
1

Detecting and Augmenting Missing Key Aspects in
Vulnerability Descriptions
HAO GUO, College of Intelligence and Computing, Tianjin University, China
SEN CHEN∗, College of Intelligence and Computing, Tianjin University, China
ZHENCHANG XING, Research School of Computer Science, Australian National University, Australia
XIAOHONG LI, College of Intelligence and Computing, Tianjin University, China
YUDE BAI, College of Intelligence and Computing, Tianjin University, China
JIAMOU SUN, Research School of Computer Science, Australian National University, Australia

Security vulnerabilities have been continually disclosed and documented. For the effective understanding,
management, and mitigation of the fast-growing number of vulnerabilities, an important practice in document-
ing vulnerabilities is to describe the key vulnerability aspects, such as vulnerability type, root cause, affected
product, impact, attacker type, and attack vector. In this paper, we first investigate 133,639 vulnerability
reports in the Common Vulnerabilities and Exposures (CVE) database over the past 20 years. We find that 56%,
85%, 38%, and 28% of CVEs miss vulnerability type, root cause, attack vector, and attacker type, respectively.
By comparing the differences of the latest updated CVE reports across different databases, we observe that
1,476 missing key aspects in 1,320 CVE descriptions were augmented manually in the National Vulnerability
Database (NVD), which indicates that the vulnerability database maintainers try to complete the vulnerability
descriptions in practice to mitigate such a problem.

To help complete the missing information of key vulnerability aspects and reduce human efforts, we propose
a neural network based approach named PMA to predict the missing key aspects of a vulnerability based on
its known aspects. We systematically explore the design space of the neural network models and empirically
identify the most effective model design in the scenario. Our ablation study reveals the prominent correlations
among vulnerability aspects when predicting. Trained with historical CVEs, our model achieves 88%, 71%,
61%, and 81% in F1 for predicting the missing vulnerability type, root cause, attacker type, and attack vector
of 8,623 “future” CVEs across 3 years, respectively. Furthermore, we validate the predicting performance of
key aspect augmentation of CVEs based on the manually augmented CVE data collected from NVD, which
confirms the practicality of our approach. We finally highlight that PMA has the ability to reduce human
efforts by recommending and augmenting missing key aspects for vulnerability databases, and to facilitate
other research works such as severity level prediction of CVEs based on the vulnerability descriptions.

CCS Concepts: • Security and privacy→ Software security engineering.

Additional Key Words and Phrases: CVE, vulnerability description, data augmentation, deep neural network

∗Sen Chen (senchen@tju.edu.cn) and Xiaohong Li are the corresponding authors. This work has partially been supported
by the National Natural Science Foundation of China (No. 62102284, 61872262).

Authors’ addresses: Hao Guo, College of Intelligence and Computing, Tianjin University, China; Sen Chen, senchen@tju.
edu.cn, College of Intelligence and Computing, Tianjin University, China; Zhenchang Xing, zhenchang.xing@anu.edu.au,
Research School of Computer Science, Australian National University, Australia; Xiaohong Li, College of Intelligence and
Computing, Tianjin University, China; Yude Bai, College of Intelligence and Computing, Tianjin University, China; Jiamou
Sun, Research School of Computer Science, Australian National University, Australia.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1049-331X/2021/1-ART1 $15.00
https://doi.org/10.1145/3498537

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3498537

1:2 Guo and Chen et al.

ACM Reference Format:
Hao Guo, Sen Chen, Zhenchang Xing, Xiaohong Li, Yude Bai, and Jiamou Sun. 2021. Detecting and Aug-
menting Missing Key Aspects in Vulnerability Descriptions. ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1
(January 2021), 27 pages. https://doi.org/10.1145/3498537

1 INTRODUCTION
Security vulnerabilities can be exploited to damage system or information confidentiality, integrity,
and availability [18]. Significant human efforts have been made to document and manage publicly
known vulnerabilities. The core of these efforts is the Common Vulnerabilities and Exposures
(CVE) [39]. CVE is a list of entities - each reporting a publicly known vulnerability with a unique
identification number, a description, and at least one public reference of the initial announcement
of the vulnerability. At the time of this work, over 139,000 vulnerabilities have been recorded in
the CVE database. With the fast growth of vulnerabilities, there is also a increasing concern about
the information quality of vulnerability descriptions [15, 41].
Remarkably, the description of CVE is one of the most important and informative entities.

