
JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 1

Multi-label Classification for Android Malware
Based on Active Learning

Qijing Qiao, Ruitao Feng, Sen Chen, Member, IEEE , Fei Zhang, Xiaohong Li, Member, IEEE

Abstract—The existing malware classification approaches (i.e., binary and family classification) can barely benefit subsequent
analysis with their outputs. Even the family classification approaches suffer from lacking a formal naming standard and an incomplete
definition of malicious behaviors. More importantly, the existing approaches are powerless for one malware with multiple malicious
behaviors, while this is a very common phenomenon for Android malware in the wild. So that both of them actually cannot provide
researchers with a direct and comprehensive enough understanding of malware.
In this paper, we propose MLCDroid , an ML-based multi-label classification approach that can directly indicate the existence of
pre-defined malicious behaviors. With an in-depth analysis, we summarize 6 basic malicious behaviors from real-world malware with
security reports and construct a labeled dataset. We compare the results of 70 algorithm combinations to evaluate the effectiveness
(best at 73.3%). Faced with the challenge of the expensive cost of data annotation, we further propose an active learning approach
based on data augmentation, which can improve the overall accuracy to 86.7% with a data augmentation of 5,000+ high-quality
samples from an unlabeled malware dataset. This is the first multi-label Android malware classification approach intending to provide
more information on fine-grained malicious behaviors.

Index Terms—Android malware, multi-label classification, active learning, malicious behavior analysis

✦

1 INTRODUCTION

CUrrently, Android is the most popular operating system
(OS) on mobile devices with over 2.5 billion active

users spanning over 190 countries [1]–[3]. In 2021, the total
number of applications (apps) on Google Play has reached
2.8 million [4]. However, various apps brought not only
convenience but also security threats through Android mal-
ware. A recent statistic shows the number of new malware
amounted to 0.48 million per month [5]. That large number
of malware directly or indirectly causes immeasurable harm
to users’ privacy and property [6], [7]. So the classification
of Android malware is becoming more and more important.

Existing approaches for Android malware detection in-
clude traditional solutions (signature-based method [8],
behavior-based method [9], [10], and data flow analysis-
based method [11]) and machine learning (ML)-based so-
lutions [12]–[24]. Compared with the former one, ML-based
method is considered as one of the most promising tech-
niques and achieves high detection accuracy. ML-based
method can be mainly divided into two categories, binary
classification [12]–[15], [17], [21], [22] and family classifica-
tion [16], [19], [20]. Through the classic binary classification,
we can successfully identify whether a certain application
is malicious or benign. However, even if it is correctly
classified, we still have no idea about its specific attack chain
and corresponding malicious behaviors. In other words, the
detection result can hardly provide any clue for security

• Q. Qiao and R.Feng (co-first) contributed equally to this paper.
• S. Chen and X. Li are the corresponding authors.
• Q. Qiao, S. Chen, F. Zhang, X. Li are with the College of Intelligence and

Computing, Tianjin University, China.
E-mail:{qqj, senchen, zhangfei, xiaohongli}@tju.edu.cn

• R.Feng is with the CSCRC, University of New South Wales, Australia,
and the SPIRIT, Nanyang Technological University, Singapore.
E-mail:ruitao.feng@unsw.edu.au, feng0082@ntu.edu.sg

analysts, who aim at completing the knowledge of the
detected 0-day attack efficiently and further provide poten-
tial victims with alerts and emergency protections. On the
other hand, family classification’s focal point is classifying
malware into a certain family, whose definition can tell
the key malicious behavior the malware may perform and
the potential hazards the malware may have. However,
along with the quick iterations on malware, existing family
classification methods have two fatal limitations on their
engineering basis, which severely undermine their capa-
bility towards providing more detailed and useful infor-
mation for further analysis. Firstly, by investigating pub-
lic malware family information [25]–[29], we notice there
is no common agreement on malware naming or review
procedure to oversee the family names. In other words,
different agencies may categorize the same malware into
different families. It may confuse researchers who attempt
to provide a quick response to fight against the malware.
Secondly, when analyzing the detailed malicious behaviors
in real cases, we have also observed the behaviors in many
malware are actually out of their family definitions. The
reason behind this phenomenon is that these are mostly
defined according to the original 0-day malware, which
may only contain a specific malicious behavior. Hence,
when some more variants are developed, even a successful
family classification can become useless since most malware
family definitions can cover only a specific and limited set
of malicious behaviors. For those widely existing variants
constructed with multiple behaviors, the result of family
classification can fail to provide expected information. If we
want to understand all the involved malicious behaviors, a
great effort in the additional analysis is always necessary.

Considering all the above limitations, we conduct a
survey on learning-based classification problems in other

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 2

domains, such as computer vision, to seek potential inspi-
rations that can enable a stronger capability on providing
more detailed malicious information in classification results,
especially, for those malware containing multiple malicious
behaviors. We find our task, which is locating the multiple
malicious behaviors in malware as fully as possible, is quite
similar to the multi-target detection [30], [31], which aims to
locate all wanted targets in a picture. Both of them have the
same task which is accurately locating multiple uncorrelated
targets in a problem space. In the field of multiple malicious
behavior detection, the “uncorrelated targets” are the mali-
cious behaviors, and the “problem space” is the malware.
Therefore, referring to the method used in multi-target
detection, we try to adopt a multi-label learning method
to provide a more comprehensive classification that has the
potential to overcome the above limitations. In a multi-label
classification (MLC) problem, multiple labels are assigned to
each classifiable instance [32]. That means a single malware
can be associated with a set of labels that represents different
malicious behaviors simultaneously. So, if we can summa-
rize these labels as reasonable and scientific as possible, a
direct and full understanding on the malicious behaviors of
a certain malware can be promised through the classification
results. In addition to the exciting prospect, applying multi-
label classification will also pose new challenges. Firstly, as
far as we investigated, there is no formal general standard
that aims to help in categorizing the detailed malicious
program behaviors. That means we have to make relatively
precise definitions at the program level for the multi-label
classification. Secondly, despite there are usable Android
malware datasets, however, the effort on analyzing and
labeling them with precise labels at the program level can be
extremely costly. Hence, achieving reasonable usability with
a small labeled dataset and discovering an effective way to
expand the size of the usable dataset are the other essential
problems that need to be handled.

In this paper, we propose MLCDroid, an ML-based multi-
label malware classification approach that can point out 6
types of fine-grained malicious behaviors in the classifica-
tion results. To ensure the effectiveness of the predefined
labels, we first summarize 6 types of basic malicious behav-
iors with the help of an in-depth analysis of a dataset of 180
malware samples with security reports. We then propose 6
inductive labels with a summarized feature dictionary and
construct a new labeled dataset. Further, in order to enhance
the completeness of the feature dictionary, we supplement it
with relevant knowledge from various research papers and
technical documents and finally obtain 531 features asso-
ciated with 6 types of malicious behaviors. To investigate
the effectiveness of potential multi-label ML algorithms, we
evaluate 70 combinations of multi-label classification and
basic classification algorithms on the labeled dataset. To
address the challenge of data shortage and further enhance
the effectiveness and reliability of our approach, we pro-
pose a method called Detection-Training by leveraging active
learning. According to the evaluation results on diverse ML
algorithms, we select 10 trained ML models that yield the
best results and use them as the base models. By adopting
a data augmentation method using the base models and
unlabeled datasets, we not only enlarge the labeled dataset
and obtain a better MLC model, but also validate the possi-

bility of active learning in the malware classification domain
towards understanding and explaining the inner malicious
behaviors. Through our approach, we finally obtain a rela-
tively high accuracy (i.e., CDN+J48: 86.7% on the DREBIN
dataset and 83.3% on the VirusShare dataset) in our multi-
label classification task. Compared with the accuracy of the
base model constructed with the same algorithms (73.3%),
the proposed Detection-Training outperforms with the help
of a successful data augmentation of 4,840 additional unla-
beled malware samples from the DREBIN dataset and 4,992
from VirusShare dataset.

In summary, we make the following main contributions:
• Generally, we propose MLCDroid, an approach that can

perform multi-label classification on Android malware
which can categorize them into fine-grained malicious
behaviors.

• We perform an in-depth study in the field of Android
malware to get a well pre-understanding of the mali-
cious behaviors. With that in mind, we summarize 6
types of basic malicious behaviors and define a set of
6 inductive labels by manually analyzing 180 malware
with security reports.1

• We basically select the combinations of multi-label algo-
rithm and basic machine learning algorithm which are
most suitable for our task by evaluating 70 combinations
on the labeled dataset.

• Facing the challenges of the expensive cost on data an-
notation, we propose an active learning method, called
Detection-Training, to enhance the classification capabil-
ity with data augmentation from the unlabeled dataset.
In this way, we can not only improve the effectiveness
but also obtain auto-labeled high-quality malware.

2 APPROACH

1 presents the workflow of MLCDroid can be divided into
3 main phases: (1) Behavior analysis, feature selection, and
data annotation: We propose 6 different behavior labels as a
set with an in-depth analysis on the dataset of malware with
security reports. Next, we summarize the feature dictionary
with the help of static analysis and supplement it according
to the relevant research papers and technical documents.
After that, we manually label the malware with substantial
efforts according to the observed malicious behaviors. (2)
Base MLC model construction: By comparing the effec-
tiveness of various multi-label classification and basic ML
classification algorithms on the labeled dataset, we obtain a
base model which performs the best among all candidates.
(3) Detection-Training: With the obtained base model, we
adopt an active learning method based on data augmenta-
tion to enlarge the labeled dataset and further improve the
model accuracy. The details of the above three phases are
introduced in the following sections respectively.

2.1 Behavior Analysis, Feature Selection, and Data An-
notation
In order to gain a better understanding and further provide
a comprehensive representation of the various malicious

1. We release the labeled malware as a benchmark (https://github.
com/qqj1130247885/MLC-for-Android-Malware).

https://github.com/qqj1130247885/MLC-for-Android-Malware
https://github.com/qqj1130247885/MLC-for-Android-Malware

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 3

Research papers

Technical documents

Static Analysis

Attack Chain Analysis

APK Labeling

Behavior Understanding

Malware
with 6 labels

Feature dictionary

B
ase M

LC
 M

o
d

el
C

o
n

stru
ctio

n

Pseudo-labeling

Malware for
augmentation

Detection-Training

Active Learning

Base model

Malware with
Security reports

Better MLC model

Malware with
6 pseudo labels

Fig. 1: An overview of MLCDroid

Attack Chain Analysis

Label
Summarization

Behavior Analysis

Research
papers

Technical
documents

Static
Analysis

Malware
with 6 labels

APK
Labeling

Feature
dictionary

Feature
Selection

Malware with Security reports

Fig. 2: Behavior analysis and data annotation

behaviors, we first conduct an in-depth analysis of real-
world malware with the help of their security reports.
These malware were collected in the period of 2008 to
2018. We collect these data from our industrial partner,
anonymousCERT. Note that the security reports have been
thoroughly validated and identified by the employees in
anonymousCERT. Based on the analysis results, we then
summarize 6 types of malicious behaviors. By applying an
additional supplementation according to relevant research
papers and technical documents, we propose a novel multi-
label classification benchmark [33] with a summarized fea-
ture dictionary. The detailed workflow is shown in Fig. 2.

2.1.1 Attack chain and behavior analysis
To investigate every detail of malicious behaviors for ensur-
ing the coverage of various types, we first study their attack
chains by analyzing the corresponding security reports at-
tached to the malware dataset. In this step, we mainly focus
on the triggering events, violated assets, and suspicious
actions which can help us understand the attack mechanism
and actual flow in the implementation. Next, according to
this key information, we further categorize the malicious
behaviors with their functionalities and associated elements.

While performing behavior analysis, we also refer to
the family classification results from VirusTotal [34]. By
comparing our behavior analysis with those results, we
notice an interesting conflict, which is the malicious be-
haviors in many malware that are actually out of their
family definition. For example, a malware named “personal
identity electronic certificate” is classified into the family
named “Android:SMSThief” by Avast, AVG, and Alibaba, it
is also classified into the family named “Android.SmsSpy”
by DrWeb and F-secure. Generally, malware belonging to
“Android:SMSThief” may contain the following malicious
behaviors, such as “read mobile phone status”, “receive,
read, write or send text messages”, “access network con-

nections”, “access to contact information”, etc. Malware
belonging to “Android.SmsSpy” contains similar malicious
behaviors to those belonging to “Android:SMSThief”, and
can also access the WiFi network status information of
the mobile phone, etc. However, by comparing with our
analysis results, we find it also performs other malicious
behaviors out of its family definition. In Listing. 1, the
highlighted contents show that this malware can monitor
the incoming and outgoing phone calls and make phone
calls at run-time without the victim’s authorization. Be-
sides, it can also set up call forwarding. Obviously, this
kind of situation may greatly affect family classification
methods on their effectiveness, and even seriously mislead
further analysis and behavioral interpretation. Therefore, a
new classification standard that can provide an essential
explanation on more precise knowledge of basic malicious
behaviors is much needed.

2.1.2 Label definition

With the in-depth behavior analysis on the collected ma-
licious apps and their security reports, we summarize 6
types of basic fine-grained malicious behaviors and define
6 inductive labels, which are “SMS-related”, “Internet-
related”, “Telephony-related”, “Lock-in”, “Ads”, and “Re-
infection”. A brief description of each label is provided in
Table 1. These 6 types are the most representative and can
cover all the malicious behaviors that occur in our dataset.
The detailed introduction of their mechanisms and potential
threats are shown as follows:

• SMS-related: This type of behavior can cause various
cyber-attacks conducted via SMS service, such as pri-
vacy leakage and service charge. The first case type
can silently steal the victim’s privacy, such as personal
information, digital identities to properties, and contents
of the user’s private conversations, by sending them
from the infected device to a remote server via SMS
service. The second case type can cause unaware service
charges by bypassing a two-factor authentication (2FA),
such as silently confirming a subscription payment by
reading the verification code in messages at runtime.
The third case type can perform SMS-based malicious
behaviors with remote control commands received from
a remote server via SMS service. The fourth case type
can delete the messages in the user’s SMS box.

• Internet-related: This type of behavior can send the
user’s privacy from a local device to the attacker’s
remote server by requesting network connections. In
our identified cases, the attack actions are performed

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 4

1 //Relevant permissions extracted from AndroidManifest.XML
2 android.permission.READ PHONE STATE
3 android.permission.RECEIVE SMS
4 android.permission.READ SMS
5 android.permission.WRITE SMS
6 android.permission.SEND SMS
7 android.permission.CALL PHONE
8 android.permission.INTERNET
9 android.permission.READ CONTACTS

10

11 //Relevant implementation extracted from source code
12 //Behavior of retrieving user’s SMS
13 p r i v a t e void getSMS () {
14 Cruse v10= t h i s . getContentResolver().qury (Uri . parse (‘ ‘ Content

://sms/inbox ’ ’) , v2 , (S t r i n g) v2) , v2 , (S t r i n g) v2)) ;
15 . . .
16 }
17 //Behavior of uploading user’s SMS to a remote server
18 p r i v a t e void run () {
19 . . .
20 Log . i (MainActivity . t h i s .TAG, MainActivity . t h i s . httpPOST (

CommonMoudle . Url7 , ((L i s t) v0))) ;
21 . . .
22 }
23 //Behavior of monitoring user’s outgoing calls
24 publ ic void onReceive (Context arg7 , I n t e n t arg8){
25 . . .
26 i f (”Android.intent.action.NewOutgoingCall ” . equal (arg8 .

getAct ion ())){
27 . . .
28 }
29 . . .
30 }
31 //Behavior of making phone call
32 p r i v a t e void quickCal l () {
33 . . .
34 v2 . se tAct ion (”android.intent.action.CALL”) ;
35 . . .
36 }
37 //Behavior of setting up call forwarding
38 p r i v a t e void t r a n s f e r r e d C a l l () {
39 . . .
40 v4 . invoke (t h i s . telephonyManager , n u l l) . endCall() ;
41 . . .
42 v2 . se tAct ion (”Android.intent.action.Call”) ;
43 . . .
44 }

Listing 1: A sample: multiple behaviors in one malware

according to the control instructions received from the
server.

