359components in the screenshot through canny edge detec-
360tion [3] which infers the edges by suppressing intensity gra-
361dients of the image. But the detected edges are too coarse to
362be used directly because this technique also detects the
363exact edges of each character and letter, which does not rep-
364resent a full UI component. For example, the letters of
365“Password” in Fig. 2b are isolated from each other. Thus we
366merge adjacent elements by edge dilation [4], which gradu-
367ally enlarges the boundaries of regions so that the holes
368within the regions become smaller or entirely disappear. As
369shown in Fig. 2c, the EditText with its hint texts and the
370background image have merged together.
371We observe that although some UI components may use
372irregularly shaped elements, we opt to bound all components
373as rectangles to make the component identification and code
374generation process easier. Therefore we adopt contour detec-
375tion to obtain the regions with an approximate rectangle
376border. Fig. 2d shows our detected GUI components with
377all components annotated with rectangular, blue bounding
378boxes. We crop these regions from the screenshots as
379images of the GUI components, and also record their coordi-
380nates and sizes for later use in the classification and genera-
381tion process.
382GUI Component Classification. We then classify the
383cropped images of these GUI components into different
384types such as Button and EditText. To carry out the GUI
385component classification, we adopt a Convolutional Neural
386Network (CNN), a state-of-the-art approach often used in
387computer vision applications.
388The model takes as input the cropped images of GUI
389components and outputs an N dimensional vector where
390N is the number of classes that the program has to
391choose from. As we are only concerned about the

Fig. 1. Workflow of our approach (ICs is short for interactive
components).

Fig. 2. Process of GUI component extraction.

4 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. X, XXXXX 2019
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392 interactive GUI components which need extra GUI code
393 in the login page and deception code, we consider the
394 components of EditText, Button, ImageButton, TextView,
395 and CheckBox. Note that Some TextViews contain click-
396 able links and will be discussed later in Section 3.4.
397 Other components, such as ImageView and Spinner, are
398 put into one type called “Others.” Thus, N ¼ 6 and our
399 model is to classify a cropped component as one of these
400 6 types. Note that the output of the fully connected layer
401 will be the probability of these 6 classes, where the sum
402 of probabilities is 1.

403 3.4 GUI Code Generation (Phase 2)

404 In the second phase, we generate a GUI code snippet of the
405 corresponding component based on the classified types of
406 components, and embed their attributes collected from the
407 component images, as shown in Fig. 3.
408 After obtaining a list of interactive GUI components, we
409 generate the phapp following Algorithm 1. The inputs to
410 our algorithm include lui as a list of UI screenshots of the
411 Android app’s login pages and icon as the icon of the
412 Android app. Note that one app may have several login UI
413 pages. For example, it may require users to fill in the user
414 name on the first page, and then fill in password in the next
415 page. So we set the number of login UI pages as N (N � 1).
416 We first obtain the list of GUI interactive components
417 ordered from top to bottom, and from left to right on the
418 original screenshot as ICs.
419 For each UI page, we separately generate GUI code
420 and deception code since GUI code is usually maintained
421 in an XML layout file, and the back-end code is usually
422 maintained in one or more Java files. Apart from several
423 interactive components for which we need to generate
424 extra interaction code, most parts of the page do not need
425 any change. Thus we put the original login UI screen(s)
426 as the background canvas and add interactive compo-
427 nents later. Specifically, for each UI page, we first initial-
428 ize GUI code codegui as the code generated from the
429 screenshot and leave deception code codedeception½i� (i
430 refers to the ith lui) empty (line 8) as the background can-
431 vas does not involve any deception code in apps. We
432 then obtain attributes for each interactive component
433 extracted from phase 1. For each component, we collect
434 its cropped image, detailed coordinates with getAttr()

435in line 10. However, among the five interactive compo-
436nents, there is one special type, EditText. Apart from
437basic attributes, it may also contain text hints (reminder
438messages like “Email”, “Password” as shown in Fig. 2) or
439drawable images (e.g., an email representation image or a
440password visibility toggle). Therefore, we check the exis-
441tence of such hints and obtain their text by leveraging
442optical character recognition (OCR) techniques [8], and
443also extract drawable images from inside the EditText.
444Since EditText may also own a particular background
445color (e.g., white, blue), we take the most frequent pixel
446value to fill in the area of EditText. Fig. 3 shows the gen-
447erated GUI code of one of these EditText components
448with detailed attributes.
449The other special type of interactive component is Text-
450View, many of which just display text without any interac-
451tion. However, some TextViews are special with clickable
452links, for example, an interactive TextView is used to assist
453a user in password recovery (i.e., “FORGOT PASSWORD?”
454as seen in Fig. 3). Therefore, to preserve this functionality,
455we also retrieve the text attributes of TextView through
456OCR, and treat them as an interactive component in the
457login-related pages if the text contains words that are
458matched with those in a keyword set (e.g., “sign up”,
459“forget password” or related alias) with function isInterac-
460tive() in line 11. Otherwise, we ignore it both in GUI code
461and deception code (line 12).

462Algorithm 1. Phapp Generation

463Input: lui: a list of login-related UI pages
464icon: icon of the Android app
465Output: app: generated Android phishing app (phapp)
466// GUI Code Generation
4671: N  number of lui
4682: i 0
4693: codegui ?

4704: codedeception ?

4715: ICs getInteractiveComponents(lui)
4726: while i < N do
4737: codegui[i] generateComponentUI(lui)
4748: codedeception[i] “ ”
4759: foreach ic 2 ICs½i� do
47610: icattr getAttr(ic)
47711: if ic == TextView and!isInteractive(ic) then
47812: continue
47913: codegui[i] += generateComponentUI(icattr)
480// Deception Code Generation
48114: codedeception[i] += generateComponentListener(icattr)
48215: i = i + 1
48316: phapp generateApp(codegui, codedeception, icon)
48417: return phapp

485We generate GUI code for every interactive component
486according to its attributes, and add the code into the
487overall linear layout of the GUI code file (line 13). For
488Button, ImageButton, and interactive TextView, we gener-
489ate GUI code by utilizing ImageButton, i.e., cropped com-
490ponent images which can be clicked. For EditText, we
491obtain its GUI code by also considering any of its text
492hints, drawable images and background color (shown
493in Fig. 2).

Fig. 3. GUI code snippet of layout.xml file generated by our approach for
phapp.