Typically, a CVE is described by the key vulnerability aspects [16]. Fig. 1 presents the description
of the CVE entry “CVE-2005-4676”. As highlighted in Fig. 1, a high-quality CVE description should
has six key aspects of the vulnerability [16, 22], including vulnerability type (e.g., buffer overflow),
affected product (including vendor/version/component information, e.g., Andreas Huggel Exiv2
before 0.9), root cause (e.g., does not null terminate strings before calling sscanf), attacker type (e.g.,
remote attacker), impact (e.g., cause a denial of service - application crash), and attack vector (e.g.,
via images with crafted IPTC metadata).

Security experts take advantage of these key aspects of CVE descriptions for vulnerability un-
derstanding, management, and mitigation of fast-growing number of vulnerabilities. Specifically,
CVE descriptions are helpful for understanding and assessing the severity [24], exploitability [6],
and many other characteristics (e.g., compromise of system confidentiality, integrity, and avail-
ability) [20] of the vulnerabilities. It also infers the related library names of a given CVE with the
software composition analysis (SCA) [11, 63]. As vulnerabilities are often documented in multiple
databases, such as the CVE [39] curated by “the power of the crowd” and the National Vulner-
ability Database (NVD) [37] established by the US government (i.e., NIST [44]), people can use
CVE descriptions to detecting the inconsistencies between different vulnerability databases [15].
Moreover, CVE descriptions establish and consolidate the traceability links across vulnerabilities,
exploits, and patches, such as the CVE-2018-26281 in the CVE, the EDB-ID 445532 in the ExploitDB,
and the patch commit in the GitHub repository. Those traceability links profit for localizing vul-
nerable functions in the source code [65] and for developing and deploying patches [8, 30]. Most
of these description-based studies heavily rely on the information contained in the vulnerability
descriptions.

However, one of the biggest challenges of performing vulnerability description-based analysis is
that there may not be sufficient information (incomplete key aspects) of a large part of CVEs
according to our preliminary investigation. For example, missing key aspects in the vulnerability
descriptions can affect the prediction of severity level of vulnerabilities (RQ5 in § 4.6) and lead
to wrong CVSS scores [18]. Therefore, the main goal is to recommend and augment the missing
key aspects of vulnerability descriptions. Besides these description-based studies, vulnerabilities
are constantly being discovered and reported, the vulnerability discoverers may not know some
critical aspects of the vulnerability when submitting the report. Consequently, one of the goals of

1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2628
2https://www.exploit-db.com/exploits/44553

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3498537
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4676
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2628
https://www.exploit-db.com/exploits/44553

Detecting and Augmenting Missing Key Aspects in Vulnerability Descriptions 1:3

Buffer overflow in Andreas Huggel Exiv2 before 0.9 does not null terminate
strings before calling the sscanf function, which allows remote attackers to
cause a denial of service (application crash) via images with crafted IPTC
metadata.

Vulnerability Type Affected Product Root Cause
Impact Attacker Type Attack Vector

Fig. 1. An example of CVE description

SQL injection vulnerability in the Cybozu Garoon 4.0.0 to 4.10.0
allows attacker with administrator rights to execute arbitrary SQL
commands via the Log Search function of application 'logging'.

(a) CVE-2019-5934: missing Root Cause

via shell metacharacters inexecute arbitrary commands
D-Link DIR-655 C devices before 3.02B05 BETA03 allow remote
attackers to
the online_firmware_check.cgi check_fw_url parameter.

(b) CVE-2019-13561: missing Root Cause and Vulnerability Type
parse_audio_mixer_unit in sound/usb/mixer.c in the Linux kernel

leading to out-of-bounds
memory access.

mishandles a short descriptor,through 5.2.9

(c) CVE-2019-15117: missing Vulnerability Type
MetadataExtractor 2.1.0 allows stack consumption.

(d) CVE-2019-14262: only have Affected Product and Impact

Fig. 2. Examples of CVEs that miss information

our work is to help these people complete and submit their newly discovered vulnerabilities with
unified format.