• Telephony-related: This type of behavior can perform
telephone call-related attacks which can cause privacy
leakage or economic losses. The first case type can steal
the victim’s telephone call-related information, such as
incoming & outgoing call history and saved contact in-
formation. The second case type can monitor the incom-
ing & outgoing calls at runtime. A highly representative
case is that some ransomware only allows victims to
answer the designated call on the infected device.

• Lock-in: This type of behavior can extort money by
blocking the victim’s control behaviors. The first case
type can bind its own layout on the top layer of the UI
(a.k.a., user interface) after installation unless the victim
pays the ransom according to their instructions. The
second case type can modify the lock screen password
without the user’s authorization. Same as the first case,
it also asks the user to transfer money to a designated
e-money wallet. Once the payment is confirmed, the
unlock password will be sent to the victim. Besides,
some variants in this type can change the password and
lock the phone repeatedly, even though the user has paid
the ransom many times.

TABLE 1: An overview of ground-truth dataset

Label Description # of samples
SMS-related This type of behavior can cause

various cyber attacks conducted
via SMS service, such as privacy
leakage and service charge.

113

Internet-
related

This type of behavior can send the
user’s privacy from a local device
to the attacker’s remote server by
requesting network connections.

50

Telephony-
related

This type of behavior can per-
form telephone call-related attacks
which can cause privacy leakage or
economic losses.

10

Lock-in This type of behavior can extort
money by blocking the victim’s
control behaviors.

73

Ads This type of behavior usually dis-
tributes annoying advertisements,
such as pornographic and gam-
bling websites, to victims and pos-
sibly causes economic losses.

13

Re-infection This type of behavior can prevent
itself from being uninstalled so that
it can keep performing attack ac-
tions on the infected device.

67

• Ads: This type of behavior usually distributes annoy-
ing advertisements, such as pornographic and gambling
websites, to victims and possibly causes economic losses.
The first case type displays advertisements at the top
layer of the UI by frequently generating pop-up win-
dows. Once the victim misclicks them, it will automati-
cally switch to another app or website. The second case
type can send the download URL to all saved contacts
via group SMS service.

• Re-infection: This type of behavior can prevent itself
from being uninstalled so that it can keep performing
attack actions on the infected device. In our investigated
cases, it always exists in conjunction with other types
of malicious behaviors. When installed by the victims,
the malware can induce them to activate the device
management authority and hide the desktop icon, so
that the program cannot be uninstalled normally. At
the same time, some variants will also monitor oper-
ations like mobile phone startup, screen brightening,
text messages, phone calls, etc., and keep running in
the background after self-starting, so as to achieve the
purpose of persistence.

2.1.3 Feature selection

In order to extract the features which can represent mali-
cious behaviors in malware properly, we build a feature
dictionary. We select 3 types of widely-used features [22],
[35], which are API, used permission, and intent. API is most
important in our approach since it is the core component
in malicious behaviors’ demonstration and a procedure call
interface to operating system resources. Used permission is
the relevant access right that needs to be applied before
performing malicious behaviors. Intent provides a mecha-
nism to assist in the interaction and communication between
activities, acting as an intermediary.

With the knowledge of the 6 defined types of mali-
cious behaviors, we first summarize the key program-level

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 5

1 //Relevant permissions extracted from AndroidManifest.XML
2 android.permission.READ SMS
3 android.permission.WRITE SMS
4 android.permission.SEND SMS
5

6 //Relevant implementation extracted from source code
7 publ ic void onReceive (Context arg0 , I n t e n t arg11)
8 {
9 . . .

10 e l s e i f (arg11 . getAct ion () . equals (”
android.intent.action.SMS RECEIVED”){

11 . . .
12 S t r i n g B u f f e r v1=new S t r i n g B u f f e r (v8 [v7] .

getOriginatingAddress()) ;
13 i f (v1 . t o S t r i n g () . conta ins (”10658166”)){
14 t h i s . abortBroadcast() ;
15 SmsManager . ge tDefaul t () . sendTextMessage (v1 .

t o S t r i n g () , v2 , ”Y” , (PendingIntent) v2) , (PendingIntent) v2)
) ;

16 . . .
17 }
18 }
19 }

Listing 2: A sample: an SMS-related malicious behavior

components of each type from the security reports. Since
the analysis-oriented and discriminating basis of relevant
features is highly associated with the knowledge of mali-
cious behaviors and defined behavior labels, it is essential
to validate the concrete implementation step by step, in case
any mistake or missing information which may cause fatal
damage to the usability and effectiveness of our approach.
Thus, we further perform a validation based on static analy-
sis. After decompiling the samples back into source code,
we first locate the potential candidates of the malicious
behaviors by searching the key APIs or the statement of
permission requests and intent actions. To further ensure
the completeness and correctness of our summarized key
features, we then validate the candidates by analyzing the
program flow of control at the level of API call. After this
process, the size of the feature dictionary is 401, including
109 APIs, 59 used permissions, and 23 intents.

Listing. 2 demonstrates a malicious code snippet about
the malicious behavior that sending confirmation SMS with-
out authorization in the malware named “passion movie”. It
first obtains the permissions related to SMS, and then keeps
monitoring the SMS inbox by continuously checking the
actions performed by the victim’s device. If the current cap-
tured action equals to android.intent.action.SMS RECEIVED,
the malware is aware that there is an SMS arrived at the
inbox. Once received any message, it captures sender’s
number by calling the function getOriginatingAddress(). If
the number equals to the designated number “10658166”, it
will call the function abortBroadcast() to block the incoming
SMS notification, and then replies a “Y” as a confirmation
message silently. Through these above actions, the service
subscription will be confirmed without the user’s knowl-
edge. By analyzing the behaviors along the malware’s at-
tack chain, we can successfully summarize and supplement
the relevant permissions, intents, and APIs to our feature
dictionary.

While analyzing detailed cases, we find there exist di-
verse implementations for a same type of malicious behav-
iors, which result in different key features. For example,
the malicious behavior of sending SMS may be achieved by

Decompile

Malware
with 6 labels

Feature dictionary

Base
model

Input
vector

Behavior
label MLC

BC

Fig. 3: Base MLC model construction with labeled dataset

calling SendSMS(), sendTextMessage(), sendMultipartTextMes-
sage(), or others. However, the limited number of malware
with reports seriously weakens the completeness of our
summary on the characteristics of malicious behaviors. To
handle this problem, we supplement our feature dictionary
by referring to some relevant research papers and technical
documents [16], [20], [22], [36], [37]. For research papers,
we locate the relevant behaviors corresponding to the 6
defined labels, and supplement those missing features to
our dictionary. For technical documents, we check the de-
scriptions of relevant functionalities to seek potential similar
implementation. Once we find any, we will then analyze the
relevant features, and add them to the feature dictionary
as a supplementation. During our study, we find some
API differences caused by different Android versions and
make some updates to the APIs in the feature dictionary.
By complementing the feature set with research papers
and technical documents, the size of the feature dictionary
increases by 130, among which, APIs increase by 80, permis-
sion increases by 20, and intent increases by 30. Finally, we
obtain a relatively comprehensive feature dictionary of 531
features, which includes 189 APIs, 79 used permissions, and
263 intents (more details [38]).

2.1.4 Data annotation
With the best understanding of the malicious behaviors, we
then label the malware samples according to the analysis
results. Each sample has a six-dimensional vector represent-
ing the 6 labels. Each dimension of the vector corresponds
to a type of malicious behavior which is defined in § 2.1.2.
If the corresponding behavior type to the dimension exists
in the malware sample, the dimension will be marked as
“1”, otherwise, it will remain at “0”. Table. 1 shows the
number of malware samples in each label category. In this
work, this well-labeled dataset will serve as the ground
truth afterward.

2.2 Base MLC Model Construction

The most well-known two categories of methods in MLC
are algorithm adaptation (AA) and problem transformation
(PT) [32], [39]. AA method uses a variety of algorithms
to convert a single-label learning model into a multi-label
learning model. PT methods transform a multi-label learn-
ing problem into multiple single-label learning tasks. In
order to obtain the best base practice, we totally adopt 70
different combinations of MLC and basic classification al-
gorithms to construct ML-based MLC models. In our work,
we adopt 10 different multi-label classification algorithms
in total. Table 2 shows the acronym of each algorithm and
the type of its belonging method. Totally, there are one
algorithm belonging to the AA method and 9 algorithms

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 6

TABLE 2: MLC algorithms compared in our work

Algorithm Name Acronym Type
Binary Relevance BR PT
Classifier Chain CC PT
Random k-Label Disjoint Pruned Sets RAkELd PT
Pruned Sets PS PT
Pruned Sets with Threshold PSt PT
Multi-Label Back Propagation Neural Network ML-BPNN AA
Ranking and Threshold RT PT
Conditional Dependency Networks CDN PT
Conditional Dependency Trellis CDT PT
Classifier Trellis CT PT

Malware for
augmentation

Batch of N
Samples N Samples

with
pseudo labels

Test set

+

Training set

+

Malware
with 6 labels

N
ew

 M
o

d
el

C
o

n
stru

ctio
nNew

model

M
o

d
el

C
o

m
p

ariso
nNew

better

Discard
Pseudo
Labels

N Samples with
pseudo labels

④

①
②

③Unused
dataset

Shuffle

⑤

Better MLC modelBase model

First batch

Other batches

New
worse

Base model

Updated model

1 … N … 2N …

Data pool

Fig. 4: Detection-Training: an active learning framework
based on data augmentation

belonging to the PT method. To the best of our knowledge,
these MLC algorithms have never been adopted on any
task in Android malware classification. Besides, we pick 7
different kinds of basic classification algorithms, which are
J48, LMT, RandomForest, OneR, PART, RandomTree, and
REPTree, and combine them with those MLC algorithms
individually.

The brief workflow is shown in Fig. 3. We first extract
feature vectors by decompiling and analyzing the apps
in our labeled dataset, according to the feature dictionary
constructed in the previous phase. Together with the pre-
defined labels, the input vectors are then fed into each pre-
implemented combination of MLC and basic classification
(a.k.a, BC) algorithms to train the candidates for the base
model.

2.3 Detection-Training

For applications in the data science field, a large-scale high-
quality dataset is always the most fundamental basis to en-
sure completing the established tasks at a promising quality.
However, collecting and organizing a new labeled dataset
is time-consuming and labor-intensive. In the cybersecurity
domain, it can be even harder and more expensive. For
the solutions in other domains, such as computer vision,
when we are dealing with the task of labeling pictures,
we can distribute it to anyone non-professional but willing
to participate and then validate the result with a simple
random sampling. Back to our task of labeling malware, the
first challenge is that very fewer people have the qualifi-
cation to finish the task at a reasonable confidence level.
Secondly, even if we have the support of well-trained secu-
rity analysts, collecting and labeling thousands of malware

samples according to their behaviors may take too much
time. Hence, despite of there exist some public malware
datasets, expanding the size of the labeled dataset is still
a critical challenge that we can barely withstand its cost. So
that we design and propose an alternative solution, namely
Detection-Training, inspired by the research work of both
active learning [40] and data augmentations [41], [42] in
other domains.

Fig 4 shows the workflow of Detection-Training, which is
an active learning framework based on data augmentation.
The framework takes the labeled dataset from the first phase
described in § 2.1, the base model from the second phase
described in § 2.2, and an unlabeled malware dataset as
inputs. The feature extraction step with our constructed
dictionary is considered as default and omitted in Fig. 4.
The output is an MLC model which outperforms the base
model. The detailed procedures are illustrated as follows:

• In step 1⃝, the malware dataset without our predefined la-
bels, namely “Malware for data augmentation” is divided
into several batches in size N .

• In the next step 2⃝, the current first batch is picked and
removed from the data pool. Then, the current best MLC
model, which is the base model for the first batch of data
and updated model for other batches, takes the picked
batch as input and generates a classification result for each
malware sample in this batch. In this way, these results are
temporarily determined as basic facts and further paired
with the N samples as pseudo labels.

• Next, we combine the batch of data with the current
training set to train a new model in step 3⃝. The test
set is remaining unchanged for the purpose of evaluating
the quality of this new model by comparing it to the cur-
rent best model. When determining the better model, we
mainly compare the classification accuracy of the model.
In the first epoch, we update the current model only if the
new model has a higher accuracy for improving the accu-
racy as much as possible. In the next epochs, the models
with the same accuracy as the current model are also con-
sidered in order to obtain a large data augmentation. The
specific idea behind adopting different methods for the
first epoch and others is that improving the capability of
classification is always the first-order target when there is
any potential for accuracy improvement. Besides, an MLC
model with higher accuracy can also classify the batches
with higher confidence. Through the method, the better
new model is used as the updated model to label the next
batch of N samples. The associated malware samples are
added to the training set permanently. Otherwise, the new
model and pseudo labels will be discarded. The discarded
batch of N samples will be marked as unused data.

• In step 4⃝, the workflow loops along step 2⃝ and step 3⃝
until all the malware samples in the data pool have been
picked. Because the classification capability of the up-
dated model is increased after many cycles, the updated
model will also have a higher possibility to conduct more
precise classifications on those unused data and further
enhance the detection capability as well.

• Besides, in order to avoid the potential influence from the
fixed order in the data pool, the unused dataset is shuffled
before returning to the end of the data pool in step 5⃝ and

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 7

fed to the updated model in step 2⃝ to start next epoch
until all the samples are labeled or the accuracy and scale
of data augmentation are no longer improved.

Through all the procedures in this framework, both the
classification capability of our MLC model and the size of
the usable dataset can be significantly improved.

3 EVALUATION

In this section, we first introduce the used datasets, the
experiment environment, and the metrics selected for eval-
uating the classification capability of the MLC model. After
that, We evaluate the effectiveness of different MLC and
BC algorithm combinations. Later, we investigate the ef-
fectiveness of Detection-Training. At last, we perform an
experiment for validating the authenticity of the pseudos
labels collected through Detection-Training.

3.1 Used Datasets

3.1.1 Manually labeled malware

This labeled dataset is constructed on 180 malware samples
with manual analysis reports, which are obtained from an
anonymousCERT. With our effort, each sample is labeled
according to the summarized 6 types of malicious behaviors.
A more detailed description is shown in Table 1. We release
these labeled data as a benchmark [33].