CHEN ET AL.: GUI-SQUATTING ATTACK: AUTOMATED GENERATION OF ANDROID PHISHING APPS 5
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495 In the third phase, we generate the corresponding deception
496 code snippets based on different types of components in the
497 layout file, as well as different event listeners. We allocate
498 different types of responses collected from real apps to the
499 “Login” buttons. Meanwhile, we implement SSL/TLS
500 authentication and user identity verification via HTTPS con-
501 nection for each phapp to prevent being detected by traffic
502 analysis tools. Additionally, to prevent being detected by
503 control- or data-flow analysis, we create some widely-used
504 activity transition relations for each phapp.
505 After generating the GUI code codegui for login images,
506 we then generate the corresponding deception code
507 codedeception (line 14). Specifically, we set up listeners for dif-
508 ferent interactive components. Since our goal is to automati-
509 cally generate phishing apps that can steal user credentials
510 imperceptibly instead of cloning apps, we focus on generat-
511 ing the deception code of login-related pages of the original
512 apps, and attempt to deceive users by displaying the highly
513 similar login pages and showing plausible responses when
514 clicking the “Login” button. According to our observation
515 of login-related pages, we summarize two kinds of decep-
516 tion code that need to be generated based on different inter-
517 active components.
518 Interactive Components that are Directly Related to Basic
519 Login Logic. (i.e., EditText for inputs and Button for submis-
520 sion). As users can enter their information including their
521 user names and passwords in EditText, we add listeners to
522 each EditText to collect users’ credentials. For “login” but-
523 tons, we regard it as ImageButton in the GUI code, and add
524 a listener (i.e., View#OnClickListener) to it. Once the sub-
525 mission component is clicked, the listeners for EditText will
526 check whether there is content inside. If not, there will be a
527 pop-up message reminding the user to“please fill in the
528 account and password.” Otherwise, the data collection pro-
529 gram will be triggered, and the credentials are transmitted
530 to a remote server via the “getText()” method.
531 Interactive Components that are Associated with other Func-
532 tionalities or other UI Pages. As shown in Table 1, based on
533 our observations of real apps, we summarize and demon-
534 strate five kinds of interactive components that are most
535 widely used. These interactive components may appear in
536 the login-related pages; however, they are not directly asso-
537 ciated with the login logic. For Checkboxes outside EditText,
538 we use SharedPreference#getSharedPreferences to save the
539 inputs of EditText to determine whether the Checkbox has
540 been chosen or not. In addition, we use EditText#setTrans-
541 formationMethod to control the plain-text display of the
542 password in some cases. The implementation of a Switch is

543similar to Checkbox outside EditText. For ImageButton of
544third-party logins (e.g., Facebook and Twitter), the creden-
545tials are used via the interfaces from the corresponding par-
546ties, which are out of scope of our research in this paper
547though it could be possible to generate a phapp for the
548standardized Facebook or Google login page. Besides, the
549ImageButton of “Sign up” and interactive TextView of
550“Forgot password” will indicate that the current user does
551not have valid credentials; they are users who are not our
552phishing target, and thus it is meaningless to steal creden-
553tials from them. We therefore allocate the same response as
554clicking the “login” button to make them interactive. Note
555that, for ImageButton, Button, and interactive TextView, we
556treat them all as ImageButton in the GUI code, and add lis-
557teners for all of them.
558We collected and identified 10 different types of responses
559for the “login” button. Among 37,251 Android apps auto-
560matically explored in Section 4.1, we randomly sample 50 of
561them which could not be logged in for a manual check. We
562check the screenshots of these apps after clicking the “login”
563button, and summarize the ten responses in Table 2. We find
564that 60 percent of the apps return “Invalid inputs”, i.e.,
565wrong user name or password. Other unsuccessful login
566pages include “Crash”, “Server failed” (no connection to the
567remote server), “App update”, “Network unavailable” (no
568connection to Internet), “Keep loading” (showing the prog-
569ress bar), “Slow response” (delay of the app), “Google ser-
570vice update”, “Force exit” (exit without notification), and
571“No response” (no feedback after the action). When generat-
572ing the phishing apps, we randomly select one of these
573responses to camouflage our app as an original with func-
574tionality problems as shown in Fig. 4.

TABLE 1
Interactive Components not Directly Associated With the Login Logic

TABLE 2
Response Types Extracted From Real Apps

Types of Response Description #

Invalid inputs Wrong user name or password 30
Crash Unfortunately, the app has stopped 6
Server failed Can not connect with remote server 4
Update app Update the latest version from

market
2

Update Google
service

Update Google service from market 2

Network
unavailable

Check your network connection 2

Keep loading Keep showing the loading status 2
Slow response Simulate system delay 2
Force exit Exit app directly 1
No response No feedback after the action 1
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of575 Listing 1. Simplified Code Snippet of Server Authentica-

576 tion in Phapps

577 1 // Phapp server authentication

578 2 X509TrustManager trustManager = new

579 X509TrustManager(){

580 3 // Certificate verification

581 4 public void checkServerTrusted(...){

582 5 for (X509Certificate cert : chain){

583 6 // Is it expired

584 7 cert.checkValidity();

585 8 // Certificate public key string

586 9 cert.verify(ca.getPublicKey());

587 10 }}}

588 11 // Hostname verification

589 12 final HostnameVerifier hostnameVerifier=

590 new HostnameVerifier(){

591 13 public boolean verify(...){

592 14 if(URL.equals(hostname)){

593 15 return true;

594 16 }};

595 With the help of Socket or HTTP/HTTPS connections,
596 our remote server (i.e., webpage) will receive users’ creden-
597 tials after users enter their information and click the submit
598 or login button. Such one-way communication may be vul-
599 nerable to detection through traffic analysis, which tracks
600 network traffic from the client to the server by using a sim-
601 ple pattern-based approach. To avoid being detected, we
602 implement server authentication and user identity verification
603 for each phapp. (1) We implement SSL/TLS authentication
604 (the core simplified code snippet is shown in Listing 1)
605 when the client side (i.e., phapp) sends network requests to
606 mimic the real communication between the client and
607 server sides. Specifically, we first generate the server certifi-
608 cate using keytool (i.e., keytool -genkey -alias phapp -validity
609 3560 -keystore phapp.keystore), which is later imported at the
610 server side. After that, we also use keytool to export public
611 key string of the server certificate, which is used to verify the
612 server certificate at the client side. Server authentication
613 contains two phases: server certificate verification (Lines 2-
614 10) and server hostname verification (Lines 12-16). �1 For the
615 verification of the server certificate, we use checkValidity() to
616 verify whether the certificate is expired or not, and use ver-
617 ify() (Line 9) and getPublicKey() to verify the public key string
618 of the server certificate. �2 For the verification of the server
619 hostname, we just verify the domain name address. More-
620 over, we dynamically compose the server URL (Line 14)
621 using separate strings to evade the black-list matching strat-
622 egy. (2) We implement user identity verification via HTTPS
623 for each phapp by returning an always-true result. Before
624 pushing different types of responses for the “login” button,
625 the server will check the validity of the token sent from the
626 phapp, and the client side also will parse the received token

627no matter what data is sent from the client side (the core
628simplified code snippet is shown in Listing 2). Note that, a
629true result will be returned from the server side, indicating
630that the user is valid. Then, the response will be pushed to
631users, and the response about the functionality problem
632will be displayed on the top of the screen to distract users so
633that they do not regard the phapp as a phishing app.

634Listing 2. Simplified Code Snippet of User Identity
635Verification in Phapp

6361 public void send(...) {

6372 new Thread(new Runnable()) {

6383 // Send the login data to server

6394 Request req = new Request.Builder().url

640(URL).post(login_data);

6415 OkhttpClient client = new OkHttpClient();

6426 // Check the login data and receive response

6437 Response res = client.newCall(req).exectue

644();

6458 receivedDataParsing(res);

6469 }}

647Some control- or data-flow analysis methods [22], [54]
648analyze the transitions between activities, it would raise sus-
649picion if there is no transition between the login activity and
650other activities in an app. To evade it, we create many tem-
651plates of activities that are widely used to interact with the
652login activity, such as register activity, main activity, and set-
653ting activity. To set up the transitions between them, we
654leverage the API StartActivity() provided by Android
655system to enable the activity transition from activity A to
656activity B. Such activity transitions help address the doubts
657of flow-based analysis. In fact, the users would not observe
658the existence of these activities since the app would encoun-
659ter functional problems after users click the “Login” button.
660In addition to event handler generation, we further bind
661the GUI code and deception code via findViewById(), which
662identifies the corresponding component from the layout file
663(i.e., GUI code) and binds it with the deception code. To avoid
664being detected by other anti-phishing techniques based on
665screenshots, we prohibit our apps from having screenshots
666taken by other third-party apps by setting the flag (Window-
667Manager.LayoutParams.FLAG_SECURE = TRUE) on the
668login page. With the app icon, and the generated GUI code,
669deception code, we finally build the phapp (line 15).