Considering the mentioned importance of CVE descriptions, we firstly systematically investi-
gate the information completeness of the CVE descriptions. We develop a rule-based method3
to extract the six key aspects from the CVE descriptions. If certain aspect fails to be extracted, we
define this aspect as a missing aspect. To develop aspect extraction rules, we first randomly sample
20% CVEs (27,130 in total) per year from January 1999 to August 2020. We manually extract the
aspects in the description of these 20% sampled CVEs. Based on such collected aspects, we further
develop regular expression patterns for aspect extraction. Then we apply our aspect extraction
rules to gain aspects on the rest of CVEs. We consider the extracted CVE aspects are high-quality
(>97% accuracy at the 95% confidence level and 5% error margin), by a sampling method [50] on
the the full of extracted CVE aspects.
After inspection of the presence or absence of the six key aspects in the description of these

136,639 CVEs, we find that almost all the CVEs (over 99%) have the affected products. This conforms
to the common sense that the reporters must determine the affected product of a new CVE before
submitting. However, the other five key aspects can be absent (see in Fig. 2), although the CVE
Numbering Authority (CNA) defined quality checks to improve the quality of the vulnerability
descriptions before publishing them. For instance, 94% of CVEs define the impact on what the
attacker gains by exploiting this vulnerability. Furthermore, many CVEs miss the other four
aspects (the more technical aspects) - vulnerability type, root cause, attacker type, and attack vector.
Specifically, 28% of CVEs skip attacker type, and 38% of CVEs ignore attack vector. We also observe
that only 58% of CVEs describe either vulnerability type or root cause, while the rest 42% describe
3https://github.com/pmaovr/Predicting-Missing-Aspects-of-Vulnerability-Reports

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://github.com/pmaovr/Predicting-Missing-Aspects-of-Vulnerability-Reports

1:4 Guo and Chen et al.

Table 1. Examples of augmented aspects in NVD

Aspect CVE-ID Description
type Descriptions

Vulnerability
type CVE-2006-0795 Modified Absolute path traversal vulnerability in convert.cgi in Quirex 2.0.2...

Original Unspecified vulnerability in convert.cgi in Quirex 2.0.2...

Root
cause CVE-2015-8768 Modified click/install.py in click does not require files in... which allows remote attackers...

Original install.py in click allows remote attackers...

Attacker
type CVE-2010-2206 Modified Array index error in AcroForm.api... allows remote attackers to...

Original Array index error in AcroForm.api... allows attackers to...

Attack
vector CVE-2010-0189 Modified ... installation of arbitrary programs via a crafted name for a download site.

Original ... installation of arbitrary programs via unknown vectors.

neither of them. This is unreasonable because a CVE should describe either vulnerability type or
root cause according to the guideline of CVE key details [16].

Hence, our second task is to automatically recommend and augment the missing aspects
in CVE descriptions. According to our investigation, to improve the completeness of the CVE
descriptions, database maintainers try to manually augment more information such as vulnerability
type, root cause, attack vector, and attacker type through different ways, as shown in Table 1 (RQ4 in
§ 4.5). However, manual augmentation of missing aspects by vulnerability database maintainers will
take substantial human efforts in practice. Therefore, automated augmentation of missing aspects
for vulnerability descriptions is very practical and useful to reduce human efforts and maintain
high-quality vulnerability descriptions.

Unfortunately, rule-based method will not work for this augmentation task. Because the correla-
tions among different vulnerability aspects and their combinations are complex, which is difficult to
summarized as a set of explicit rules (see the experiment results of aspect fusion and aspect ablation
in § 4.2.3 and § 4.3, respectively). So we adopt a neural network based method named Prediction of
Missing Aspect (PMA) which can directly learn the intricate relations across different vulnerability
aspects from the existing CVE descriptions instead of manual feature engineering. We formulate
this task as a multi-class text classification task - predict the label of certain missing aspect of
a vulnerability based on its known aspects. To implement it, we first systematically explore the
design space of the neural network based classifier, including input text format and representation,
model architecture, and network design.
To evaluate the effectiveness of PMA, 1) we build a “historical” dataset of 43,583 CVEs (till