3.1.2 DREBIN dataset

We choose the classic Android malware dataset
DREBIN [13] as the first unlabeled dataset for our
experiment of data augmentation. This dataset was
collected in the period of August 2010 to October 2012, and
it contains 5,560 applications from 179 different malware
families. However, during decompiling, these malware and
extracting feature vectors, some malware samples failed
in prepossessing. The number of usable samples in our
experiments is 5,456 in total.

3.1.3 VirusShare dataset

We also collected 5,500 Android malware samples from
VirusShare [43] as the second unlabeled dataset. These
samples have been collected in the period of 2018 to 2022.
The process of building the VirusShare dataset is shown in
§ 3.5.1.2.

3.2 Experimental Environment

All experiments are conducted on the Ubuntu 18.04 server
with 36 Intel Xeon E5-2699 v3 CPUs and 192GB RAM.

The based language of most implementations in our
work is Python 3.6. MEKA v1.9.2 [44], [45], which is de-
signed to provide a series of algorithms and evaluation indi-
cators to solve multi-label classification problems, is chosen
as the basic toolkit in training and evaluating the models. It
is an open-source project based on the WEKA [46].

TABLE 3: A summary of basic notations

Notation Definition Value/Denotation
L The predefined labels |L| = 6
D The set of test data N/A
xi The ith sample in test dataset xi ∈ D
Yi,j The jth value in the actual label

vector of sample xi

Yi,j ∈ {0, 1}

Yi The actual label vector of sample
xi

(Yi,1, · · · , Yi,|L|)

Zi,j The jth result in the classification
result vector of sample xi

Zi,j ∈ {0, 1}

Zi The classification result vector of
sample xi

(Zi,1, · · · , Zi,|L|)

TABLE 4: The conditions for calculating confusion matrix

Label
Pred. Pos. Neg.

Pos. (Yi,j = 1) ∧ (Zi,j = 1) (Yi,j = 1) ∧ (Zi,j = 0)
Neg. (Yi,j = 0) ∧ (Zi,j = 1) (Yi,j = 0) ∧ (Zi,j = 0)

3.3 Evaluation Metrics
Generally, the evaluation of the multi-label classification
approach is much more complicated than binary or family
classification [47], since there are multiple classes associated
with each sample. Besides, for the active learning method,
the effectiveness of the method is highly dependent on
the correctness of feedback (i.e., generated pseudo labels).
Therefore, we adopt 2 categories of metrics for different
purposes, which are 4 sample-based metrics for the overall
effectiveness of the trained model and a label-based metric
for the effectiveness on different labels [48]. Overall, we take
the sample-ACC as the first-order metric in all experiments,
and the rest are used as auxiliary ones for determining the
capability of models towards various factors.

To help in understanding the mathematical definitions
of the metrics, we first introduce the definitions of all used
notations with their values or denotations if exist as shown
in Table 3. In order to make it easier to be understood, we
explain each notation in more detail and its interrelationship
with other notations in the following paragraph.

L denotes the 6 predefined labels, and |L| represents the
total number of labels (i.e., 6). D is the test data set used to
evaluate the pre-trained models, and |D| represents its total
number of samples. xi represents the ith sample in D. Yi

is an L-dimension boolean vector (Yi,1, · · · , Yi,j , · · · , Yi,|L|)
which represents the |L| labels of sample xi in vector space.
Yi,j could be either 1 or 0, which means the sample is
actually relevant or irrelevant to the malicious behavior
associated with label j. Zi is also an L-dimension boolean
vector (Zi,1, · · · , Zi,j , · · · , Zi,|L|) which represents the clas-
sification result of sample xi. Zi,j could be either 1 or 0,
which means the sample is classified into label j by the pre-
trained model, or not. Besides, in Table 4, we also present the
basic logic conditions while calculating confusion matrix for
the sample xi on label j, according to the actual label Yi,j

and classification result Zi,j .

3.3.1 Sample-based metrics
In all, we adopt 4 sample-based evaluation metrics, they are
hamming loss, zero-one loss, F1-score, and sample-ACC.
Hamming loss represents the fraction of the misclassified
labels to the total label number among all samples. The

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 8

smaller the value of hamming loss is, the stronger the
classification ability the MLC model has. It can be calculated
with the following equation:

hammingLoss =
1

|D| · |L|

|D|∑
i=1

|L|∑
j=1

Yi,j ⊕ Zi,j ;

Where ⊕ stands for the XOR operation in Boolean logic.
Zero-one loss is a metric that evaluates the fraction of
misclassified samples to the entire dataset. For a given
input xi, this metric considers the classifier makes a correct
classification, only if all labels in the classification results
Zi equal to the ground truth Yi. Otherwise, if any single
label is different, the classification is considered as a failure.
The smaller the value of zero-one loss, the better the perfor-
mance. It can be calculated with the following equations:

lossi =

{
1, Yi ̸= Zi,
0, Yi = Zi,

zero-one loss =
1

|D|

|D|∑
i=1

lossi;

Where lossi denotes the classification result of the sample
xi. It could be either 1 or 0, which means the sample is
correctly predicted or incorrectly predicted.
F1-score measures the accuracy and completeness of the
classification. The F1-score adopted in evaluating the pro-
posed multi-label classification approach is calculated by
the F-measure averaging on each sample. A higher F1-
score means better performance in classification. It can be
calculated with the following equation:

F1-score =
1

|D|

|D|∑
i=0

2
∑|L|

j=0 Yi,j ∧ Zi,j∑|L|
j=0 Yi,j +

∑|L|
j=0 Zi,j

;

Sample-ACC is adopted to evaluate the overall accuracy of
the pre-trained model on the test dataset. The idea that we
are trying to explore is providing as much explanation as
possible in order to provide some usable and correct clues
for future analysis. However, different from the method
used in binary or family classification tasks, ensuring to
correctly classify all |L| labels of the given sample could
be extremely challenging in an MLC task. Especially, the
limited size of the labeled dataset will definitely make this
target become a “mission impossible”. Hence, we use an
alternate definition of the correctness of the classification
result. We consider the sample xi to be correctly classified,
as long as its classification result satisfies the following two
conditions:

• Detect at least one malicious behavior (true positive:
(Yi,j = 1) ∧ (Zi,j = 1)) correctly.

• Predict nonexistent malicious behaviors (false positive:
(Yi,j = 0) ∧ (Zi,j = 1)) to none.

Otherwise, the sample is misclassified. In all, the goal
is to predict the malicious behavior of the sample as much
as possible, meanwhile, avoiding misleading with incorrect
information. The mathematical definition of the sample-
ACC is shown as follows:

Ci = {Zi,j |⌝((Yi,j = 0) ∧ (Zi,j = 1)), j ∈ N ∩ (0, |L|]},
C = {xi|∀xi ∈ D,Ci ∋ 1, i ∈ N ∩ (0, |D|]},

sample-ACC =
|C|
|D|

;

Where Ci denotes the set of classification results of the sam-
ple xi after removing false positives; and C denotes the set
of correctly classified samples, while each sample contains at
least one successfully detected malicious behavior. Sample-
ACC represents the proportion of correct samples in the
entire test dataset.

3.3.2 Label-based metric
To evaluate the detection ability of the MLC model on each
label, we also select a label-based metric, namely label-ACC.
Label-ACC aims to evaluate the accuracy of the pre-trained
model on the selected labels. In other words, the larger the
label-ACC, the better the model performs on the label. The
idea behind this metric is that, because of the limited and
imbalanced labeled data, the overall accuracy calculated on
all samples may hide the poor effectiveness of the classifier
on those labels that contain fewer samples. The mathemati-
cal definition of the label-ACC is shown as follows:

Cj = {xi|∀xi ∈ D, i ∈ N ∩ (0, |D|],
((Yi,j = 1) ∧ (Zi,j = 1)) ∨ ((Yi,j = 0) ∧ (Zi,j = 0))},

Dj = {xi|∀xi ∈ D,Yi,j = 1, i ∈ N ∩ (0, |D|]},

label-ACC =
|Cj |
|Dj |

;

Where Cj denotes the set of correctly classified samples on
label j. Here, the basis of judgment includes both success-
fully detected samples containing malicious behavior and
successfully detected samples that do not contain malicious
behavior. Dj denotes the set of samples on label j.

3.4 RQ1: Which combination of MLC and BC algo-
rithms is best for multi-label classification of malware?
In this experiment, to find out the best combinations of
multi-label classification and basic classification algorithms,
we evaluate the effectiveness of diverse machine learning
models on the metrics proposed in § 3.3.

3.4.1 Dataset
As shown in Table 1, we use the dataset of 180 labeled
malware samples as the ground truth. Due to the limited
size of the dataset, using a common data split ratio (i.e.,
8:2) like other approaches which perform on large-scale
datasets can seriously undermine the validity of the eval-
uation result. Especially, for the labels with a very small
number of samples, such as “Telephony-related”, if the test
set has only 2 samples, it will be quite hard to judge the
actual classification ability since there are only 3 possible
test results (i.e., 0%, 50% or 100%). Besides, because of the
imbalanced data distribution, samples under this label may
not exist in the test set, if we adopt a global random data
partitioning as usual. Hence, when dividing the dataset, we
ensure that the proportions of samples under each label in

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 9

TABLE 5: The results of top 10 models according to the sample-based metrics

Model id 1 2 3 4 5 6 7 8 9 10
MLC

algorithm CDN CDN BR CDN RT PS RAkELd CC CC CT

basic
classifier J48 LMT Random

Forest REPTree LMT Random
Forest

Random
Forest

Random
Forest REPTree Random

Forest
hamming loss 0.133 0.128 0.139 0.133 0.161 0.122 0.133 0.156 0.133 0.156
zero-one loss 0.533 0.467 0.533 0.500 0.533 0.433 0.500 0.533 0.533 0.533

F1-score 0.696 0.723 0.702 0.704 0.707 0.741 0.719 0.702 0.693 0.702
sample-ACC 0.733 0.733 0.700 0.700 0.700 0.700 0.700 0.667 0.667 0.667

*To make the table more readable, we highlight the locally optimal results (for sample-based metrics) with bold font and the key determinant(s) of the overall best
model with gray color. (also for Table 9)

TABLE 6: The label-based evaluation results of top 10 models

Model id 1 2 3 4 5 6 7 8 9 10
MLC

algorithm CDN CDN BR CDN RT PS RAkELd CC CC CT

basic
classifier J48 LMT Random

Forest REPTree LMT Random
Forest

Random
Forest

Random
Forest REPTree Random

Forest
L1 0.833 0.867 0.833 0.800 0.833 0.833 0.833 0.767 0.800 0.767
L2 0.800 0.800 0.833 0.833 0.800 0.800 0.800 0.800 0.833 0.800
L3 0.933 0.933 0.867 0.933 0.867 0.933 0.933 0.867 0.933 0.867
L4 0.933 0.900 0.933 0.933 0.867 0.967 0.967 0.933 0.933 0.933
L5 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900
L6 0.800 0.833 0.800 0.800 0.767 0.833 0.767 0.800 0.800 0.800

L-avg. 0.867 0.872 0.861 0.867 0.839 0.867 0.867 0.845 0.867 0.845
*L1-6 refers to the label-ACC of 6 predefined labels (i.e., “SMS-related”, “lock in”, “Re-infection”, “Telephony-related”, “Ads”, “Internet-related”) and L-avg. is the

average of all L1-L6.
*To make the table more readable, we highlight the locally optimal results (for the label-ACC of each label) with bold font and the key determinant (L-avg.) of the

overall best model with gray color.

the training set and test set are the same. We split the 180
labeled dataset into a training set of 150 samples and a test
set of 30 samples.

3.4.2 Experiment setup
To evaluate the effectiveness of different multi-label classi-
fication (MLC) and basic classification (BC) algorithms, we
adopt 70 different combinations of MLC and BC algorithms
and train each with the same data configuration. By com-
paring the results by calculating the selected sample-based
and label-based evaluation metrics, we then determine the
most suitable combinations for our task.

3.4.3 Results
We demonstrate the top 10 results from 2 aspects referring
to sample-based and label-based metrics, respectively. The
full results could be found on the website [38].

3.4.3.1 Sample-based evaluation: As shown in Ta-
ble 5, the sample-based results of the top 10 models are
sorted by the sample-ACC in descending order. Overall,
model #1 and #2 outperform other candidates at 0.733
on the sample-ACC. Between them, model #2 using CDN
as MLC algorithm and LMT as BC algorithm achieves a
better result in terms of higher sample-ACC and F1-score,
which are 0.733 and 0.723, and lower hamming loss and
zero-one loss, which are 0.128 and 0.467, respectively. This
evaluation result reveals that the above combination is able
to predict as many malicious behaviors as possible and is
less likely to make false classifications. Besides the best 2
combinations, model #3-7 have the second highest sample-
ACC at 0.7, model #8-10 have the third highest sample-ACC
at 0.667. Due to the limitation of article length and weaker
importance of results, the evaluation results of the rest 60

combinations are released on the website [38] We can also
notice that model #6, which uses PS as MLC algorithm and
RandomForest as the BC algorithm, outperforms among all
models in terms of hamming loss, zero-one loss, and F1-
score at 0.122, 0.433, and 0.741, respectively. That reveals the
prediction results given by this combination are relatively
more comprehensive, and it will make fewer false classi-
fications. Through this evaluation, CDN obviously shows
their stronger effectiveness in our task since 3 of the top 10
models are using CDN as their MLC algorithm.

3.4.3.2 Label-based evaluation: To further compare
the effectiveness of different algorithm combinations to-
wards each specific malicious behavior, we further evaluate
the accuracy of the top 10 models on each predefined label.
As shown in Table 6, we use L1-6 to denote the label-ACC
of 6 types of malicious behaviors, which are “SMS-related”,
“Internet-related”, “Telephony-related”, “Lock-in”, “Ads”
and “Re-infection” in order, and use L-avg. to denote the
averaged label-ACC (a.k.a., label-based accuracy). From the
results, we can see that all MLC models have the same L5
(a.k.a., the label-ACC of the 5th malicious behavior, namely
“Ads”) at 0.9. We notice that model #2, which has the best
result in the sample-based evaluation, also outperforms oth-
ers in the label-based evaluation. The L-avg. of model #2 is
0.872. In detail, it reaches the best results on L1,3,5,6 at 0.867,
0.933, 0.9, and 0.833, respectively. These results reveal that
the combination of algorithms CDN and LMT has higher
confidence in these 4 labels in our task. Besides, sorted by
L-avg. in descending order, the rest are model #1,4,6,7,9, #3,
#8,10 and #5 at 0.867, 0.861, 0.845, and 0.839. Among them,
model #3,4 achieve the highest L2 at 0.833, and model #6,7
achieve the highest L4 at 0.967.