6704 IMPLEMENTATION

6714.1 GUI Component Collection

672Fig. 5 shows the training data collection process.We crawled
67337,251 unique Android apps with the highest installation
674numbers from Google Play Store. These apps belong to 30

Fig. 4. Response examples after clicking “login” buttons.
Fig. 5. Training data collection.
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676 (e.g., Facebook), news (e.g., BBCNews), etc. Game apps have
677 been excluded due to lack of standard GUI components that
678 can be automatically extracted. We obtain billions of original
679 UI screenshots in assistance with dynamic Android testing
680 tools (e.g., UIAUTOMATOR [12] and STOAT [65]). These tools are
681 configuredwith the default setting and run onAndroid emu-
682 lators (Android 4.3) on Ubuntu 14.04. At the same time, we
683 use UIAUTOMATOR to extract component information (i.e.,
684 component types and coordinate positions) for the explored
685 app screens. We note that not every app was successfully
686 launched on the emulator due to version update warnings,
687 Google service update warnings, lack of third-party library
688 support, etc. Our goal of this large-scale component analysis
689 is to ensure we obtain multiple sets of screenshots and com-
690 ponents, rather than completely explore each app and obtain
691 all components in each screenshot. Although the layout
692 information from UIAUTOMATOR does not include all compo-
693 nents and may contain minor errors, it would not affect the
694 collection of our training set. Finally, the result data set con-
695 tains 1,842,580 unique screenshots based on pixel compari-
696 sons, which is by far the largest raw data set of UI
697 screenshots to our knowledge.
698 Since we only focus on login-related pages and generate
699 corresponding code for phapps, we extract login-related
700 screenshots or closely related login screenshots (e.g., related
701 with register, transfer, and submission) by (1) using key-
702 word filtering (i.e., login, sign, regist, transfer, submit), and
703 (2) ensuring the screenshots to contain the component types
704 of EditText, TextView, and Button. We finally obtain 4,420
705 login-related screenshots, from which we extract 57,209
706 labeled cropped GUI component images (6 types) shown in
707 Fig. 6. Note that since we only managed to collect 697
708 CheckBox components in the login-related screenshots, we
709 extend it with 14,676 CheckBox components from the other
710 unique screenshots we collected. We place other compo-
711 nents that appear infrequently into the “Others” category
712 (for 12,457 in total), including ToggleButton, RadioButton,
713 ImageView, etc., since we do not need to handle all compo-
714 nent types. This part differs from the state-of-the-art GUI
715 code generation tools [14], [19]. Meanwhile, we disregard
716 the components that do not appear in login-related pages,
717 such as Spinner, RatingBar, and SeekBar.

718 4.2 Approach Implementation

719 Our approach is implemented in Python 2 (3K+ Lines of
720 Code), and leverages several open source libraries (e.g.,
721 OPENCV, TESSERACT) to automatically generate phapps. Spe-
722 cifically, we use CV (i.e., OPENCV [7]) and OCR techniques
723 (i.e., TESSERACT [11]) to extract components and their attrib-
724 utes (e.g., coordination positions, width, height, color, texts)

725from the screenshots of UI pages. Meanwhile, we use Tes-
726seract#makebox to extract the coordinate of each letter.
727To classify the types of segmented components within
728the UI screenshots, we adopt the CNN model as discussed
729in Section 3.3. Our model contains three convolutional
730layers, three pooling layers, and two fully-connected layers.
731Within the convolutional layer, we set the filter size as 3, the
732stride as 1, and padding size as 1. The same setting also
733applies to the pooling layer. For two fully-connected layers,
734both have 128 neurons. We implement our network with
735the Tensorflow framework written in Python. The model is
736trained for roughly 2 hours on a CPU, RAM, and Nvidia
737Tesla P40 GPU card (24G memory) over 10 epochs.
738From the classified interactive components and their
739attributes, we generate the login GUI code for the given UI
740screenshot. For each component, we use two layout attrib-
741utes (i.e., android:layout_marginLeft and android:layout_-
742marginTop) to identify their coordinates. In addition to the
743basic attribute settings, we also transfer attributes of the
744component to corresponding layout code (e.g., android:text-
745Color, android:inputType). After implementing the UI login
746code, we implement 10 types of responses from Table 2
747when interactive components are clicked, each component
748has a different response attached within the deception code.
749As for the response to login actions, we randomly choose
750one response to be attached to the “login” button. Our
751implementation runs on a 64-bit Ubuntu 16.04 machine
752with 12 cores (3.50 GHz Intel CPU and 32 GB RAM.)

7535 EXPERIMENTAL EVALUATION

754In this section, we conduct extensive experiments to evalu-
755ate our approach in the following five aspects: (1) UI page
756similarity comparison between the UI pages of the original
757apps and our generated phapps; (2) UI page generation
758comparison between the state-of-the-art UI generation tools
759and our approach; (3) Performance of our CNN classifica-
760tion; (4) Ability to evade detection by the state-of-the-art
761anti-phishing techniques; (5) A human study to identify the
762power and impact of our phapps.
763Dataset. We randomly collect 50 Android apps (25 finan-
764cial apps and 25 social apps) from the top 100 financial and
765social categories from the Google Play Store, as the apps in
766these two categories are usually security- and privacy-criti-
767cal. All apps require users to login before use. These are the
768most famous apps (e.g., Facebook, Twitter) with over
7691,000,000+ installs, mainly originating from USA, China,
770and European countries. We guarantee the representative-
771ness of the selected original apps in terms of their number
772of installs and representative categories. Given the screen-
773shots of login pages and icons of these apps, we generate
774the corresponding 50 phishing apps using our approach.
775The dataset of (50 original apps and 50 phapps in total) is
776used to conduct the following experiments. Besides the 50
777financial apps and social apps used in our experiments, in
778order to reduce the influence of randomness, we further
779select 20 apps that were downloaded from different times
780off the Google Play Store that also contain login pages to
781validate the similarity of our results. From the comparison
782of results, the corresponding generated UI pages of these 20
783apps are also sufficiently similar (they achieve over 95

Fig. 6. Number of labeled GUI components.
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784 percent similarity on average in terms of mean absolute
785 error (MAE) and mean squared error (MSE)) and can be
786 used in the GUI-Squatting attack directly. More generated
787 phishing UI pages can be found on our website [10].