September 2016) where each CVE contains at least 4 out of the 6 vulnerability aspects. In the
10-fold cross validations on the historical dataset, the best classifier design achieves the prediction
performance 94%, 79%, 89%, and 70% for vulnerability type, root cause, attacker type, and attack
vector, respectively. 2) We also set ablation experiments to determine the most and least prominent
aspect or aspect combinations for predicting a particular missing aspect. Our results show that the
impact aspect has the greatest impact on the prediction of vulnerability type, while affected product,
and vulnerability type have the greatest impact on the prediction of root cause, attacker type, and
attack vector. At the same time, root cause and attacker type have least impact on the prediction of
other aspects. 3) To confirm the usefulness of our aspect augmentation method, we build a “future”
dataset of 8,623 CVEs (from October 2016 to August 2020). Trained on the historical dataset, our
method achieves the prediction performance 88%, 71%, 61%, and 81% for predicting the missing
vulnerability type, root cause, attacker type, and attack vector on the future dataset, respectively. 4)
We finally demonstrate the practicability of PMA (in terms of description augmentation) on the
real updated CVEs collected from NVD.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Detecting and Augmenting Missing Key Aspects in Vulnerability Descriptions 1:5

This paper makes the following contributions:

• We are the first to investigate the aspect missing issue of CVEs. We analyze 27,130 CVEs over
the past 20 years to develop rules for extracting aspects from their descriptions. We analyze
the characteristics and missing severity of six vulnerability aspects.
• We design a machine learning-based approach (PMA) for predicting the missing key aspects
of CVEs. Our model systematically considers variations in input formats, word embeddings,
model architectures, and neural network designs.
• We conduct extensive experiments to demonstrate the effectiveness, predicting performance,
usefulness of our approach in terms of vulnerability description augmentation.
• We also conduct experiments to show that our method can improve the performance of
vulnerability severity level prediction, and can predict threshold scores more accurately.

Finally, we remark that PMA can be used to recommend and further help to complete missing
aspects in existing CVEs and help vulnerability discoverers submit more complete CVEs, potentially
enabling more research and analysis using vulnerability descriptions. We leave these topics as our
future work.

2 DETECTING MISSING KEY ASPECTS
In this section, we introduce the six key aspects for CVE descriptions, discuss how to extract these
key aspects, evaluate the quality of the extracted key aspects, and analyze the missing status of
different aspects in CVE descriptions.

2.1 Preliminaries of CVE Key Aspects
CVE suggests two description templates [16]: 1) [Vulnerability Type] in [Component] in [Ven-
dor][Product][Version] allows [Attacker Type] to [Impact] via [Attack Vector]; 2) [Component] in
[Vendor][Product][Version][Root Cause], which allows [Attacker Type] to [Impact] via [Attack
Vector]. These two templates identify six key aspects for describing CVEs, as explained below.
Vulnerability type (Vul-Type) identifies an abstract software weakness for a CVE, which is
usually identified as an entry in Common Weakness Enumeration (CWE) [14]. When submitting a
new CVE request [13], the reporter must specify the vulnerability type. The request site provides
several common candidate software weaknesses for selection (see in Table 3). If the relevant
weakness (e.g., PHP Remote File Inclusion (CWE-98)) is not in this list, the reporter can select
“Other” or “Unknown”, and may optionally mention the weakness in the description.
Root cause is an error in program design, value or condition validation, and system or environment
configuration, which results in a CVE. SecurityFocus [51] abstracts the root causes of CVEs into 11
error classes (see in Table 3). But when submitting a new CVE request, specifying root cause is not
enforced. The reporter may describe the root cause in free-form text, as shown in Fig. 1 and Fig. 2.
Affected product refers to [Component] in [Vendor][Product] [Version] information in the CVE
description. It identifies software component in certain version(s) of a software product that has
been affected by a CVE. As the examples in Fig. 1 and Fig. 2 show, affected components can be
source code file, function, or executable. When submitting a new CVE request, the reporter must
provide affected product(s) and version(s), and product vendor(s).
Attacker type describes the mechanism by which an attacker may exploit a CVE. The CVE request
site provides five mechanisms for selection: authenticated, local, remote, physical, and context
dependent. Attacker type is an optional field. That is, the reporters leave this field unspecified or
select other. But they may mention attacker type in the CVE description (see Fig. 1 for an example).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Guo and Chen et al.