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 10

TABLE 7: The results of Detection-Training with top 10 algorithm combinations on the DREBIN dataset

model id 1 2 3 4 5 6 7 8 9 10
MLC

algorithm CDN CDN BR CDN RT PS RAkELd CC CC CT

basic
clsssifier J48 LMT Random

Forest REPTree LMT Random
Forest

Random
Forest

Random
Forest REPTree Random

Forest
of samples 4,872 312 16 5,456 472 5,456 16 1,720 72 3,440

hamming loss 0.106 0.122 0.111 0.144 0.172 0.139 0.122 0.128 0.128 0.122
zero-one loss 0.467 0.500 0.433 0.500 0.533 0.533 0.467 0.467 0.500 0.467

F1-score 0.779 0.742 0.758 0.729 0.696 0.730 0.748 0.752 0.734 0.769
sample-ACC 0.867 0.833 0.767 0.767 0.800 0.733 0.767 0.767 0.800 0.767
∆sample-ACC 0.134 0.100 0.067 0.067 0.100 0.033 0.067 0.100 0.133 0.100
Avg. label-ACC 0.894 0.878 0.889 0.856 0.828 0.861 0.878 0.872 0.872 0.878

*To make the table more readable, we highlight the locally optimal results (only if # of samples > 1k, the model is considered; best one(s) for other metrics) with bold
font and the key determinants of the overall best models with gray color. (also for Table 8, 10 and 11)

0 250 500 750 1000 1250 1500 1750 2000
of batches

0.65

0.70

0.75

0.80

0.85

0.90

0.95

sa
m

pl
e-

A
C

C

0

1000

2000

3000

4000

5000

6000

of
 sa

m
pl

es

(1110, 0.867)
(1905, 4872)

ep
oc

h
1

ep
oc

h
2

ep
oc

h
3

ep
oc

h
4

ep
oc

h
5

ep
oc

h
6

(a) CDN+J48 (model #1)

0 500 1000 1500 2000 2500 3000
of batches

0.65

0.70

0.75

0.80

0.85

0.90

0.95

sa
m

pl
e-

A
C

C

0

1000

2000

3000

4000

5000

of

 sa
m

pl
es

(2, 0.767)

(3164, 5456)

ep
oc

h
1

ep
oc

h
2

ep
oc

h
3

ep
oc

h
4

ep
oc

h
5

ep
oc

h
6

(b) CDN+REPTree (model #4)

0 200 400 600 800 1000 1200 1400
of batches

0.65

0.70

0.75

0.80

0.85

0.90

0.95

sa
m

pl
e-

A
C

C

0

1000

2000

3000

4000

5000

6000

of

 sa
m

pl
es

(1, 0.733)

(1362, 5456)

ep
oc

h
1

ep
oc

h
2

(c) PS+RandomForest (model #6)

0 500 1000 1500 2000 2500 3000
of batches

0.65

0.70

0.75

0.80

0.85

0.90

0.95

sa
m

pl
e-

A
C

C

0

1000

2000

3000

4000

5000

6000

of

 sa
m

pl
es

(712, 0.767)
(934, 1720)

ep
oc

h
1

ep
oc

h
2

ep
oc

h
3

ep
oc

h
4

ep
oc

h
5

ep
oc

h
6

(d) CC+RandomForest (model #8)

0 500 1000 1500 2000
of batches

0.65

0.70

0.75

0.80

0.85

0.90

0.95

sa
m

pl
e-

A
C

C

0

1000

2000

3000

4000

5000

6000

of

 sa
m

pl
es

(696, 0.767)

(1343, 3440)

ep
oc

h
1

ep
oc

h
2

ep
oc

h
3

ep
oc

h
4

ep
oc

h
5

ep
oc

h
6

(e) CT+RandomForest (model #10)

Fig. 5: The plots of accuracy improvement and data augmentation on the DREBIN dataset

Conclusion: By training with 70 different algorithm com-
binations, we basically confirm the candidate MLC and BC
algorithms that could achieve better results for our task. The
best practice reaches 0.733 and 0.872 on sample-ACC and
averaged label-ACC.

3.5 RQ2: Can Detection-Training effectively augment
the dataset? What is the best batch-size for enhance-
ment?
In this section, we investigate the effectiveness of Detection-
Training from 2 aspects. First, we conduct an experiment to
see which ML algorithm can perform well with Detection-
Training. Second, we further tune the parameters defined
in Detection-Training to achieve a better result on accuracy
improvement and data augmentation.

3.5.1 Capability Evaluation of Detection-Training on Accu-
racy Improvement and Data Augmentation
To find out the most suitable algorithm combinations in our
task, we conduct the experiment that trains 10 combinations
on 2 different malware datasets. We evaluate the capability

according to 2 factors, such as the # of samples for data
augmentation and the accuracy improvement of the MLC
model.

3.5.1.1 Evaluation on the DREBIN datset: Dataset.
In this experiment, we adopt a setting on the labeled dataset
as same as § 3.4.1, because it is necessary to keep the
test set remaining unchanged while comparing the accu-
racy between the base model and better models, which
obtained through Detection-Training. Besides, two more
datasets without manual labeling are used as the “Malware
for data augmentation” in the Detection-Training module
which is introduced in § 2.3. The first one is a widely used
public dataset, namely DREBIN. As introduced in § 3.1.2,
the malware samples in DREBIN were collected in the
period of 2010 to 2012. During the past decade, the attack
principle of malware also changes with the improvement
of the Android system mechanism and implementation.
Hence, the evaluation results on DREBIN may be affected
by the evolution of the malicious behaviors implemented in
malware.

Experiment setup. To evaluate the capability of the pro-

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 11

posed active learning framework on the accuracy improve-
ment and data augmentation by using the results of base
models in § 3.4 as the baseline, we adopt 10 algorithm com-
binations as same as those of the top 10 best base models. In
the experiment, we follow the steps described in § 2.3. We
set 8 as the default batch size, which means 8 samples from
the “data pool” are fed into the “base/updated model” in
each round of workflow, and 6 as the default epoch number,
which means traversing “data pool” for 6 times by adding
the shuffled the unused data in step 5⃝ at the end of each
epoch.
Result on the DREBIN dataset. Table 7 presents the eval-
uation results of improving the classification accuracy and
size of the usable dataset by applying Detection-Training
to the DREBIN dataset. Overall, the accuracy increase (i.e.,
∆sample-ACC) can reach up to 0.134 on the test set by
comparing to the base models, even the worst case has an
increase at 0.033. Among the 10 selected algorithm com-
binations, model #1, which uses CDN as MLC algorithm
and J48 as BC algorithm, achieves the best result, which
shows a significant improvement on all evaluation metrics
with a successful data augmentation. Specifically, model #1
reaches the lowest hamming and zero-one loss at 0.106
and 0.467, the highest F1-score, sample-ACC, and averaged
label-ACC at 0.779, 0.867, and 0.894, respectively, and the
most successful accuracy improvement at 0.134 based on
a data augmentation with 4,872 malware samples. Besides,
we notice that there are 4 more combinations of MLC and
BC algorithms, which are used in constructing model #4, 6,
8, 10, and can also expand the dataset with thousands of
additional malware samples from DREBIN. Among them,
model #4 and #6 have increased the training set to the largest
size with 5,456 samples. Model #4 improves the sample-
ACC to 0.733, which is 0.033 higher than that of the base
model with the same algorithm combination. The averaged
label-ACC of it is 0.856, which has a little decrease by
comparing to the result of its base model (0.867). Model #6
also improves the sample-ACC to 0.733, which is 0.033
higher than that of the base model with the same algorithm
combination.

To investigate the precise improvement in both accuracy
and data augmentation during the entire active learning
progress, we also plot the detailed results in Fig. 5. Gen-
erally, the plots present the run-time sample-ACC and the
total number of involved samples by augmentation at each
batch. We pick 6 as the epoch number in the experiment,
because we observe the accuracy and number of samples
always remaining unchanged after 6 epochs. Note that each
epoch accumulates batches based on the previous epoch,
the number of batches is not set to zero after one epoch
ends, but it still keeps increasing. Totally, there are 5 models
(i.e., model #1, 4, 6, 8, and 10) that obtained a data aug-
mentation of more than one thousand samples. Fig. 5(a)
shows the result of model #1, which uses CDN and J48
as MLC and BC algorithms. We can see that in the early
stage of Detection-Training, along with the increasing #
of batches, the sample-ACC and # of augmented samples
keep increasing. After the # of batches reaches 1,110, the
sample-ACC remains unchanged at 0.876. And, the # of
samples for augmentation is still able to increase. In epoch
6, when 1,905 batches have been fed to the base/update

MLC
models

Well-performance
models

VirusShare

Samples with
pseudo label

Analysis
data

Listing
of label

Listing
of count

Sort

Rules

Selected
samples

Select

Fig. 6: The process of selecting samples from VirusShare
dataset

models, the # of samples reaches 4,872. After that, the # of
augmented data hardly ever grows significantly. As shown
in Fig. 5(d) and Fig. 5(e), model #8 and #10, which were
trained with the combinations of CC and RandomForest
and CT and RandomForest, also have a similar tendency.
For these above 3 combinations, there is always such a
situation observed, when the batches of involved samples
reach a certain number, the classification capability of the
model and # of samples for augmentation can no longer
increase. For model #8 and #10, the lift of the curves stops in
epoch 2. For model #4, when the # of batches reaches 2, the
sample-ACC of the current model reaches the peak at 0.767.
In epoch 4, # of samples for augmentation starts to increase
significantly, and in epoch 6, when # of batches equals to
3,164, all 5,456 samples in the DREBIN dataset have been
labeled with pseudo labels and added to the training set.
A similar situation happens to model #6, which uses the
combinations of PS and RandomForest. Fig 5(c) shows that
in epoch 2, it also adds all 5,456 samples from the DREBIN
dataset to the training set.

3.5.1.2 Evaluation on the VirusShare dataset:
Dataset. VirusShare has tens of thousands of Android mal-
ware between 2018 and 2022, the malicious behavior of these
samples is varied. In order to balance the data on each
label, we propose a method for selecting samples, which
selects a subset of samples from VirusShare. The specific
data selection process is as shown in Fig. 6.

First, we select 3 well-performing models from existing
MLC models. Among them, one model comes from the
basic models which are constructed in § 3.4. As Table 5
and Table 6 show, the algorithm combination of CDN and
LMT (model #2) achieves the best results. The other two
models are built in the process of detection-training using
the DREBIN dataset in § 3.5.1.1, they are trained with the
algorithm combinations of CDN and J48 (model #1), CDN
and REPTree (model #4) shown in Table 7. We then use these
three well-performing models to predict pseudo-labels for
each of the 100,000 samples from VirusShare and get three
pseudo-labeled sample datasets. Note that, for some same
samples, the pseudo-labels predicted by the three models
may be different. After that, we look into the statistics of
each sample referring to these three pseudo-labeled sample
datasets and mark each sample with two vectors with
lengths at 6, namely label and count, respectively. For the
vector label, the index i represents the number of models
whose i-th pseudo-label of the sample is equal to 1. For
the vector count, count[j] indicates the number of models
that totally predict j labels for this sample. After getting the
label and count vectors of all samples, we next sort them
and pick samples based on the following 2 rules. Rule #1

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 12

TABLE 8: The results of Detection-Training with top 10 algorithm combinations on VirusShare dataset

model id 1 2 3 4 5 6 7 8 9 10
MLC

algorithm CDN CDN BR CDN RT PS RAkELd CC CC CT

basic
clsssifier J48 LMT Random

Forest REPTree LMT Random
Forest

Random
Forest

Random
Forest REPTree Random

Forest
of samples 5416 536 72 120 960 5496 2432 1088 24 1848

hamming loss 0.133 0.111 0.117 0.139 0.189 0.139 0.144 0.128 0.128 0.128
zero-one loss 0.500 0.433 0.467 0.500 0.600 0.533 0.533 0.500 0.533 0.467

F1-score 0.733 0.753 0.747 0.729 0.641 0.730 0.720 0.736 0.746 0.719
sample-ACC 0.833 0.833 0.767 0.767 0.767 0.733 0.767 0.733 0.8 0.733
∆sample-ACC 0.100 0.100 0.067 0.067 0.067 0.033 0.067 0.066 0.133 0.066
Avg. label-ACC 0.867 0.889 0.883 0.861 0.811 0.861 0.856 0.872 0.872 0.872

0 500 1000 1500 2000 2500 3000
of batches

0.65

0.70

0.75

0.80

0.85

0.90

0.95

sa
m

pl
e-

A
C

C

0

1000

2000

3000

4000

5000

of
 sa

m
pl

es
(2560, 0.833)

(2917, 5416)

ep
oc

h
1

ep
oc

h
2

ep
oc

h
3

ep
oc

h
4

ep
oc

h
5

ep
oc

h
6

(a) CDN+J48 (model #1)

0 200 400 600 800 1000 1200 1400
of batches

0.65

0.70

0.75

0.80

0.85

0.90

0.95

sa
m

pl
e-

A
C

C

0

1000

2000

3000

4000

5000

6000

of

 sa
m

pl
es

(1, 0.733)

(1440, 5496)

ep
oc

h
1

ep
oc

h
2

ep
oc

h
3

(b) PS+RandomForest (model #6)

0 500 1000 1500 2000 2500 3000
of batches

0.65

0.70

0.75

0.80

0.85

0.90

0.95

sa
m

pl
e-

A
C

C

0

1000

2000

3000

4000

5000

6000

of

 sa
m

pl
es

(696, 0.767) (2650, 2432)

ep
oc

h
1

ep
oc

h
2

ep
oc

h
3

ep
oc

h
4

ep
oc

h
5

ep
oc

h
6

(c) RAkELd+RandomForest (model #7)

0 500 1000 1500 2000 2500 3000 3500
of batches

0.65

0.70

0.75

0.80

0.85

0.90

0.95

sa
m

pl
e-

A
C

C

0

1000

2000

3000

4000

5000

6000

of

 sa
m

pl
es

(6, 0.733) (2950, 1088)

ep
oc

h
1

ep
oc

h
2

ep
oc

h
3

ep
oc

h
4

ep
oc

h
5

ep
oc

h
6

(d) CC+RandomForest (model #8)

0 500 1000 1500 2000 2500 3000 3500
of batches

0.65

0.70

0.75

0.80

0.85

0.90

0.95

sa
m

pl
e-

A
C

C

0

1000

2000

3000

4000

5000

6000

of

 sa
m

pl
es

(4, 0.733) (3088, 1848)

ep
oc

h
1

ep
oc

h
2

ep
oc

h
3

ep
oc

h
4

ep
oc

h
5

ep
oc

h
6

(e) CT+RandomForest (model #10)

Fig. 7: The plots of accuracy improvement and data augmentation on VirusShare dataset

is we want to have at least 1,000 samples on each label.
Rule #2 is it would be better for the selected samples to
have as many labels equal to 1 as possible because we want
the selected samples to have diverse kinds of behaviors.
We first sort them according to the value of label[i]. The
larger the label[i] is, the more likely the sample actually has
malicious behavior related to this label. For each label, we
select the top 1,000 samples. Considering the value range of
label[i] is [0, 3], all the samples with a high probability of
an equal label[i]. When such a conflict occurs, we refer to
Rule #2 and perform a secondary analysis on them based
on the count vector. Specifically, we compare the maximum
index of each sample whose count[j] is not equal to zero
and select a sample with a larger index, which means that
it may have more types of malicious behaviors. When the
indexes of two samples are the same, we compare the value
of their count[j] and select the one with a larger count[j],
which indicates that it has higher credibility of having actual
malicious behavior under label j. Through the above steps,
we finally select 5,500 samples from VirusShare [43] and
construct a relatively balanced VirusShare dataset.