788 5.1 UI Similarity Comparison

789 One of our goals is to generate phishing UI pages resem-
790 bling the original. We compare the visual similarity of the
791 generated UI pages and the original UI pages (i.e.,

792screenshots) collected from the 50 original apps listed in
793Table 3. We use two widely-used image similarity met-
794rics [53], i.e., mean absolute error and mean squared error,
795to measure the image similarity pixel by pixel. MAE meas-
796ures the average magnitude of differences between a predic-
797tion and the actual observation. While MSE measures the
798average of squared differences between them. On average,
799our approach achieves 99 and 96 percent similarity in terms
800of MAE and MSE (normalized to [0, 1]), respectively. We
801detail the pixel-by-pixel similarity results (using MSE) of
802each login UI page in column “Pixel Similarity” of Table 3.
803“Visual Similarity” represents the similarity results via
804human observation which will be discussed in Section 6.
805“Generated time” represents the time cost on each phapp,
806from an image to a compiled apk.
807We can see that the pixel-by-pixel similarity of all the
80850 apps is over 90 percent, the average visual similarity is
8094.56, and only one app is considered dissimilar with a
810score less than 4. The results indicate that our generated
811apps are similar enough to masquerade as the original
812ones. The average number of components on the login
813page is 6, only one app (Parlor) has more than 10 interac-
814tive components, indicating that attackers can easily cre-
815ate a phishing login page image due to the small number
816of components on the login pages. Our approach manages
817to generate each phapp within 2.51 seconds on average,
818with the highest time cost originating from building the
819apks.

820Remark 1. Our approach achieves 99 and 96 percent simi-
821larity in terms of MAE and MSE, respectively, and the
822average visual similarity is 4.56 based on the participates’
823feedback from our human study. Our approach can gen-
824erate a phishing app within 3 seconds.

8255.2 Evaluation of the CNN Classifier

826Baseline. In this experiment, apart from our method, we also
827take some widely-used machine learning classification
828models as baselines, including Logistic Regression (LR),
829Linear Discriminant Analysis (LDA), K-nearest Neighbors
830(KNN), Decision Tree (DT), Naive Bayes (NB) and Support
831Vector Machine (SVM). Note that since traditional machine
832learning algorithms need the hand-crafted features as the
833input, we extract two kinds of features from each image.
834First, for each image, we calculate its color histogram [18],
835i.e., a representation of the distribution of color in an image.
836Second, we extract Hu moments features [41] containing 6
837different descriptors which capture the silhouette or outline
838of objects inside the image. Then we concatenate color histo-
839gram and Hu moments as the input features for all baseline
840models.
841Setup. Among 4,420 login-related images (Section 4.1), we
842sample an even number of sub-images from each of the 6
843types of UI component: CheckBox, ImageButton, EditText,
844Button, TextView, Others (see Section 4.1 where it is speci-
845fied). We then formulate the component classification into a
846multi-class classification problem. To mitigate the impact of
847unbalanced data [68], we take 7,900 sub-images for each
848component i.e., only sampling 7,900 images if one compo-
849nent has more than 7,900 images. Therefore, there are totally
85047,400 (7900� 6) images for 6 different component types.

TABLE 3
Phapps Used in Experiments

App Name #ICs Pixel
Similarity

Visual
Similarity

Generated Time
(sec)

DBS IN 9 92.1% 4 2.2
CommBank 5 96.4% 5 1.7
DBS 8 94.8% 5 2.1
Alipay 8 96.8% 5 2.7
Gcash 5 96.2% 4.5 2.7
NetBank 6 94.3% 4 4.1
Reliant 6 93.4% 4.5 3.8
FAB 7 94.5% 4.5 2.4
First 7 94.5% 4 2.1
BankFirst 7 93.6% 5 5.0
AFCU 7 94.7% 4 2.1
GSB 7 92.9% 4 2.3
FSB 7 94.6% 4.5 1.8
ColumbiaBank 7 94.6% 4 2.9
Ulster 7 93.8% 4 2.6
Bridgewater 7 94.3% 4.5 2.0
RFCU 7 94.2% 4.5 3.6
CB 7 94.6% 4.5 3.1
Money 6 95.0% 5 2.3
Bred 3 94.9% 4.5 2.2
Oxigen 5 93.8% 5 1.8
Paga 6 96.1% 5 5.0
BankNordik 5 95.3% 4.5 3.0
Eik 5 95.4% 5 1.7
Nordoya 5 95.3% 4.5 1.8

Reddit 5 95.3% 4.5 2.1
Twitter 4 96.0% 5 2.0
VK 6 95.9% 4.5 2.4
Pinterest 4 93.8% 4.5 1.8
Askfm 9 91.8% 4 1.8
Badoo 4 95.3% 5 1.7
Bharat 8 95.8% 4.5 1.8
BNI 4 93.2% 4 3.2
Facebook 6 95.7% 5 5.0
Instagram 7 96.0% 4.5 2.2
MocoSpace 6 96.4% 4.5 2.2
MeetMe 7 95.1% 4.5 1.9
Path 4 96.5% 3.5 2.0
Weibo 7 97.0% 5 5.7
SKOUT 5 96.1% 4 2.2
Snapchat 5 98.3% 4.5 1.9
Nearby 5 96.5% 5 2.0
WeChat 7 97.1% 5 1.9
ADDA 5 93.2% 4.5 1.7
SayHi 8 94.8% 5 1.8
Vent 5 95.0% 4.5 1.8
LINE 7 95.4% 4.5 1.7
Kik 6 96.7% 4 3.9
Parlor 11 94.5% 4.5 1.8
Yapp 5 94.0% 5 1.9

Average 6 96.0% 4.56 2.51

The upper indicates 25 banking apps, the others are social apps. “#ICs” means
the number of interactive components.
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851 We partition this into an 80 percent split for training, the
852 remaining 20 percent for testing.
853 Results. Table 4 shows the accuracy of prediction for
854 all seven classification methods. We can see that our
855 model outperforms all baselines with 83.3 percent accu-
856 racy, which is 18 percent higher than that of the next
857 best model (Decision Tree 70.6 percent). The results are
858 reasonable, as often in computer vision applications,
859 deep learning outperforms classical machine learning
860 techniques due to reasons such as the abstraction of
861 latent features with suitable algorithms (e.g., CNN). We
862 further analyze the accuracy of our classification between
863 the different component types in Fig. 7. Checkbox and
864 ImageButton both have very high precision, larger than
865 0.9, with EditText also with a reasonably high precision
866 of 0.86. However, it seems that our model makes more
867 mistakes in classifying Button, TextView and Others
868 with precision below 0.8. We further check which com-
869 ponents were misclassified, and find that the most fre-
870 quent misclassification is that TextView were often
871 misclassified as Button. That is because some TextViews
872 are very similar to Buttons, In particular, TextViews with
873 short text on a certain background color (like blue)
874 which is also commonly used in Button. It is difficult to
875 discriminate them even for human by looking at the sin-
876 gle component without considering the context of the
877 component. For the 50 generated phapps in our experi-
878 ments, only 5 cases failed due to the wrong classification
879 of EditText as TextView, so we manually relabel these
880 components.

881 Remark 2. Our classification model outperforms all
882 machine learning baselines, with the accuracy (83.3 per-
883 cent) of our model 18 percent higher than that of the best
884 model among 6 baselines.