Impact indicates what the attacker gains by exploiting this vulnerability. The CVE request site
provides four common impacts for selection: code execution, information disclosure, denial of
service, escalation of privileges. Impact is also an optional field, which can be left unspecified.
But the reporter generally describes the impact in the CVE description (see Fig. 1 and Fig. 2 for
examples).
Attack vector describes the method of exploitation, for example, to exploit vulnerability, someone
must open a crafted JPEG file. Specifying attack vector is not enforced. It may be mentioned in the
CVE description (see Fig. 1 and Fig. 2 for examples). We manually label attack vector descriptions
into five common types: via field, arguments or parameters, via some crafted data, by executing
the script, HTTP protocol correlation, call API.

When submitting a new CVE request, the reporter provides a free-form textual description of
the vulnerability, which may or may not cover all the six key aspects. The submission form
provides pre-defined options for vulnerability type, attacker type, and impact. But the reporter
may select “Other” if the pre-defined options are not appropriate for the reported vulnerability
or leave the options unspecified. As such, not all CVEs describe all six aspects (see in Fig. 2).

2.2 Aspect Detection in CVE Descriptions
To understand the missing of the six key aspects in CVE descriptions, we first need to extract
these aspects from the description text. To that end, we randomly sample 20% of the CVEs (27,130
CVEs in total) for each year from 1999 to 2020, and manually label the key aspects in the CVE
descriptions. We observe that 71% of CVE descriptions follow the suggested templates [16], such
as those in Fig. 1 and Fig. 2(a)(b). 29% of CVE descriptions do not follow the suggested templates,
such as those in Fig. 2(c)(d). However, even for those non-template-following CVE descriptions,
the descriptions of CVE aspects still exhibit similar patterns. Due to the input assistance of the
CVE request website, we observe commonly used phrases or their variants for vulnerability type,
attacker type, and impact.
Based on our observation of the aspect-phrase and sentence patterns in CVE descriptions, we

develop a set of regular expression patterns to extract the six key aspects from CVE descriptions (see
in the GitHub repository: https://github.com/pmaovr/Predicting-Missing-Aspects-of-Vulnerability-
Reports). First, based on an advantageous matching technique “Gazetteer” [34, 47], we build a
gazetteer (the gazetteer size is 3,685) commonly used for vulnerability type, root cause, impact,
attacker type, and attack vector , as well as a gazetteer for product and vendor names from CVE
Details. CVE Details extracts and displays the production, version, and vendor names of the
vulnerabilities, which can be easily obtained. We also define sentence-level patterns that represent
the common appearance order of different aspects in CVE descriptions.

We adopt Stanford CoreNLP [35] to parse a CVE description and obtain POS tags of this sentence.
Some of the hard-to-identify aspects of the vulnerability descriptions (e.g., root cause) need to match
the phrasal verbs that precede the sentence. Next, we combine gazetteer matching and POS pattern
matching to decide the candidates of certain CVE aspects. We also use POS to exclude some aspects
that are obviously wrong. For example, if the affected products we extract start with a phrasal
verb, that aspect is likely to be wrong. Finally, we examine the candidates against the two official
description templates and other general sentence-level patterns (see in the GitHub repository) in
order to filter out false positive aspect candidates. We write code to determine whether the semantic
structure and keywords in the template are present in the vulnerability descriptions, and use these
templates to write regular expression code to carry out pattern matching on the vulnerability
descriptions. For example, attacker type, impact, and attack vector often appear together in the
form of “allow [attacker type] to [impact] via [attack vector]” or “[attacker type] performs [attack

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://github.com/pmaovr/Predicting-Missing-Aspects-of-Vulnerability-Reports
https://github.com/pmaovr/Predicting-Missing-Aspects-of-Vulnerability-Reports
https://github.com/pmaovr/Predicting-Missing-Aspects-of-Vulnerability-Reports
https://www.cvedetails.com/
https://www.cvedetails.com/
https://github.com/pmaovr/Predicting-Missing-Aspects-of-Vulnerability-Reports