Experiment setup. In this experiment, we adopt an experi-
ment setup as same as § 3.5.1.1

Result on the VirusShare dataset. Table 8 presents the
evaluation results of Detection-Training with top 10 algo-
rithm combinations on VirusShare dataset. The top results
are consistent with the markup of the Table 7. In general,
the sample-ACC of these models comparerevised to those
of base models can be improved ≥ 0.33 on the test set,
and the best case has an increase at 0.1. There are totally
5 combinations of MLC and BC algorithms, which are used
in constructing model #1, 6, 7, 8, 10, and can expand the
train set with thousands of additional malware samples
from the VirusShare dataset. Among all of them, model #1,
which uses the algorithm combination of CDN and J48,
achieves the best result. Its sample-ACC is 0.833, which is
0.1 more than that of its base model. Model #1 also enlarge
the training set to the second largest size at 5,416. Besides,
model #6 has increased the training set to the largest size
with 5,496 samples and improved the sample-ACC to 0.733,
which is 0.033 higher than that of its base model. The
averaged label-ACC of it is 0.861, which has a little decrease
by comparing to that of its base model (0.867).

We also plot the detailed results of model #1, 6, 7, 8, 10 in
Fig. 7. The x-axis represents # of batches used in Detection-
Training. Generally, the plots present the run-time sample-

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 13

ACC and the total number of involved samples by augmen-
tation at each batch. As a default, we set the epoch number
to 6. In Fig. 7(a) which shows the result of the combination
of CDN and J48 (model #1), along with the increasing # of
batches, the sample-ACC and # of augmented samples keep
increasing at the early stage of Detection-Training. when the
of batches reaches 2,560, the sample-ACC reaches a peak at
0.833. And after that, the # of samples for augmentation is
still able to increase. In epoch 6, when 2,917 batches have
been fed into the base/update models, the # of samples
reaches 5,416 and the # of augmented data hardly ever
grows significantly after that. As shown in Fig. 7(c), Fig. 7(d)
and Fig. 7(e), model #7, #8 and #10, which are trained with
the combinations of RAkELd and RandomForest, CC and
RandomForest, CT and RandomForest, also have a similar
tendency as model #1. For these 3 models, there is always
such a situation that both the classification capability of the
model and # of samples for augmentation has no longer
increased when the # of batches reaches a certain number.
For model #7, #8, and #10, the lift of the curves stops in
epoch 5. As shown in Fig. 7(b), for model #6, after the
first batch is added, the sample-ACC remains unchanged
at 0.733. In epoch 2, # of samples for augmentation starts
to increase significantly. When the # of batches equals 1,440
in epoch 3, 5,496 samples from the VirusShare dataset have
been labeled with pseudo labels and added to the training
set. Because the rest of the 4 samples other than the samples
used for data augmentation cannot be successfully added,
we consider the process of Detection-Training for this algo-
rithm combination stops in 3 epochs. In general, all these 5
processes of Detection-Training have proof of accuracy im-
provement and data augmentation, and can both be finished
within 5 epochs, which means an acceptable efficiency.

3.5.1.3 Comparison between the DREBIN dataset
and VirusShare dataset: Generally, the results on the two
datasets reveal that the proposed active learning framework
can not only improve the capability of MLC classifier but
also construct a larger dataset with the help of the limited
number of labeled malware samples. Besides the proof
of accuracy improvement and data augmentation, we can
observe that the processes of using the proposed Detection-
Training on all five selected algorithm combinations can
be finished within 6 epochs, which means an acceptable
efficiency.

In detail, by comparing the results in Table. 7 and 8, 4
algorithm combinations, which are CDN and J48 (model #1),
PS and RandomForest (model #6), CC and RandomForest
(model #8), CT and RandomForest (model #10), perform
good on both of the two selected datasets. From the aspect
of improving accuracy, these 4 combinations achieve sim-
ilar results with a difference of less than 0.034. From the
aspect of data augmentation, the combinations of CDN and
J48 (model #1), PS, and RandomForest (model #6) achieve
similar results on 2 datasets with differences at 544 and 40
samples, which only occupy 0.112 and 0.007 of the total
on the lesser side (on DREBIN). However, the sizes of
data augmentation achieved by the other two combinations
on two datasets show a big difference at 1,592 and 632,
which occupy 0.861 and 0.581 of the total on the lesser
side (on the VirusShare dataset). Besides, the combination of
CDN and REPTree (model #4), RAkELd, and RandomForest

(model #7) demonstrated significantly different effects on
different datasets. These phenomena are quite interesting
and worth future exploration. Through this work which is
still in the early stages of this new direction, the biggest
potentially possible reason is the variability of the datasets.
As we introduced in previous sections (§ 1 and § 2.3), it
is quite hard and expensive to manually validate the mali-
cious behaviors in malware, even with a detailed security
report. In § 5, we will discuss some engineering approaches,
which can potentially simplify the analysis process and are
expected to be validated in future work.

Conclusion 2.1: By conducting the process of Detection-
Training on the DREBIN dataset and VirusShare dataset, we
confirm the effectiveness of our method. Specifically, for the
DREBIN dataset, the best practice has enlarged the dataset
to a size of 4,872, and the sample-ACC reaches 0.867. For the
VirusShare dataset, # of samples of the best practice is 5,416
and its sample-ACC is 0.833.

3.5.2 Evaluation on Parameters Tuning in Detection-
Training
To find out the best parameter setting of Detection-Training
for better enhancing the effect of data augmentation and
improving the classification capability on each selected al-
gorithm combination, we conduct the experiments of tuning
the batch size N on 2 datasets.

3.5.2.1 Dataset: The dataset configuration used in
this experiment is same as § 3.5.1.1 and § 3.5.1.2

3.5.2.2 Experiment setup: As introduced in
§ 3.5.1.1, the default batch size and number of epochs are
8 and 6. In order to further explore the potential impact of
different parameter settings, we pick 4, 8, 16, and 32 as the
candidate batch sizes in this experiment, and determine the
best number of epochs by plotting the result on accuracy
improvement and data augmentation. We pick 5 algorithm
combinations for each unlabeled dataset (i.e., the DREIN
dataset and VirusShare dataset), which has been initially
proved to enlarge the training set with thousands of new
malware samples as data augmentation, according to the
results in § 3.5.1.1 and § 3.5.1.2.

3.5.2.3 Result on the DREBIN dataset: We demon-
strate and detail the results on our website [38]. Overall,
we can find that adopting 8 as batch size can achieve the
highest classification accuracy and the largest size of data
augmentation to the best practice for 3 combinations, such
as CDN and J48, CDN and REPTree, PS, and RandomForest.
For the other 2 combinations, the best batch size is 32.
Besides, among all the models, whose data augmentation
contains more than a thousand samples, model #1.2 has the
best overall result in terms of all evaluation metrics.

3.5.2.4 Result on VirusShare dataset: We also
demonstrate and detail the results on our website [38]. In
general, we can find that adopting 8 as batch size can
achieve the highest classification accuracy and the largest
size of data augmentation to the best practice for 4 combi-
nations, such as CDN and J48, PS and RandomForest, CC
and RandomForest, CT and RandomForest. This is the same
as what we found in the experiment on the DREBIN dataset.
For the combination of RAkELd and RandomForest, the
best batch size is 32. Besides, among all the models, whose

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 14

data augmentation contains more than a thousand samples,
model #1.2 has the best result in terms of both # of samples
and sample-ACC, proved to be an overall best model.

Conclusion 2.2: By tuning the parameter (i.e., batch size)
in Detection-Training, we can achieve the best practice of
each algorithm combination on both data augmentation and
classification capability. For most situations, when batch size
is equal to 8, it can achieve excellent results within 6 epochs.

3.6 RQ3: How reliable is the pseudo-label for the sam-
ple through Detection-Training?
In this section, to verify the authenticity of the pseudo labels
which are generated in the process of Detection-Training, we
evaluate the effectiveness of MLC models which are trained
with the pseudo-labeled samples on all sampled-based and
label-based metrics.

3.6.1 Dataset
The dataset used in this experiment is same as § 3.5.2.1.
However, we adopt an alternate dataset configuration in
order to check the validity of the pseudo labels obtained
within data augmentation. For each selected algorithm com-
bination, we train the MLC classifier with a new training set,
which is built from those pseudo-labeled malware samples
obtained through Detection-Training (§ 3.5.1), and then test
it with the manually labeled ground-truth dataset. Please
do note that the pseudo-labeled malware samples used on
each combination are strictly restricted to the generated data
augmentation by the same algorithm combination.

3.6.2 Experiment setup
The algorithm combinations used in this experiment are
same as § 3.5.2.2.

3.6.3 Results
In this section, we present the experiment results on the
DREBIN dataset and VirusShare dataset referring to sample-
based metrics and label-based metrics. We also discuss some
insightful conclusions for relevant approaches using active
learning and data augmentation.

3.6.3.1 Evaluation on the DREBIN dataset: As
shown on the left side of Table 9, model #2, which is
trained with the combination of CDN and REPTree algo-
rithms on the 5,456 pseudo-labeled samples from DREBIN,
outperforms on all evaluation metrics. Compared with the
result presents in Table. 5, it performs better on all metrics
than the base model which uses the same algorithm com-
bination. Besides, compared with the updated model with
the same combination (i.e., model #4 in Table. 7) whose
classification capability has been improved a lot through
Detection-Training, it also achieves a better result in terms
of all metrics. In detail, the hamming loss and zero-one
loss have been reduced by 0.053 and 0.107, and the sample-
ACC and averaged label-ACC have been improved by 0.014
and 0.053. So that we can make a conclusion that the 5,456
samples which are labeled using this combination during
Detection-Training are well predicted. In other words, the
generated pseudo labels are highly credible. Model #1,
which uses the combination of CDN and J48 that has the

best result in § 3.5.1.1, also performs well as the second best
in this evaluation with the second lowest hamming loss and
zero-one loss, and the second highest F1-score, sample-ACC
and averaged label-ACC.

We selected 20 samples and manually verify the au-
thenticity of their pseudo-labels, the details are shown in
Appendix B.

3.6.3.2 Evaluation on VirusShare dataset: As
shown on the right side of Table 9, model #2, which is
trained with the combination of PS and RandomForest
algorithms on the 5,496 pseudo-labeled samples from the
VirusShare dataset, outperforms on all evaluation metrics.
Compared with the result presents in Table 5, the sample-
ACC is 0.003 less than its base model and the Avg.label-
ACC is 0.057 less than that of its base model. Besides,
compared with the updated model of the same combination
(i.e., model #6 in Table. 8), whose classification capability
has been improved a lot through Detection-Training, it
also has a lower classification accuracy. The reason for this
phenomenon possibly is the samples from the VirusShare
dataset collected in recent years (i.e. 2018-2022) may include
some variants which use new methods to perform mali-
cious behaviors. Model #3, which uses the combination of
RAkELd and RandomForest that has the second best result
in § 3.5.1.2, also performs well as the second best in this
evaluation with a sample-ACC at 0.669. Model #1, which
uses the combination of CDN and J48 that has the best result
in § 3.5.1.2, performs as the third best in this evaluation
with the second lowest hamming loss and zero-one loss, the
second highest F1-score and averaged label-ACC, and the
third highest sample-ACC. We also select 20 samples and
manually verify the authenticity of their pseudo-labels, the
details are shown in Appendix B.

3.6.3.3 Comparison between DREBIN and
VirusShare dataset: By comparing the results shown in
Table 9 with the results of the base model in Table 5,
we observe that the overall effectiveness of the proposed
approach is validated to be successful because we achieve
a significant improvement in all evaluation metrics with
the model of CDN and RandomForest trained on pseudo-
labeled samples from DREBIN. The result of best practice
outperforms its based model by adopting pseudo-labeled
samples as a training set and the manually labeled dataset
as a test set.

Besides, we also notice some interesting results. For
instance, the results on DREBIN are better than that on the
VirusShare dataset for most same algorithm combinations,
except the combination of PS and RandomForest. And, for
the combinations of CDN and RandomForest, RAkELd, and
RandomForest, the results of Detection-Training are diamet-
rically opposed between the two datasets. The most possible
reason that causes this phenomenon could be the distribu-
tion of the dataset on our defined malicious behaviors since
DREBIN is a more established family dataset with higher
diversity. Another one is about the adaptability of MLC
and BC algorithms to our task. Another example is that
the sample-ACC of model #2 is a little lower than the base
model which uses the same algorithm combination. One
of the possible reasons behind this phenomenon could be
the samples from the VirusShare dataset collected in recent
years (i.e. 2018-2022) may include some variants which use

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 15

TABLE 9: Evaluation of models which use samples from the DREBIN dataset and VirusShare dataset

data
source DREBIN VirusShare

model id 1 2 3 4 5 1 2 3 4 5
MLC

algorithm CDN CDN PS CC CT CDN PS RAkELd CC CT

basic
classifier J48 REPTree Random

Forest
Random

Forest
Random

Forest J48 Random
Forest

Random
Forest

Random
Forest

Random
Forest

hamming loss 0.169 0.091 0.343 0.237 0.218 0.214 0.190 0.248 0.245 0.229
zero-one loss 0.646 0.393 0.882 0.888 0.787 0.843 0.612 0.899 0.876 0.870

F1-score 0.709 0.839 0.354 0.495 0.544 0.622 0.641 0.465 0.292 0.351
sample-ACC 0.635 0.781 0.343 0.646 0.618 0.523 0.697 0.669 0.365 0.461

Avg.label-ACC 0.831 0.909 0.657 0.763 0.782 0.786 0.810 0.752 0.755 0.772

new methods to perform malicious behaviors. Hence, the
features of these behaviors may be not included in our
feature set, leading to a miss classification. In § 5, we will
discuss some potential directions that can further explore
the reasons behind these phenomena and the underlying
principles.

Conclusion: By evaluating the effectiveness of MLC models
which are trained with pseudo-labeled samples, we can tell
the confidence of generated pseudo labels. The best practice
(0.781), which is trained on pseudo-labeled samples from the
DREBIN dataset, can even outperform the best-based models
(0.733), which is trained on the ground-truth dataset.

4 RELATED WORK

4.1 Android Malware Classification
Facing the increasing number of malicious apps, malware
classification is becoming extremely important. Malware
Classification can refer either to the classification of bina-
ries as malicious or benign, or the classification of mal-
ware samples into different known malware families. To-
wards android malware binary classification, many machine
learning methods have achieved great success in Android
malware [12], [14], [17], [49]–[51]. Many machine learning
algorithms such as SVM [13] and Random forest [52] were
used to detect malware and have proven to be effective.
The method presented by Yerima et al. [53] detect Android
malware based on Bayesian Classification models obtained
from API calls, system commands, and permissions. Wu
et al. [54] used data-flow APIs as classification features to
detect Android malware. With the popularity of deep neu-
ral networks, researchers utilized the deep neural network
models for malware detection [18], [21], [22], [55], [56].