885 5.3 Comparison With State-of-the-Art Techniques

886 In this section, we choose two state-of-the-art end-to-end GUI
887 code generation tools, PIX2CODE [14] and UI2CODE [19], to com-
888 pare the similarity of the generated UI pages and the original
889 pages with the similarity of our generated UI pages. We use
890 UI2CODE and PIX2CODE to generate 50 corresponding UI pages.
891 Since PIX2CODE may fail to generate UI pages due to failures in
892 translation from UI pages to the intermediate language (i.e.,

893DSL), and UI2CODE may fail to generate UI pages due to fail-
894ures in generation from UI pages to an executable apk (i.e.,
895build failure), they can only generate 20 and 35 of theUI pages,
896respectively. We measure the similarity using MAE and MSE
897based on the successfully generatedUI pages.
898Fig. 8 shows the distribution of pixel-by-pixel similarity
899on the successfully generated UI pages. Our approach out-
900performs PIX2CODE and UI2CODE in terms of similarity of the
901generated UIs, achieving over 96 percent pixel-to-pixel simi-
902larity. One primary reason is that the two approaches aim to
903reduce the burden on the GUI code development, but they
904are not competent in generating an almost identical UI page
905due to lack of realistic GUI-hierarchies of components and
906containers of UI pages. Moreover, their approaches cannot
907extract component attributes, such as coordinate positions,
908colors and types. Similarity using MAE of UI2CODE and
909PIX2CODE is mainly between 60-80 percent. As for the metric
910of MSE, they are mainly between 40-70 percent. To under-
911stand the significance of the similarity differences between
912ours and the pages generated from UI2CODE and PIX2CODE,
913we apply one-way ANOVA (analysis of variance) [6]
914for multi-group comparison. We use the standard metric: a
915¼ 0.05. It shows that the results are significant with a
916p-value < 0:01.
917Fig. 9 displays an example of the generatedUIs using PIX2-
918CODE, UI2CODE, and our approach based on the same original
919UI page. As observed in Figs. 9c and 9d, there is a substantial
920difference between the original and generated UIs by PIX2-
921CODE and UI2CODE with a human visual comparison. Note
922that, as for PIX2CODE, some of the generated UI similaritymea-
923sured by MAE and MSE is still high since some original UI
924pages contained awhite backgroundwith login components,
925as shown in Fig. 9a. Thus when measuring pixel-to-pixel
926similarity, a large number of pixels are regarded as the same
927or with high similarity, producing a large similarity value
928that may overstate how visually similar they appear to a
929human performing visual comparisons. As for UI2CODE, as
930shown in Fig. 9d, the results are better than PIX2CODE;

TABLE 4
Performance Comparison Among Different Methods

Methods CNN LR LDA KNN DT NB SVM

Accuracy 83.3% 48.3% 47.7% 68.9% 70.6% 26.6% 36.8%

Fig. 7. Performance of our model in 6 different components.

Fig. 8. Pixel similarity comparisons with UI2CODE & PIX2CODE.

Fig. 9. Generated UI comparisons with UI2CODE and PIX2CODE.
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932 visual difference compared to the original UI page.

933 Remark 3. Our new approach significantly outperforms
934 PIX2CODE and UI2CODE in terms of pixel-by-pixel similarity
935 of the generated UI pages. The comparison results are sig-
936 nificant with p-value < 0:01.

937 5.4 Bypassing Anti-Phishing Techniques

938 As shown in Table 5, we choose the most representative
939 mobile anti-phishing and malware detection techniques
940 with different detection strategies to demonstrate that our
941 generated phapps can bypass the state-of-the-art detection
942 approaches [44], [50], [51], [52], [59], [66], [72]. Since these
943 tools are not open source projects, we re-implemented the
944 core functions to conduct our experiments.
945 Anti-Phishing Techniques. DROIDEAGLE [66] relies on the
946 layout tree to generate layout hash values, and then com-
947 pares the layout hash values with their repository. Before
948 generating layout hash values, the tool prunes all leaves
949 in the layout tree before hashing, and generates a hash
950 value only for the layout skeleton. Fig. 10a shows the
951 original layout tree of Twitter. Attackers may carry out a
952 similarity attack by deleting the leaf node “CheckBox”,
953 resulting in Fig. 10b. However, the hierarchies of the two
954 trees are the same (i.e., LinearLayout, ScrollView, Linear-
955 Layout, and LinearLayout), leading to the same layout
956 hash values, thus Fig. 10b can be detected by DROIDEAGLE.
957 Fig. 10c shows the layout tree from our generated phapp,
958 which only has a root node and several leaf nodes. The
959 hierarchy of our layout tree is �Layout (e.g., LinearLayout
960 and RelativeLayout), which has a big difference with the
961 original hierarchy.
962 To demonstrate that our generated phapps can success-
963 fully bypass the detection of DROIDEAGLE, we first use APK-

964 TOOL to translate binary XML files to plain files, and re-
965 implement the procedure of extracting branch nodes (i.e.,
966 internal nodes) together with their attributes (e.g., width,
967 height, text). We then compare the extracted node sequence
968 of the original apps with that of the phapps, without further
969 computing their corresponding hash values. Obviously, the

970hierarchies of the two trees are different, so DROIDEAGLE

971does not work for phapps.
972Malisa et al. [50] use visual similarity comparison on
973the installed apps on the mobile device by taking screen-
974shots, to detect spoofing apps which have visual differen-
975ces (i.e., repositioning elements). They do not focus on the
976detection of perfect copies like ours, and the similarity
977comparison is not scalable to analyze a large number of
978apps due to heavy runtime overhead on users’ devices.
979Furthermore, the phapps prohibited screenshots to be
980taken by third-party apps, such as the pre-installed apps
981on the users’ devices; thus, this approach does not work
982for our phapps.
983Personalized security indicators rely on users to detect
984phishing attack. When the user starts an app for the first
985time, he is asked to choose a security indicator for the
986app, he can also skip it if he does not want to set it up.
987After that, whenever the app starts, it authenticates itself
988by showing the security indicator. Users can distinguish
989benign apps from phishing apps. However, previous work
990identified that users tend to ignore personalized security
991indicators [63]. Moreover, many research communities
992have proved that it is an ineffective phishing detection
993technique [16]. However, among the 50 selected financial
994and social apps in our experiments, we did not find any of
995these apps using personalized security indicators. Marforio
996et al. [51], [52] revisited personalized security indicators to
997detect mobile phishing attacks. However, if we conduct a
998personalized phishing attack, our generated UI can capture
999the security indicators and will show the correct indicators
1000to users to bypass the detection.
1001WINDOWGUARD [59] uses the integrity of Android Win-
1002dow Integrity (AWI) to detect phishing attacks efficiently.
1003However, phapps do not use window overlaying or task
1004hijacking when running on mobile devices. Therefore, AWI
1005has no effect on phapps, and WINDOWGUARD also does not
1006work for phapps.
1007Malware Detection Techniques. Signature, behavior, and
1008dynamic-based detection always rely on the declaration of
1009resource permissions, API calls, system calls, andpre-defined

TABLE 5
Detection Results of Multiple Anti-Phishing Techniques for Different Mobile Phishing Attacks