For malware family classification, which classifies mal-
ware with common features into malware families, has been
proposed as an effective malware analysis method. H. Peng
et al. [57] proposed a family classification method using
permissions as features, they introduced a probabilistic gen-
erative model to rank the risks of Android applications. M.
Zhang et al. [58] proposed a novel semantic-based approach
that classifies Android malware via dependency graphs. M.
Fan et al. [16] proposed an approach that constructs frequent
subgraphs to represent the common behaviors of malware
samples that belong to the same family for enhancing the
correctness of family classification. Y. Bai et al. [20] pro-
posed a novel siamese-network based learning method for
malware family classification.

Unlike the existing approaches on binary and family
classification above, we highlight that this is the first multi-
label Android malware classification approach for each mal-
ware which intends to provide more information on fine-
grained malicious behaviors through detection results.

4.2 Multi-label Classification
Generally, multi-label classification (MLC) aims to attach
multiple relevant labels to an input instance simultaneously
through machine learning. During the past decades, multi-
label classification has been widely adopted by commu-
nities in various domains [59], such as natural language
processing, web mining, computer vision, bioinformatics,
and multimedia. MLC has mainly engaged the attention
of researchers working on text categorization [60], [61], as
each member of a document collection usually belongs to
more than one semantic category. In web mining, various
problems brought by the massive information are also dis-
covered with MLC, such as page categorization and tag
suggestion [62]–[64]. In image semantic classification, a com-
mon scenario may contain multiple objects. With MLC, re-
searchers can annotate the given scene with multiple labels,
which makes scene classification more comprehensive [30],
[31]. MLC is also applied to the field of protein function clas-
sification, as there are proteins that have multiple properties
at the same time or exist in multiple subcellular organelles.
Researchers use multiple labels on those data for proteins
and achieve promising results with MLC [65]. In the field of
multimedia, for the tasks that retrieve relevant (categories)
emotions associated with a given piece of music, MLC can
achieve success by learning about the music with multiple
emotional labels [66], [67]. In our task, there exists the same
situation as the above problems from other fields, which is
one malware may have multiple malicious behaviors and
some of them beyond their malware families’ definitions.
The original idea of our work is inspired by the above MLC-
based work from other domains.

4.3 Data Augmentation and Active Learning
Most supervised learning-based methods tend to require
immense amounts of computational and human resources
for data annotation so designing effective methods that can
enlarge a small labeled dataset without too much effort on
annotations is a fundamental research challenge in many
classification tasks based on big data. In the past decade,
many presented research work using semi-supervised meth-
ods mainly focusing on algorithm innovation, engineering

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 16

practice, and new application exploration. Along with this
style of research and development, recently, data augmen-
tation and active learning have been proved that it can
successfully alleviate the data-deficient scenarios in many
research fields, such as natural language processing [68]
and medical image analysis [69]. For data augmentation,
SPADE [70] used a two-phase data augmentation process
to enrich a dataset before training a deep-learning classi-
fier. D.H. Lee et al. [41] picked the labels with the largest
predicted probability to generate pseudo labels for unla-
beled data. Mixmatch [71] applied the mix-up technique to
both pseudo-labeled data and unlabeled samples, then use
these data to iteratively train the network. L. Samuli [72]
formed a consensus prediction of the unknown labels using
the outputs of the network-in-training on different epochs.
T. Antti [42] took a weight-average of the parameters of
the model and used this weight-averaged parameter to
generate pseudo labels. For active learning, J. Zhang et
al. [73] applied active learning and data augmentation to
the field of anomaly detection, the NAF-AL method they
proposed uses the augmented samples incorporated with
normal samples to train a better anomaly detector. Z. Zhou
et al. [74] proposed an active learning approach based
on data augmentation for reducing annotation efforts in
medical image analysis. In the ED2 [75], active learning was
applied in the error detection field, which aims to solve a
fundamental problem in data science.

Data augmentation and Active learning also have several
applications in the field of malware detection. For data
augmentation, Ding et al. [76] proposed a Grad-CAM algo-
rithm to find the raw data representing malware features
and generated malware family samples. Chen et al. [77]
first transformed malware into images and then used the
generative adversarial networks to generate data. The gen-
erated data can be used to balance and expand the original
dataset. For Active learning, Chen et al. [78] leveraged the
Active learning by learning (ALBL) technique based on the
experts’ feedback. So that the trained models can be updated
to reduce the classification error rate.

As we introduced in § 1 and § 2.3, we also face a similar
problem in that the number of usable labeled data is limited
and the cost of effort in data annotation is unbearable.
Inspired by the above work from other domains, we take
the idea of active learning and data augmentation to gener-
ate pseudo labels for unlabeled samples, iteratively retrain
models to validate the correctness of pseudo labels as well
as improve the capability of classification.

5 DISCUSSION AND FUTURE WORK

As we discussed in the introduction (§ 1), there exist (1)
malicious behaviors that may be achieved with various key
features; (2) malware that has more diverse kinds of mali-
cious behaviors beyond the 6 label; (3) the best classifica-
tion effectiveness cannot be achieved with API, permission,
intent against the implementation of some behaviors; (4)
changing of some APIs within the update of Android SDK.
All these reasons lead to the incomplete of our defined label
set (as well as the used features), which is the first threat in
our work. To tackle this threat, we will (1) supplement the
malicious behavior label categories and organize a summary

of more potential ways to achieve identical malicious behav-
iors by analyzing more malware collected in recent years;
(2) try other feature representation methods, such as call
graph, etc, for more context information, which is beneficial
to overcome the current limitation of “feature overlap”; (3)
systematically update APIs in the feature dictionary to meet
different Android system versions. As the experiment of
the authenticity validation on pseudo labels (§ 3.6) shows,
the pseudo labels of involved samples from the VirusShare
dataset show less credibility compared to those from the
DREBIN dataset. That is possible because (1) the VirusShare
data are collected in recent years, which may include vari-
ants which use new approaches to perform malicious behav-
iors; (2) the dataset may be imbalanced on different labels;
(3) training the base model with limited data can make the
collected pseudo-labeled samples imbalanced. This is the
second threat in our consideration. To face this, we will
look into the technologies from other domains for (1) saving
efforts on manual analysis and data annotation for con-
structing a relatively balanced and original dataset; (2) au-
tomatically verifying the labels in the process of Detection-
Training with open-access security reports (e.g., confidence)
and the changes in numerical information (e.g., variance,
entropy) during active learning. Besides the threats, we will
also try to further explore the potential application of multi-
label classification in the field of malware detection, such as
AI malicious behaviors interpretation based on MLC.

6 CONCLUSION

This paper is an initial attempt to study the multi-label
classification problem of malicious behaviors in Android
malware classification. We come up with a label set of
6 types of malicious behaviors, and manually label 180
malware with an in-depth study, which is released as a
benchmark. To address the challenge in data annotation, we
demonstrate a novel active learning method based on data
augmentation and achieve a promising result.

ACKNOWLEDGMENT

This work was partially supported by the National Natural
Science Foundation of China under Grant No. 62102284, No.
61872262, and Smart Platform Infrastructure Research on
Integrative Technology (SPIRIT) under Grant CSA-CSEC-
DC-20-083.

REFERENCES

[1] (2021) Android Statistics (2021). [Online]. Available: https:
//www.businessofapps.com/data/android-statistics/

[2] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu, “Story-
droid: Automated generation of storyboard for Android apps,” in
International Conference on Software Engineering (ICSE). IEEE, 2019.

[3] S. Chen, L. Fan, C. Chen, and Y. Liu, “Automatically distilling sto-
ryboard with rich features for Android apps,” in IEEE Transactions
on Software Engineering (TSE). IEEE, 2022.

[4] (2021) Android and Google Play statistics. [Online]. Available:
https://www.appbrain.com/stats

[5] (2021) Development of new Android malware worldwide from
June 2016 to March 2020. [Online]. Available: https://www.
statista.com/statistics/680705/global-android-malware-volume/

[6] (2021) 44 Worrying Malware Statistics to Take Seriously in 2022.
[Online]. Available: https://legaljobs.io/blog/malware-statistics/

https://www.businessofapps.com/data/android-statistics/
https://www.businessofapps.com/data/android-statistics/
https://www.appbrain.com/stats
https://www.statista.com/statistics/680705/global-android-malware-volume/
https://www.statista.com/statistics/680705/global-android-malware-volume/
https://legaljobs.io/blog/malware-statistics/

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 17

[7] C. Tang, S. Chen, L. Fan, L. Xu, Y. Liu, Z. Tang, and L. Dou, “A
large-scale empirical study on industrial fake apps,” in Interna-
tional Conference on Software Engineering: Software Engineering in
Practice. IEEE, 2019.

[8] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of “piggybacked” mobile applications,” in ACM Confer-
ence on Data and Application Security and Privacy, 2013.

[9] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid: Au-
tomatic reconstruction of Android malware behaviors.” in Annual
Network & Distributed System Security Symposium, 2015.

[10] G. Meng, R. Feng, G. Bai, K. Chen, and Y. Liu, “Droidecho: An in-
depth dissection of malicious behaviors in Android applications,”
Cybersecurity, 2018.

[11] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint anal-
ysis for Android apps,” ACM SIGPLAN conference on Programming
Language Design and Implementation, 2014.

[12] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level
features for robust malware detection in Android,” in International
conference on security and privacy in communication systems, 2013.

[13] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck,
and C. Siemens, “Drebin: Effective and explainable detection of
android malware in your pocket.” in Annual Network & Distributed
System Security Symposium, 2014.

[14] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “Stormdroid:
A streaminglized machine learning-based system for detecting
android malware,” in ACM ASIA Conference on Computer and
Communications Security, 2016.

[15] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro,
G. Ross, and G. Stringhini, “Mamadroid: Detecting Android mal-
ware by building markov chains of behavioral models,” ACM
Transactions on Privacy and Security, 2016.

[16] M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, and T. Liu,
“Android malware familial classification and representative sam-
ple selection via frequent subgraph analysis,” IEEE Transactions on
Information Forensics and Security, 2018.

[17] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li,
“Automated poisoning attacks and defenses in malware detection
systems: An adversarial machine learning approach,” computers &
security, 2018.

[18] R. Feng, S. Chen, X. Xie, L. Ma, G. Meng, Y. Liu, and S.-W. Lin,
“MobiDroid: A Performance-Sensitive Malware Detection System
on Mobile Platform,” in 2019 24th International Conference on Engi-
neering of Complex Computer Systems, 2019.

[19] M. Fan, J. Liu, X. Luo, K. Chen, T. Chen, Z. Tian, X. Zhang,
Q. Zheng, and T. Liu, “Frequent subgraph based familial classifica-
tion of Android malware,” in International Symposium on Software
Reliability Engineering, 2016.

[20] Y. Bai, Z. Xing, X. Li, Z. Feng, and D. Ma, “Unsuccessful story
about few shot malware family classification and siamese network
to the rescue,” in International Conference on Software Engineering,
2020.

[21] R. Feng, J. Q. Lim, S. Chen, S.-W. Lin, and Y. Liu, “SeqMobile:
An Efficient Sequence-Based Malware Detection System Using
RNN on Mobile Devices,” in 2020 25th International Conference on
Engineering of Complex Computer Systems, 2020.

[22] R. Feng, S. Chen, X. Xie, G. Meng, S.-W. Lin, and Y. Liu, “A
Performance-Sensitive Malware Detection System Using Deep
Learning on Mobile Devices,” IEEE Transactions on Information
Forensics and Security, 2020.

[23] Y. BAI, S. CHEN, Z. XING, and X. LI, “Argusdroid: Detecting
Android malware variants by mining permission-api knowledge
graph.”

[24] B. Wu, S. Chen, C. Gao, L. Fan, Y. Liu, W. Wen, and M. R. Lyu,
“Why an android app is classified as malware: Toward malware
classification interpretation,” ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 2021.

[25] F. Maggi, A. Bellini, G. Salvaneschi, and S. Zanero, “Finding non-
trivial malware naming inconsistencies,” in International Conference
on Information Systems Security, 2011.

[26] T. Kelchner, “The (in)consistent naming of malcode,” Computer
Fraud & Security, 2010.

[27] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A
tool for massive malware labeling,” in Research in Attacks, Intru-
sions, and Defenses, F. Monrose, M. Dacier, G. Blanc, and J. Garcia-

Alfaro, Eds. Cham: Springer International Publishing, 2016, pp.
230–253.

[28] M. Hurier, G. Suarez-Tangil, S. Kumar, T. Bissyandé, and L. Cav-
allaro, “Euphony: Harmonious unification of cacophonous anti-
virus vendor labels for android malware,” in IEEE/ACM 14th
International Conference on Mining Software Repositories, 2017.

[29] M. Hurier, K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “On
the lack of consensus in anti-virus decisions: Metrics and insights
on building ground truths of android malware,” in Detection of
Intrusions and Malware, and Vulnerability Assessment, J. Caballero,
U. Zurutuza, and R. J. Rodrı́guez, Eds. Cham: Springer Interna-
tional Publishing, 2016, pp. 142–162.

[30] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-
label scene classification,” Pattern recognition, 2004.

[31] F. Kang, R. Jin, and R. Sukthankar, “Correlated label propagation
with application to multi-label learning,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2006.

[32] G. Tsoumakas and I. Katakis, “Multi-label classification: An
overview,” International Journal of Data Warehousing and Mining,
2007.

[33] MLC for Android Malware. [Online]. Available: https://github.
com/qqj1130247885/MLC-for-Android-Malware

[34] VirusTotal. [Online]. Available: http://www.virustotal.com/
[35] Ali, Feizollah, Nor, Badrul, Anuar, Rosli, Salleh, Guillermo,

Suarez-Tangil, and Steven, “Androdialysis: Analysis of android
intent effectiveness in malware detection,” Computers & Security,
2017.

[36] Android developer docs. [Online]. Available: https://developer.
android.google.cn/reference

[37] S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu, and L. Xu,
“An empirical assessment of security risks of global Android
banking apps,” in International Conference on Software Engineering,
2020.

[38] (2022) Overview of MLC for Android malware. [Online].
Available: https://sites.google.com/view/tdsc-mlc

[39] A. G. de Sá, C. G. Pimenta, G. L. Pappa, and A. A. Freitas, “A ro-
bust experimental evaluation of automated multi-label classifica-
tion methods(supplemental material),” in Genetic and Evolutionary
Computation Conference, 2020.

[40] T. Tran, T.-T. Do, I. Reid, and G. Carneiro, “Bayesian generative ac-
tive deep learning,” in International Conference on Machine Learning,
2019.

[41] D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks,” in Work-
shop on challenges in representation learning, ICML, 2013.

[42] A. Tarvainen and H. Valpola, “Mean teachers are better role mod-
els: Weight-averaged consistency targets improve semi-supervised
deep learning results,” Advances in neural information processing
systems, 2017.

[43] VirusShare.com - Because Sharing is Caring. [Online]. Available:
https://virusshare.com/

[44] J. Read, P. Reutemann, B. Pfahringer, and G. Holmes, “MEKA:
A multi-label/multi-target extension to Weka,” Journal of Machine
Learning Research, 2016.

[45] Meka project. [Online]. Available: https://github.com/Waikato/
meka/tree/f0cc96133399afa4c80d2b8a6342913fe9057fb0

[46] B. Pfahringer, P. Reutemann, I. H. Witten, M. Hall, E. Frank, and
G. Holmes, “The weka data mining software: an update,” ACM
SIGKDD explorations newsletter, 2009.