�: Fully detect º�: Partially detect �: Unable to detect

Fig. 10. Layout comparisons.
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1010 rules to detect Android malware with big data [47], [67], [75].
1011 Our generated phapps only use INTERNET permission, the
1012 most commonly-used permission. Meanwhile, Socket, and
1013 HTTP/HTTPs communications are very normal ways to
1014 communicate between the client and the server. Thus phapps
1015 can bypass such techniques. For learnined techniques, we
1016 trained a machine learning based classifier on a malicious
1017 dataset from DREBIN [13] using Support Vector Machine. For
1018 the features, we replicate their defined feature sets (e.g.,
1019 requested permissions, hardware components, suspicious
1020 API calls). We use the trained SVM classifier to classify our
1021 50 phapps. The result we obtained demonstrates that the
1022 classifier does not work for phapps. We suspect there are
1023 not enough malicious features that can be extracted from
1024 phapps.
1025 VIRUSTOTAL contains 61 anti-virus engines, e.g., MCAFEE

1026 and KASPERSKY. When we upload our generated phapps,
1027 none of the anti-virus engines flag our phapps as malicious.
1028 Therefore, our generated phapps are also able to bypass the
1029 state-of-the-art Android malware detection techniques.
1030 Traffic Analysis. Traffic analysis [28], [76] can also be used
1031 to analyze abnormal behaviors when there is communica-
1032 tion between the client (phapp) and server. If phapp only
1033 contains the code of credential collection, it would only pro-
1034 duce one directional traffic from the client to the server,
1035 which would be easily detected by traffic analysis because
1036 there is no response and traffic being sent back to the client
1037 side (phapp). To bypass traffic analysis, we implement
1038 SSL/TLS authentication and server identity verification via
1039 HTTPS for each phapp, making the communication behav-
1040 ior of phapps closer to normal apps. In fact, according to the
1041 recent work [23], [24], a number of normal apps do not cor-
1042 rectly implement the server verification part, while our gen-
1043 erated phapps implement correct communication between
1044 the client and the server. Therefore, even if the traffic analy-
1045 sis is employed to detect the abnormal behaviors of our
1046 phapps, phapps are able to bypass the detection.
1047 Activity Transition Analysis. Activity transition represents
1048 the interaction between different activities. If phapp only
1049 contains one activity, this approach of detection will be able
1050 to identify it by leveraging activity transition graphs (ATG).
1051 For example, defenders can use the existing inter-compo-
1052 nent communication analysis tools (e.g., IC3 [54] and Story-
1053 Droid [22]) to check the activity relations. To evade the
1054 detection of them, in the deception code generation phase,
1055 we implement several common and widely-used activities
1056 into phapp, and also build up relations between the login
1057 activity and other activities. In the evaluation, we use IC3 to
1058 extract the activity transition graphs and compare them
1059 with the transition results of normal apps. For example,
1060 phapps have the normal relations (e.g., LoginActivi-
1061 ty!RegistrationActivity, LoginActivity!MainActivity,
1062 MainActivity!SettingActivity). We find that the relation of
1063 phapps is similar to normal apps, resulting in successfully
1064 evading detection by activity transition analysis.

1065 Remark 4. Our generated phishing apps (phapps) can
1066 bypass the state-of-the-art anti-phishing techniques,
1067 Android malware detection techniques, industrial virus
1068 engines, traffic analysis, and activity transition analysis
1069 successfully.

10706 HUMAN STUDIES

1071In Section 5.4, we have demonstrated that our generated
1072phapps can bypass the state-of-the-art detection tools.
1073Another important point of the phishing attack is that the
1074attacker is able to obtain users’ information without altering
1075the user. In this section, we demonstrate that these phapps
1076can attack users and obtain their credentials in real scenarios.
1077Since the generated phapps require interaction with users to
1078obtain their input data (i.e., username, password), we design
1079and conduct a human study to evaluate the practicality of the
1080generated phishing apps. Our goals are to check:

1081� if we can obtain user credentials from the generated
1082phapps without users’ awareness.
1083� if users can differentiate the generated phapps from
1084their original apps based on their login pages.

10856.1 Settings of Human Studies

1086Dataset of Human Study.We use our generated 50 phapps for
1087our human study. The 100 apps (50 original apps and 50
1088generated apps) are randomly installed on 20 mobile devi-
1089ces (e.g., Nexus 5 and Nexus 5X with Android 4.4) with 8
1090apps on each device, among which 4 apps are phapps (with
10912 financial apps and 2 social apps) and the other 4 are the
1092original apps (still with 2 financial apps and 2 social apps).
1093Participant Recruitment.We recruit 20 people from our uni-
1094versity to participate in the experiment via emails and word-
1095of-mouth. The recruited participants have a variety of occupa-
1096tions, ranging from doctoral students, post-doctoral research-
1097ers to administrative staff, including app developers,
1098computer vision researchers, etc. They come from different
1099countries, such as the US, China, Singapore, and European
1100countries (i.e., Spain and Ireland). The male-to-female ratio of
1101participants is 7:3. All of the participants have used Android
1102OS before, and 84.6 percent of them have used Android for
1103more than one year. The participants were compensated with
1104a $10 shopping coupon for their participation in the study.
1105Experiment Procedures. The experiment begins with a brief
1106introduction. We explain to the users and walk them
1107through all of the features that we want them to use. To bet-
1108ter mimic the real world scenario, instead of telling users
1109the fact that there are phapps inside and creating unneces-
1110sary attention, we only provide a list of tasks for users to
1111accomplish while they are exploring the provided apps, fol-
1112lowed by a questionnaire. Each participant is asked to work
1113on the 8 apps randomly and explore them on the assigned
1114Android device. We also asked them to register each corre-
1115sponding normal apps before our human study and get
1116familiar with the basic functionalities. During the experi-
1117ment, all apps are used without any interventions or discus-
1118sions among the participants.
1119There are five main tasks that participants were asked to
1120complete. Participants need to (1) log in the apps using their
1121credentials; (2) explore functionalities and they can termi-
1122nate the exploration at any point of the process; (3) give a
1123similarity score between the login pages from phishing
1124apps and the corresponding original ones; (4) distinguish if
1125the current page is from a phapp; (5) give a confidence score
1126about the app related to the deception response given by
1127the phapp.
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1129 a questionnaire in Table 6:
1130 T1&T2. We first ask each participant the overall opinions
1131 about each app including the UI design (Q1). Second, they
1132 are asked if they notice any weirdness and related details to
1133 see if they spot the phapps (Q2).
1134 T3. We then provide login pages from phishing apps and
1135 the corresponding original ones of 8 apps to each user to let
1136 them score the similarity and point out differences (if any)
1137 between the two kinds of pages (Q3). As there are 20 partici-
1138 pants, each app in our dataset has been checked by two
1139 users to avoid bias.
1140 T4. After they finish answering Q3, we randomly sample
1141 8 different apps (half original, half phishing). We explicitly
1142 tell them that there are phapps inside and ask them to check
1143 which ones are phapps by only looking at the login pages,
1144 and rate their confidence of their choices (Q4) [50].
1145 T5. We then randomly provide 10 response pages from
1146 10 phishing apps after clicking the “login” button, and each
1147 of them displays a response of that in Table 2. We ask them
1148 for the confidence score about the app regarded as a phish-
1149 ing app (Q5).
1150 Note that all questions have to be answered in the order,
1151 listed in Table 6, to stimulate the real environment, where
1152 information about the phapps would be unknown to a
1153 phishing victim. Different questions are placed to different
1154 pages in the survey, so the participants do not know the
1155 next questions until they finish answering the current ques-
1156 tions. We do not tell participants that there are phapps
1157 before Q3, and want to see if they can spot the phapps or
1158 any abnormalities by themselves.

1159 6.2 Results of Human Studies

1160 It takes about 35 minutes for each participant to finish the
1161 human study, including 16 minutes (2 minutes each) for
1162 using the apps, 10 minutes for filling the questions, and 10
1163 minutes to check the image similarity. For all 80 phapps in

1164the experiment, we successfully receive users’ usernames
1165and passwords on our hacking server (Nexus 5X, Android
11667.1.1). We show the human study results as follows.
1167Answer to Q1. Most participants hold neutral views on
1168design of UI pages, and there is no significant difference of
1169satisfaction scores of UI design between the original apps
1170(3.85) and phapps (3.47). We interviewed the participants
1171who are not satisfied with the UI design of the whole app,
1172and asked them the reasons for that. Their answers are
1173mainly about two respects: (1) The UI design is too compact,
1174e.g., setting options or other login options (e.g., login with
1175facebook) appear in the page. (2) The UI design is too sim-
1176ple, e.g., only two inputs (username, password) and a
1177“login” button are shown in the login page. But according
1178to our observation, their satisfaction is influenced by
1179whether the app ran well. Those phapps with response mes-
1180sages showing problems about the apps seemed to receive
1181lower satisfaction scores.
1182Answer toQ2.Among all 160 apps, participants found that 34
1183of them exhibit some kind of weirdness, 27 of them belong to
1184phapps in our experiments, indicating that users cannot notice
1185anyweirdness for amajority of phapps (53/80 = 66.25 percent).
1186We further asked participants what kinds of weirdness they
1187found, and the results show that they regardmost of theweird-
1188ness (24/27 = 88.9 percent) as functional problems with com-
1189plaints about “Crash”, “Server failed”, “Network unavailable”,
1190etc. They regard other weirdness (3/27 = 11.1 percent) as UI
1191problems, e.g., lack of features of remembering username with
1192auto-filling in the EditText bar. But none of them raised con-
1193cerns that thiswas a phishing app.
1194Answer toQ3. The results can be seen in the column “Visual
1195Similarity” of Table 3 and the average score is 4.56. As users
1196can only select a score between 1 to 5, it means that most users
1197select 5, i.e., two screenshots are almost perfectly the same.
1198The visual similarity results correlate with our observations
1199given by pixel similarity through computing MSE. Both
1200results verify the quality of the generated login pages.
1201Answer to Q4. Different from other questions, we now
1202inform participants that there are phapps in this experiment
1203but without telling which apps are phapps. Participants
1204then determine if the app is a phapp or an original app by
1205looking at their login pages, and mark their confidence. The
1206results can be seen in Table 7, where TP represents the num-
1207ber of phapps which are correctly determined, and FP rep-
1208resents the number of original apps which are wrongly
1209determined as phishing. TN represents the number of origi-
1210nal apps which are correctly determined, and FP represents
1211the number of phapps which are wrongly determined as
1212benign. Although the number of phapps and the original
1213apps are the same (80 in each) in our experiments, partici-
1214pants regard 50 of them as phapps and the other 110 of
1215them as original apps. In addition, it seems that users have
1216higher confidence in their selection of original apps (aver-
1217age of TN and FN: 3.945) than that of phapps (average of TP
1218and FP: 3.655).
1219Among 50 login pages which were described as phapps
1220by the participants, 26 (52 percent) of them are right, while
122124 (48 percent) of them are wrong. Both TP and FP have
1222similar confidence scores. The probability of correct predic-
1223tion is almost the same to random guess (50 percent for a
1224binary guess). Similar observations also apply to TN and

TABLE 6
The Questions for Participants to Answer

TABLE 7
The Results of Phishing App Identification

Metrics Number Confidence Scores

TP 26 3.73
FP 24 3.58

TN 56 3.96
FN 54 3.93
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1226 our method for phapp generation, as users cannot accu-
1227 rately spot phapps with special attention given after being
1228 told that phapps exist.
1229 Answer to Q5. There are 10 kinds of different responses as
1230 listed in Table 2. We try to explore which of them are more
1231 likely to invoke alarm from an user. The results are shown
1232 in Fig. 11. By looking at the mean confidence of different
1233 responses, we can see that users are more concerned about
1234 “Update Google service”, “Update app”, and “Server fail-
1235 ed”. As they are all about downloads, it seems that users
1236 are more sensitive to Internet interaction and think that it
1237 may bring security risks to their apps. Considering both the
1238 mean and lowest confidence values, we find that “Invalid
1239 inputs”, “Slow response”, and “Keep loading” cause fewer
1240 concerns. Therefore, when applying our approach in prac-
1241 tice, it is better to adopt these responses inside the generated
1242 apps. According to the results, these collected response
1243 types from real apps achieve different reliability when used
1244 in phishing apps. The reason for such random assignment
1245 of responses is to defend against the pattern-based detection
1246 approaches. Moreover, before the response is shown, the
1247 user credentials have already been successfully stolen.

1248 Remark 5. We summarized the key findings based on partic-
1249 ipants’ feedback from the human study. Our phapps suc-
1250 cessfully masquerade as original apps without raising
1251 users’ special attention in information leakage. Even in
1252 cases when users did raise concerns, we were able to mis-
1253 lead them to believe it was a functional problems as
1254 opposed to a security or privacy threat. The login pages of
1255 phapps are so similar to the ones of original apps that par-
1256 ticipants cannot distinguish between them. Responses like
1257 “Keep loading” and “Slow response” are more effective in
1258 placating users’ security concerns than other responses like
1259 “UpdateGoogle service” and “Update app.”

1260 7 DISCUSSION

1261 Limitations of our Approach. (1) Our approach does not fully
1262 handle the font family/color of the text extracted from the
1263 EditText component, causing a small visual difference if
1264 the app uses a special font family. Fortunately, according to
1265 the results of the human study, users are insensitive of such
1266 differences. (2) Since we generate components with normal
1267 attributes, such as a plain background of EditTexts, if the orig-
1268 inal app uses a colorful image (e.g., photos) as the background
1269 of EditTexts, we cannot generate a perfect copy of its UI page.