[47] Metrics Matter, examples from Binary and Multilabel
Classication. [Online]. Available: http://sanmi.cs.illinois.edu/
documents/koyejo-metrics.pdf

[48] X.-Z. Wu and Z.-H. Zhou, “A unified view of multi-label perfor-
mance measures,” in International Conference on Machine Learning,
2017.

[49] S. Chen, M. Xue, and L. Xu, “Towards adversarial detection of
mobile malware: poster,” in MobiCom, 2016.

[50] L. Fan, M. Xue, S. Chen, L. Xu, and H. Zhu, “Poster: Accuracy vs.
time cost: Detecting android malware through pareto ensemble
pruning,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, 2016.

[51] H. Fereidooni, M. Conti, D. Yao, and A. Sperduti, “Anastasia:
Android malware detection using static analysis of applications,”
in International Conference on New Technologies, Mobility and Security,
2016.

https://github.com/qqj1130247885/MLC-for-Android-Malware
https://github.com/qqj1130247885/MLC-for-Android-Malware
http://www.virustotal.com/
https://developer.android.google.cn/reference
https://developer.android.google.cn/reference
https://sites.google.com/view/tdsc-mlc
https://virusshare.com/
https://github.com/Waikato/meka/tree/f0cc96133399afa4c80d2b8a6342913fe9057fb0
https://github.com/Waikato/meka/tree/f0cc96133399afa4c80d2b8a6342913fe9057fb0
http://sanmi.cs.illinois.edu/documents/koyejo-metrics.pdf
http://sanmi.cs.illinois.edu/documents/koyejo-metrics.pdf

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 18

[52] V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon: evaluating
android anti-malware against transformation attacks,” in ACM
ASIA Conference on Computer and Communications Security, 2013.

[53] S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik, “A new an-
droid malware detection approach using bayesian classification,”
in International Conference on Advanced Information Networking and
Applications, 2013.

[54] S. Wu, P. Wang, X. Li, and Y. Zhang, “Effective detection of android
malware based on the usage of data flow apis and machine
learning,” Information and software technology, 2016.

[55] R. Feng, Y. Liu, and S. Lin, “A performance-sensitive malware
detection system on mobile platform,” in Formal Methods and
Software Engineering, Y. Ait-Ameur and S. Qin, Eds. Cham:
Springer International Publishing, 2019, pp. 493–497.

[56] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multi-
modal deep learning method for android malware detection using
various features,” IEEE Transactions on Information Forensics and
Security, 2018.

[57] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-
Rotaru, and I. Molloy, “Using probabilistic generative models for
ranking risks of android apps,” in Proceedings of the 2012 ACM
conference on Computer and communications security, pp. 241–252.

[58] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware
Android malware classification using weighted contextual api
dependency graphs,” in ACM ASIA Conference on Computer and
Communications Security, 2014.

[59] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning
algorithms,” IEEE Transactions on Knowledge and Data Engineering,
2014.

[60] N. Ueda and K. Saito, “Parametric mixture models for multi-
labeled text,” in Advances in neural information processing systems,
2003.

[61] H. Kazawa, T. Izumitani, H. Taira, and E. Maeda, “Maximal
margin labeling for multi-topic text categorization,” in Advances
in neural information processing systems, 2005.

[62] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Multilabel text clas-
sification for automated tag suggestion,” in Proceedings of the
ECML/PKDD, 2008.

[63] Y. Song, L. Zhang, and C. L. Giles, “A sparse gaussian processes
classification framework for fast tag suggestions,” in ACM Inter-
national Conference on Information and Knowledge Management, 2008.

[64] L. Tang, S. Rajan, and V. K. Narayanan, “Proceedings of the 18th
international conference on world wide web,” in WWW, 2009.

[65] A. Clare and R. D. King, “Knowledge discovery in multi-label
phenotype data,” in European conference on principles of data mining
and knowledge discovery, 2001.

[66] T. Li and M. Ogihara, “Detecting emotion in music,” 2003.
[67] K. Trohidis, G. Tsoumakas, G. Kalliris, I. P. Vlahavas et al., “Multi-

label classification of music into emotions.” in International Sympo-
sium on Music Information Retrieval, 2008.

[68] S. Y. Feng, V. Gangal, J. Wei, S. Chandar, S. Vosoughi,
T. Mitamura, and E. Hovy, “A survey of data augmentation
approaches for NLP,” in Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021. Online: Association
for Computational Linguistics, Aug. 2021, pp. 968–988. [Online].
Available: https://aclanthology.org/2021.findings-acl.84

[69] S. Budd, E. C. Robinson, and B. Kainz, “A survey on active
learning and human-in-the-loop deep learning for medical image
analysis,” Medical Image Analysis, 2021.

[70] M. Pham, C. A. Knoblock, M. Chen, B. Vu, and J. Pujara, “Spade:
A semi-supervised probabilistic approach for detecting errors in
tables,” 2021.

[71] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and
C. A. Raffel, “Mixmatch: A holistic approach to semi-supervised
learning,” Advances in neural information processing systems, 2019.

[72] S. Laine and T. Aila, “Temporal ensembling for semi-supervised
learning,” International Conference on Learning Representations, 2017.

[73] J. Zhang, K. Saleeby, T. Feldhausen, S. Bi, A. Plotkowski, and
D. Womble, “Self-supervised anomaly detection via neural autore-
gressive flows with active learning,” in NIPS 21 Workshop on Deep
Generative Models and Downstream Applications, 2021.

[74] Z. Zhou, J. Y. Shin, S. R. Gurudu, M. B. Gotway, and J. Liang,
“Active, continual fine tuning of convolutional neural networks
for reducing annotation efforts,” Medical image analysis, 2021.

[75] F. Neutatz, M. Mahdavi, and Z. Abedjan, “Ed2: A case for active
learning in error detection,” in ACM International Conference on
Information and Knowledge Management, 2019.

[76] D. Yuxin, W. Guangbin, M. Yubin, and D. Haoxuan, “Data aug-
mentation in training deep learning models for malware family
classification,” in 2021 International Conference on Machine Learning
and Cybernetics (ICMLC), 2021, pp. 1–6.

[77] Y.-M. Chen, C.-H. Yang, and G.-C. Chen, “Using generative adver-
sarial networks for data augmentation in Android malware detec-
tion,” in 2021 IEEE Conference on Dependable and Secure Computing
(DSC), 2021, pp. 1–8.

[78] C.-W. Chen, C.-H. Su, K.-W. Lee, and P.-H. Bair, “Malware fam-
ily classification using Active learning by learning,” in 2020
22nd International Conference on Advanced Communication Technology
(ICACT), 2020, pp. 590–595.

Qijing Qiao received her bachelor degree from
Tianjin Normal University in 2020. She is cur-
rently a M.Sc student in the College of Intelli-
gence and Computing, Tianjin University, since
Sep 2020. Her research interests include Mal-
ware detection and malicious behavior analysis.

Ruitao Feng received his Ph.D. degree from the
Nanyang Technological University in 2021. He is
now a senior research associate in University of
New South Wales, and an adjunct researcher
in NTU. Previously, he was a research fellow
(2021-2022) and a research assistant (2014-
2021) in NTU. His research interests include
discovering and solving security problems on
mobile platform, IoT system and AI-based cyber-
security system.

Sen Chen (Member, IEEE) is an Associate
Professor at Tianjin University, China. Before
that, he was a Research Assistant Professor
at Nanyang Technological University, and a Re-
search Assistant of NTU from 2016 to 2019 and
a Research Fellow from 2019-2020. He received
his Ph.D. degree from East China Normal Uni-
versity, China, in 2019. His research focuses on
Security and Software Engineering.

Fei Zhang is now an undergraduate student
at TianJin University since 2018. He has re-
ceived the National Encouragement Scholarship
in 2020 and will start to pursue M.Sc on cyber-
security at Tianjin University in early Sep 2022.

Xiaohong Li (Member, IEEE) received her Ph.D.
degree from Tianjin University, China. She is
a full Professor with the College of Intelligence
and Computing and the director of the Institute
of Software and Information Security Engineer-
ing, Tianjin University. She is mainly engaged
in computer science and computer application,
software engineering and security software en-
gineering, high-assurance software and network
security and other information security fields.

https://aclanthology.org/2021.findings-acl.84

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 19

APPENDIX A
EVALUATION ON PARAMETERS TUNING IN
DETECTION-TRAINING

A.1 Result on DREBIN dataset

Table 10 shows the evaluation results of applying Detection-
Training with 4 different batch sizes on the DREBIN dataset.
In general, we observe that Detection-Training can always
achieve a final accuracy improvement and data augmenta-
tion before/at epoch 6 with every batch size for algorithm
combinations. Unless Detection-Training fails in the task
(e.g., model #1.4 in Table 10).

For the combination of CDN and J48, we can observe that
model #1.2, which adopts 8 as its batch size, outperforms the
best result. Specifically, it has the lowest hamming loss and
zero-one loss at 0.106 and 0.467, it also has the highest F1-
score, sample-ACC, averaged label-ACC, and # of samples
at 0.779, 0.867, 0.894, and 4,872. For the combination of
CDN and REPTree, there are 2 models that can enlarge
the dataset with thousand pseudo-labeled samples, they are
model #4.2 and model #4.3, which both successfully get
5,456 new samples as data augmentation. More specifically,
model #4.2 outperforms model #4.3 in terms of the results on
all other 6 selected evaluation metrics. For the combination
of PS and RandomForest, when 4, 8, and 16 are chosen
as the batch size, the 4 final models obtained applying
Detection-Training can achieve the same best results on the
test dataset in terms of all evaluation metrics. The best
three (i.e., model #6.1-6.3) can enlarge the training set with
a data augmentation at 5,456 pseudo-labeled samples, and
their sample-ACC is 0.733. For the combination of CC and
RandomForest, the model #8.4, uses 32 as its batch size
in Detection-Training. Its data augmentation involves 5,440
pseudo-labeled samples. It has the same best sample-ACC
at 0.767 compared to model #8.2, which uses 8 as its batch
size. For the combination of CT and RandomForest, there
are 2 models, which are model #10.2 and 10.4, can enlarge
the dataset with over one thousand pseudo-labeled samples.
The data augmentation of the model #10.4 involves 5,440
pseudo-labeled samples, which is 2,000 more than that of
model #10.2. Model #10.4 has a lower zero-one loss at 0.433
and a higher F1-score at 0.78, which makes it the best.

A.2 Result on VirusShare dataset

Table 11 shows the evaluation results of applying Detection-
Training with 4 different batch sizes on the dataset from
VirusShare. In general, we observe that Detection-Training
can always achieve a final accuracy improvement and data
augmentation before/at epoch 6 with every batch size for
algorithm combinations. Unless Detection-Training fails in
the task (e.g., model #1.3 in Table 11).

For the combination of CDN and J48, we can observe
t/hat model #1.2, which adopts 8 as its batch size, outper-
forms the best result. Specifically, it has the lowest ham-
ming loss and zero-one loss, it also has the highest F1-
score, sample-ACC, averaged label-ACC, and # of samples.
For the combination of PS and RandomForest, all these
4 models can enlarge the dataset with thousand pseudo-
labeled samples, they successfully get more than 5,000 new
samples as data augmentation. These 4 models also have

an equal sample-ACC at 0.733, which is 0.033 more than
that of their base model. However, model #6.2 outperforms
the other 3 models in terms of the results on other metrics
except for hamming loss. For the combination of RAkELd
and RandomForest, when 8, 16, and 32 are chosen as
the batch size, the 3 final models obtained by applying
Detection-Training can enlarge the training set with more
than a thousand samples. Among them, Model #7.4 can
outperform the other 2 models by achieving the largest
size of data augmentation at 5,472. Besides, its sample-ACC
is 0.767. For the combination of CC and RandomForest,
model #8.2, which uses 8 as its batch size in Detection-
Training has the best result. Its data augmentation involves
1,088 pseudo-labeled samples. It has a sample-ACC at 0.733
and averaged label-ACC at 0.872. For the combination of CT
and RandomForest, the model #10.2 can enlarge the dataset
with more than one thousand pseudo-labeled samples at
1,848. The sample-ACC of it is 0.733, which is 0.66 more
than that of its base model.

APPENDIX B
CASE STUDY

B.1 Summary
We randomly select 40 pseudo-labeled samples from our
expanded dataset, 20 from the DREBIN dataset, and 20
from the VirusShare dataset. We manually check their actual
behaviors to verify the authenticity of their pseudo-labels.
All these 40 samples are augmented by the best models
(model #1.2 in Table 10 and model 1.2 in Table 11). Samples
are randomly selected on the basis of making sure that there
are at least 5 samples on each malicious type. Note that,
for the samples from the VirusShare dataset, considering
different Antivirus engines may disagree on the malware
family name, the result of a single detection may be unreli-
able. Hence, we refer to multiple family labels provided by
different virus detection engines.

Table 12 presents the results of the case study. We in-
troduce 3 metrics to evaluate the manual study. When the
pseudo labels of a sample are exactly as same as its actual
malicious behaviors, the sample will be marked as “Cor-
rect”. The digits under the “Correct” column show the total
number of confirmed samples. Once a sample is mislabeled
with a malicious behavior that it doesn’t perform, it will
be categorized as “Misclassified”. If the pseudo labels of
a sample miss any behaviors belonging to it, it will be
marked as “Missing”. In the “Cause” column, we list the
main reasons for the wrongly classified cases.

For the DREBIN dataset, 18 samples are correctly classi-
fied on L1 (SMS-related) and 2 samples are misclassified. For
the VirusShare dataset, 5 samples are misclassified on the
L1 label. We find that these samples legitimately perform
SMS-related functions. However, there are many overlaps
between the features of the programs in the legitimate use of
the SMS function and the features of the programs when the
SMS function is executed maliciously, such as “sendSMS()”.
This leads to misclassification of the model.