1270(3) As for targetedUI pages with smaller resolutions, we need
1271to scale the component to an equivalent size to deploy the
1272same phapp on deviceswith larger resolutions.
1273Deception Code Generation. As for deception code, we gen-
1274erate responses for each interactive component such as
1275“Button” and “TextView”with component listeners. Accord-
1276ing to the comprehensive experiments, we notice that page
1277confusion plays a more important role than logic deception in
1278GUI-squatting attacks. Specifically, in the human study,
1279there is only one person (1/20) who clicked other interactive
1280components first before directly starting the login process.
1281Nevertheless, receiving such responses after clicking other
1282interactive components, they still regarded it as a functional
1283issue (logic deception), and then proceeded to the login pro-
1284cess. In other words, phapps are able to extract the users’ cre-
1285dentials because of the high page similarity (page confusion)
1286and the realistic responses encoded the deception code
1287(logic deception).
1288Moreover, comparedwith repackaging and cloning techni-
1289ques for phishing attacks, our approach generates mobile
1290phishing apps without any domain-knowledge, and there is
1291no other inputs required except the login page(s) of an original
1292app. Such a light-weight input enables us to generate a phish-
1293ing app with less complexity but with more reliability of the
1294login pages; thus the deception logic aims to generate the cor-
1295responding responses for the interactive components in order
1296to convince users when logging in. There are four main prob-
1297lems to use the original app in addition to login-related pages
1298as inputs when generating phishing apps. (1) First, the origi-
1299nal apps are often closed-source, the source code and resource
1300files are unavailable. Even if we are able to obtain it by reverse
1301engineering the original apk file, the process is still affected by
1302the packing and obfuscation techniques as we mentioned in
1303Section 1. (2) Even if the source code of the app is available,
1304the functionalities associatedwith the components can also be
1305deleted by the technique in [42]. It is difficult to extract the
1306functionalities associated with the components from the
1307source code since many dependencies of the logic code,
1308including third-party libraries and resource files, need to be
1309considered. (3) More sophisticated logic code means more UI
1310pages involvement and maintenance. (4) It is a time-consum-
1311ing task to reverse engineer and extract functionalities associ-
1312atedwith the components.
1313Mitigation of GUI-Squatting Attack. We introduce the fol-
1314lowing methods to mitigate our generated phapps. (1) Static
1315analysis of back-end code. Due to lack of complete logic code
1316like original apps, phapps may be distinguished from origi-
1317nal apps through an in-depth static analysis. Specifically, in
1318this work, apart from the login activity, we integrate some
1319widely-used activities and also build up the relations
1320between them. However, the whole logic is still missing. If
1321defenders can generate the whole picture of phapps at a
1322high level, the general feature or the detectors based on the
1323imbalanced structure of two code branches [55] will help to
1324identify phapps. (2) Taint analysis. Although the technique
1325is able to track user credentials from source to sinks (i.e.,
1326server URL), they need to determine whether the remote
1327URL is malicious. For example, one app may contain several
1328URLs linking to other websites apart from the official web-
1329site related to this app, and it is difficult to determine
1330whether the unofficial URLs are malicious or not. It is also

Fig. 11. The confidence of treating apps as phishing apps according to
different responses.
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1331 difficult to maintain a comprehensive black-list for compari-
1332 son or have applications nominate white-listed destinations
1333 for authentication. (3) Relying on the Android app market
1334 assessment. Both the official and third-party Android mar-
1335 kets should first analyze similar apps with same or similar
1336 UI pages and app names, and further identify whether it is
1337 a phishing one. But it is an ineffective way since it relies on
1338 a large-scale reference dataset.

1339 8 RELATED WORK

1340 Web Phishing.Gupta et al. [38] summarized that web phishing
1341 attacks have two traditional strategies: spoofed emails and
1342 fakewebsites. Spoofed emails induce users to click links in the
1343 email and redirect to amaliciouswebsite fromuntrusted serv-
1344 ers to extract victims’ information. Numerous approaches
1345 have been proposed to filter out phishing emails. Fette et al.
1346 [34] utilized machine learning to classify the spoofed emails
1347 with a high accuracy. CANTINA [77] proposed a content-
1348 based approach to detect phishing websites, based on the TF-
1349 IDF information retrieval algorithm. Pan et al. [56] examined
1350 anomalies in web pages (e.g., the discrepancy between a
1351 website’s identity) to detect phishing web pages. Fu et al. [36]
1352 and Liu et al. [48] used visual similarity comparison to distin-
1353 guish phishingweb pages. DOMAntiPhish [62] leveraged lay-
1354 out similarity information to distinguish malicious and
1355 benign web pages. Ma et al. [49] trained a predictive classifier
1356 based on the web URLs to identify phishing URLs. However,
1357 since attributes inmobile apps are different from those inweb
1358 pages, these detection techniques are not applicable to mobile
1359 systems. In this paper, we focus on phishing attacks under
1360 mobile environments.
1361 Mobile Phishing. App-based phishing attack is a major
1362 problem on mobile devices [31], [33], [37], [70], and phishing
1363 apps are one of the most popular types in malicious
1364 apps [25], [26], [27], [30], [32], [69]. Repackaged apps are the
1365 most useful technique to perform similarity attacks (spoof-
1366 ing attacks) for mobile phishing [15]. RESDROID [64] leverage
1367 new features extracted from core resources and source code
1368 to detect repackaged apps; however, phapps do not rely on
1369 repackaging techniques. Sun et al. [66] introduced that
1370 attackers can analyze the GUI code of the original apps,
1371 modify the corresponding layout code, and then add logical
1372 code to manipulate the original logic. However, developers
1373 can obfuscate or pack their apps to avoid repackaging mal-
1374 ware attacks (e.g., repackaging phishing attacks). Mean-
1375 while, this process heavily relies on the attacker’s
1376 knowledge about the original app code. Bianchi et al. [15]
1377 extracted API call sequences via static code analysis to
1378 detect phishing apps, however, static analysis is limited to
1379 known attack vectors, and many similarity attacks don’t
1380 require specific API calls. DROIDEAGLE [66] used the similar-
1381 ity of layout tree between official apps and third-party apps
1382 to detect mobile phishing apps. Marforio et al. [51], [52] lev-
1383 eraged personalized security indicators as a mechanism to
1384 avoid mobile phishing attacks.
1385 MOBIFISH (APPFISH) [73], [74] used OCR techniques to
1386 extract texts from the screenshot of a login interface. It iden-
1387 tifies the identity from the extracted texts, and compares it
1388 with the actual identity from a remote server of mobile
1389 apps. If two identities are different, there is a warning

1390presented to users. However, it has two shortcomings: (1)
1391Many login pages do not contain app identities; (2) A white-
1392list of legitimate domains are required, in addition to a data-
1393base of suspicious applications that needs to first be con-
1394structed and continuously updated.
1395In this paper, we propose GUI-Squatting attacks; how-
1396ever, code obfuscations and packs will not affect the capa-
1397bility of our approach, and knowledge of the original app
1398code is not essential. Moreover, our approach can bypass
1399the state-of-the-art repackaging or clone detection techni-
1400ques [20]. In addition to similarity attacks, window overlay
1401and task hijacking are common mechanisms to execute
1402mobile phishing attacks [21], [60], [61]. Although we do not
1403focus on these two methods, our approach can also help
1404generate the similar UI pages that can be leveraged by these
1405two attacks. However, these two methods can be detected
1406and mitigated by many cutting-edge detection techni-
1407ques [15], [59], [60]. A recent defense solution has been pro-
1408posed in [15] based on GUI-related APIs/permissions.
1409WINDOWGUARD proposed a security model, Android Win-
1410dow Integrity [59], to protect the system against all GUI
1411attacks, including window overlay and task hijacking. But
1412our generated phapps are able to bypass all of these detec-
1413tion techniques successfully.

14149 CONCLUSION

1415In this paper, we propose a novel approach to automatically
1416generate platform-independent phishing apps, to enable a
1417powerful and large-scale phishing attack (GUI-Squatting
1418attack) on different categories of apps within 3 seconds. Our
1419human study demonstrates the effectiveness of our gener-
1420ated phishing apps which successfully steal users’ informa-
1421tion imperceptibly. Additionally, the generated apps can
1422successfully bypass the state-of-the-art detection techni-
1423ques. Finally, by discussing methods to mitigate our gener-
1424ated apps, we thereby assist security defenders to further
1425explore and understand the characteristics of new mobile
1426phishing apps.
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