The same is true for L6 (Internet-related). Android apps
usually use the network along with their normal behaviors
such as downloading or uploading something from the
remote server. At the same time, malicious Internet-related

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 20

TABLE 10: The result of assessing the impact of batch size N on DREBIN

MLC
algorithm CDN CDN PS CC CT

basic
classifier J48 REPTree RandomForest RandomForest RandomForest

model id 1.1 1.2 1.3 1.4 4.1 4.2 4.3 4.4 6.1 6.2 6.3 6.4 8.1 8.2 8.3 8.4 10.1 10.2 10.3 10.4
batch size 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

stopped epoch 2 6 1 6 5 6 5 5 3 2 2 3 2 2 3 3 3 2 2 4
of samples 32 4872 16 0 148 5456 5456 608 5456 5456 5456 5440 136 1720 768 5440 192 3440 768 5440

hamming loss 0.133 0.106 0.133 0.133 0.122 0.144 0.189 0.135 0.139 0.139 0.139 0.139 0.122 0.128 0.122 0.128 0.122 0.122 0.122 0.122
zero-one loss 0.533 0.467 0.500 0.533 0.500 0.500 0.633 0.467 0.533 0.533 0.533 0.533 0.500 0.467 0.467 0.467 0.467 0.467 0.467 0.433

F1-score 0.736 0.779 0.697 0.696 0.716 0.729 0.644 0.740 0.730 0.730 0.730 0.730 0.736 0.752 0.769 0.752 0.747 0.769 0.769 0.780
sample-ACC 0.833 0.867 0.767 0.733 0.800 0.767 0.700 0.767 0.733 0.733 0.733 0.733 0.733 0.767 0.767 0.767 0.733 0.767 0.767 0.767
∆sample-ACC 0.100 0.134 0.034 0.000 0.100 0.067 0.000 0.067 0.033 0.033 0.033 0.033 0.066 0.100 0.100 0.100 0.066 0.100 0.100 0.100
Avg.label-ACC 0.867 0.894 0.867 0.867 0.878 0.856 0.811 0.867 0.861 0.861 0.861 0.861 0.878 0.872 0.878 0.872 0.878 0.878 0.878 0.878

TABLE 11: The result of assessing the impact of batch size N on VirusShare dataset

MLC
algorithm CDN PS RAkELd CC CT

basic
classifier J48 RandomForest RandomForest RandomForest RandomForest

model id 1.1 1.2 1.3 1.4 6.1 6.2 6.3 6.4 7.1 7.2 7.3 7.4 8.1 8.2 8.3 8.4 10.1 10.2 10.3 10.4
batch size 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

stopped epoch 2 6 3 5 3 3 3 3 2 5 2 3 4 5 5 2 3 5 3 3
of samples 108 5416 96 4544 5500 5496 5488 5472 508 2432 1344 5472 200 1088 368 416 400 1848 480 544

hamming loss 0.106 0.133 0.156 0.150 0.122 0.139 0.144 0.144 0.139 0.144 0.144 0.144 0.117 0.128 0.133 0.133 0.128 0.128 0.128 0.128
zero-one loss 0.367 0.500 0.600 0.667 0.533 0.533 0.533 0.533 0.500 0.533 0.533 0.533 0.443 0.500 0.500 0.467 0.500 0.467 0.467 0.433

F1-score 0.780 0.733 0.669 0.697 0.716 0.730 0.708 0.708 0.731 0.720 0.720 0.720 0.769 0.736 0.736 0.719 0.736 0.719 0.747 0.730
sample-ACC 0.833 0.833 0.767 0.767 0.733 0.733 0.733 0.733 0.767 0.767 0.767 0.767 0.767 0.733 0.733 0.733 0.733 0.733 0.733 0.733
∆sample-ACC 0.100 0.100 0.034 0.034 0.033 0.033 0.033 0.033 0.067 0.067 0.067 0.067 0.100 0.066 0.066 0.066 0.066 0.066 0.066 0.066
Avg.label-ACC 0.894 0.867 0.844 0.867 0.856 0.861 0.856 0.856 0.861 0.856 0.856 0.856 0.883 0.872 0.867 0.867 0.872 0.872 0.872 0.872

TABLE 12: The result of case study

Correct Misclassified Missing Cause

DREBIN

sample 12 4 8
L1 18 2 0 Feature overlap
L2 17 1 2 Malicious codes in native packages
L3 16 1 3 Other ways to achieve
L4 17 0 3 Too few samples in benchmark
L5 18 1 1 Too few samples in benchmark
L6 18 2 0 Feature overlap

VirusShare

sample 11 8 9
L1 14 5 1 Feature overlap
L2 16 2 2 Malicious code in native package
L3 19 0 1 API evolution
L4 16 2 2 Too few samples in benchmark
L5 17 1 2 Too few samples in benchmark
L6 16 3 1 Feature overlap

A sample may have both “missing” and “misclassified” cases.
*L1-6 refers to the label-ACC of 6 predefined labels (i.e., “SMS-related”, “lock in”, “Re-infection”, “Telephony-related”, “Ads”, “Internet-related”).

behaviors are often executed in conjunction with other mali-
cious behaviors. Therefore, the feature overlap between the
models leads to misclassification.

For L2 (Lock-in), there is 1 sample from the DREBIN
dataset in “misclassified” and 2 samples in “missing”. For
the VirusShare dataset, there are 2 samples in “misclassi-
fied” and 2 samples in “missing”. We find that in these
cases, the malicious codes are located in the native packages.
However, in this work, we didn’t consider this kind of
malware since only API and manifest properties are used
as features. As a result, the model cannot correctly classify
these cases.

For L3 (Re-infection), there is 1 sample from the DREBIN
dataset in “misclassified” and 3 samples in “missing”. We
find that the implementation of Re-infection for these cases,
such as rooting it first, then disguising itself as a system

application to prevent it from being uninstalled, is not seen
in our benchmark. For the wrongly classified cases in the
VirusShare dataset, there exists an API evolution between
different Android systems. Therefore, it is difficult for the
model to classify correctly in such cases. In the VirusShare
dataset, there is 1 sample in “missing”.

For L4 (Telephony-related), there are 3 samples from the
DREBIN dataset in “missing”. For the VirusShare dataset, 2
samples are in “misclassified” and 2 in “missing”. A possi-
ble reason is that L4 has only 10 samples in the manually
labeled dataset, and the model has learned too little useful
information. In subsequent iterations of Detection-Training,
the feature information related to L4 is gradually diluted,
which in turn leads to a decrease in the classification ability
of the model. There exists the same situation in the results
of L5 (Ads).

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 21

B.2 Detailed Analysis

We present detailed analyses of 4 representative samples
from the DREBIN dataset and analyses of 3 representative
samples from the VirusShare dataset as follows.

A malware named “Dynamic Wallpaper” is from the
DREBIN dataset. It was augmented to our dataset and
pseudo-labeled by the combination CDN and J48 (model
#1.2 in Table 8) as [1,0,0,0,0,1], which means it is predicted to
have the behaviors related to SMS and Internet. It belongs
to “kmin” malware family. Generally, malware belonging
to “kmin” may contain the following malicious behaviors
after installation, it lurks in the user’s mobile phone system
and steals the user’s private information through Internet,
which is belonging to the label “Internet-related”. At the
same time, it sends a deduction SMS at a very short interval,
which will cause users to generate huge bills unknowingly
in a very short period of time. The kind of malware will
also actively intercept WAP, SMS and MMS text messages
to cover up its malicious behavior and this behavior is
belonging to the label “MS-related”. The pseudo-labels are
exactly the same as the actual behavior of the samples.

A malware named “certificado” is from the DREBIN
dataset. It was augmented to our dataset and pseudo-
labeled by the combination CDN and J48 (model #1.2 in
Table 8) as [1,0,0,0,0,0], which means it is predicted to have
the behaviors related to SMS. It belongs to the malware
family “Zitmo”. Generally, malware belongs to “ZitMo”
search messages containing the mTAN code which is sent
by the bank in the user’s inbox. After that, it sends the
mTAN code to the mobile phone of the cybercriminal by
SMS. The cybercriminal uses the mTAN code to complete
the transaction and steal the user’s bank savings. This type
of behavior belongs to the label “SMS-related”. The pseudo-
labels are exactly the same as the actual behavior of the
samples.

“AdFree” is a malware from the DREBIN dataset. It is
belonging to the malware family “gamex”. Generally, once
the malware of this family is installed, it will silently install
various malware carried by it without the user’s permission.
These malware will be privately connected to the Inter-
net, and other malicious applications will be downloaded
secretly, which makes the user’s mobile phone a paradise
for malware. These malicious behaviors is belonging to the
label “Ads” and “Internet-related”. It was pseudo-labeled
by the combination CDN and J48 (model #1.2 in Table
8) as [1,0,0,0,1,1], which represent “SMS-related”, “Ads”,
“Internet-related”. Compared with its actual behaviors, we
can find it was mispredicted to have behaviors related
to SMS. The possible reason is that the sample normally
uses SMS-related APIs, permissions, or intents, and our
model incorrectly classifies these legal SMS behaviors into
malicious behaviors. In response to this problem, we will
adjust the granularity of features in our future work. Specif-
ically, we can construct features with sequential execution
or bundled relationship into a feature group, which will
help distinguish the legitimate behavior of the app from
malicious behavior.

“Madcoaster Free Fan App” is a malware from the
DREBIN dataset and it is belonging to the malware family
“Fakeapp”. Malware in “Fakeapp” can send text messages

privately, which is belonging to the label “SMS-related”.
They can also dial specific numbers privately, which is
belonging to the label “Telephony-related”. Besides, they
also display advertisements on the device and this behavior
is belonging to the label “Ads”. After installation, they hide
their desktop icons from being uninstalled, this type of be-
havior is belonging to the label “Re-infection”. “Madcoaster
Free Fan App” was pseudo-labeled by the combination
CDN and J48 (model #1.2 in Table 8) as [0,0,0,0,1,1], which
represent “Ads”, “Internet-related”. Comparing the pseudo-
label with its actual behaviors, we can find that it was
misclassified into the category “Internet-related”. There may
be two reasons for this misclassification. First, when the
sample performs other types of malicious behavior, such as
obtaining information of ads, it involves interacting with a
remote server. In this process, Internet-related features are
called, which leads to the misclassification of the model.
Second, Internet-related malicious behaviors usually accom-
pany other types of malicious behaviors, and the boundaries
are blurred, making it easy to misclassify. In order to solve
the case of misclassification, we can further subdivide the
sample features and combine related features into a group,
so as to more clearly define the malicious behavior with
blurred boundaries. We also noticed that the pseudo-labels
given by the model are missing, “SMS-related”, “Telephony-
related”, and “Re-infection” are not accurately predicted.
That is because it was collected in 2012, whereas nearly half
of our manually labeled data was collected in 2008. There
is a version difference between the APIs, the features of
newer APIs may not be fully learned by the model, thus
resulting in missing predictions. In future work, we will
systematically update APIs to the feature dictionary to meet
different Android system versions and avoid the problem of
missing label prediction.

“Setting” is a malware from the VirusShare dataset.
It was augmented and pseudo-labeled by the algorithm
combination of CDN and J48 (model #1.2 in Table 9) as
[1,0,0,0,1,1], which means it is predicted to have behaviors
related to SMS, Ads, and Internet. We refer to the family
classification results from VirusTotal to check its real be-
havior. It is classified into the family “Hiddapp” by more
than 11 antivirus engines, such as Antiy-AVL, AegisLab,
Avira, etc. Generally, malware belonging to “Hiddapp” may
contain the following malicious behaviors, such as hiding
the icon after installation and hiding it in the system folder
by using superuser permissions. Users cannot uninstall
it, which belongs to the label “Re-infection”. It also uses
different methods to show users as many ads as possible,
including installing new hidden adware, which is belonging
to the label “Ads”. Except referring to the results given
by VirusTotal, we also decompiled it and made a static
analysis. By analyzing its program flow of control at the
level of API call, we checked the behaviors defined by its
family “Hiddapp” and found that it may read databases
like contact or SMS, get information like IMEI, phone num-
ber, or OS version and send them to a remote service.
These behaviors belong to the label “SMS-Related” and
“Internet”. Comparing the true behaviors of this malware
and its pseudo-label, we can find that the pseudo-label
contains part of the real malicious behavior of the malware,
including “SMS-related”, “Ads” and “Internet-related”, but

JOURNAL OF IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2022 22

the malicious behavior under the label “Re-infection” is not
revealed. That is mainly because samples in the VirusShare
dataset were collected between 2018 - 2012, whereas nearly
half of our manually labeled data was collected in 2008.
There is a version difference between the APIs, the features
of newer APIs may not be fully learned by the model, thus
resulting in missing predictions. In future work, we will
systematically update APIs to the feature dictionary to meet
different Android system versions and avoid the problem of
missing label prediction.

“Master Lu evaluation” is a malware from the
VirusShare dataset. It was pseudo-labeled by the algorithm
combination of CDN and J48 (model #1.2 in Table 9) as
[1,0,0,0,1,1], which means it is predicted to have behav-
iors related to SMS, Ads, and Internet. According to the
detection results from VirusTotal, it is classified into the
family “Adware” by “K7GW” and “DrWeb”. Malware be-
longing to “Adware” could download and install other
applications without the user’s permission. It also can be
bundled with other software and advertised with pop-up
ads. These behaviors belong to the label “Ads” and were
correctly predicted. It was classified into the malware family
“Trojan.Generic.gwswr” by “Jiangmin”. Malware belonging
to “Jiangmin” could force the infected device to actively
connect to the remote server, obtain the local information
of the device and send it to the web server designated by
the malicious attacker. These behaviors fall under the label
“Internet-related” and were correctly predicted. Comparing
the pseudo-labels and their actual behaviors, we can find
that it was misclassified into “SMS-related”. The possible
reason is that the sample normally uses SMS-related APIs,
permissions, or intents, and our model incorrectly classifies
these legal SMS behaviors into malicious behaviors. In re-
sponse to this problem, we will adjust the granularity of
features in our future work.

“Install” is a malware from the VirusShare dataset and
it was pseudo-labeled by the algorithm combination of
CDN and J48 (model #1.2 in Table 9) as [0,0,0,0,1,0], which
means it is predicted to have the behaviors related to Ads.
According to the detection results from VirusTotal, it is
classified into the family “Android:Cerberus-AR [Bank]” by
“Avast”, “AVG” etc. Malware in this family could hide the
desktop icon and then wait for the instructions sent by the
remote service to complete some specific operations, such as
forwarding text messages, accessing device information, etc.
This malicious behavior belongs to the label “SMS-related”,
“Internet-related”, and “re-infected’. Comparing with its
actual behaviors, we find it was misclassified into the label
“Ads” and its actual behaviors were not correctly predicted.
The reason behind this situation is possible because samples
from the VirusShare dataset were collected in recent years
(i.e.2018-2022) and this sample may be a variant that uses
new methods to perform malicious behaviors. Hence, the
features of these behaviors may be not included in our fea-
ture set, leading to a miss classification. In future work, we
will continue analyzing more malware collected in recent
years, and try to complete our feature dictionary using other
feature representation methods, such as call graph, etc.

	Introduction
	Approach
	Behavior Analysis, Feature Selection, and Data Annotation
	Attack chain and behavior analysis
	Label definition
	Feature selection
	Data annotation

	Base MLC Model Construction
	Detection-Training

	Evaluation
	Used Datasets
	Manually labeled malware
	DREBIN dataset
	VirusShare dataset

	Experimental Environment
	Evaluation Metrics
	Sample-based metrics
	Label-based metric

	RQ1: Which combination of MLC and BC algorithms is best for multi-label classification of malware?
	Dataset
	Experiment setup
	Results

	RQ2: Can Detection-Training effectively augment the dataset? What is the best batch-size for enhancement?
	Capability Evaluation of Detection-Training on Accuracy Improvement and Data Augmentation
	Evaluation on Parameters Tuning in Detection-Training

	RQ3: How reliable is the pseudo-label for the sample through Detection-Training?
	Dataset
	Experiment setup
	Results

	Related Work
	Android Malware Classification
	Multi-label Classification
	Data Augmentation and Active Learning

	Discussion and Future Work
	Conclusion
	References
	Biographies
	Qijing Qiao
	Ruitao Feng
	Sen Chen
	Fei Zhang
	Xiaohong Li

	Appendix A: Evaluation on Parameters Tuning in Detection-Training
	Result on DREBIN dataset
	Result on VirusShare dataset

	Appendix B: Case Study
	Summary
	Detailed Analysis