Detecting and Augmenting Missing Key Aspects in Vulnerability Descriptions 1:7

Table 2. Variations of the extracted aspect descriptions

Aspect CVE-ID Descriptions

Vulnerability Type
CVE-2017-11507 cross-site scripting (XSS) vulnerability
CVE-2018-16481 XSS vulnerability
CVE-2018-10937 cross site scripting flaw

Root cause
CVE-2008-1419 does not properly handle ...
CVE-2010-0027 does not properly process ...
CVE-2015-1992 improperly processes ...

Affected product
CVE-2006-3500 The dynamic linker (dyld) in Apple ...
CVE-1999-0786 The dynamic linker in Solaris
CVE-2013-0977 dyld in Apple iOS before 6.1.3 and Apple TV ...

Impact
CVE-2011-4129 obtain sensitive information
CVE-2005-2436 obtain sensitive data
CVE-2002-0257 obtain information from other users

Attacker type
CVE-2018-1000634 user with privilege
CVE-2018-1000084 low privilege user
CVE-2016-9603 A privileged user/process

Attack vector
CVE-2018-12581 use a crafted database name
CVE-2019-11768 a specially crafted database name can be used
CVE-2012-1190 via a crafted database name

vector] in order to [impact]”. Meanwhile, “executing the script” can belong to either attack vector
or impact aspect, while it is exactly an attack vector when it appears in the sentence “By executing
the script ...”. Note that, some vulnerability descriptions will describe the name of the vendor at the
beginning and the product version number of the affected product at the end. We will extract the
descriptions of these two parts at the same time to stitch together a complete affected product.

2.3 Accuracy of CVE Aspect Extraction
We apply the aspect detection method to the rest 108,500 CVEs. We extract 41,003, 15,129, 92,132,
89,053, 73,134, and 67,188 instances of the vulnerability type, root cause, affected product, impact,
attacker type, and attack vector, respectively. Considering large numbers of instances to examine, we
adopt a statistical sampling method [50] to evaluate the accuracy of the extracted aspect instances.
Specifically, we sample and examine theminimum numberMIN of data instances. MIN is determined
by 𝑛0/(1 + (𝑛0 − 1)/𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒) where 𝑛0 = (𝑍 2 ∗ 0.25)/𝑒2, and 𝑍 is the confidence level’s
z-score and 𝑒 is the error margin. In this work, we consider 5% error margin at 95% confidence
level. At this setting, we examine 384 extracted instances for each aspect. One author labels the
sampled instances, and the other author validates the results. The two authors discuss to resolve
the disagreements. The extraction accuracy is 97%, 96%, 96%, 98%, 99%, and 98% for the vulnerability
type, root cause, affected product, impact, attacker type, and attack vector, respectively. Table 2 shows
some examples of the extracted aspect phrases. We can see that our aspect extraction method is
flexible to handle the variations of aspect extraction.

2.4 Missing and Distribution of CVE Aspects
Based on the extracted CVE aspects, we analyze the missing of key aspects in CVEs. By observing
on different severities of information missing for different aspects, we find that about 43.8% of CVEs

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Guo and Chen et al.

Table 3. Class distribution of CVE aspects

Vulnerability Type

Cross site scripting (CWE-79) 29.5% SQL injection (CWE-89) 17.8%
Buffer Overflow (CWE-119) 17.1% Directory Traversal (CWE-32) 8.9%

Cross-site request forgery (CWE-352) 7.1% PHP file inclusion (CWE-98) 5.7%
Use-after-free (CWE-416) 3.2% Integer overflow (CWE-680) 2.6%

Untrusted search path (CWE-426) 1.7% Format string (CWE-134) 1.6%
CRLF injection (CWE-93) 0.6% XML External Entity (CWE-661) 0.3%

Others 4.0%
Root Cause

Input Validation Error 51.7% Boundary Condition Error 24.5%
Failure to Handle Exceptional Conditions 11.7% Design Error 11.0%

Access Validation Error 0.7% Atomicity Error 0.1%
Race Condition Error 0.1% Serialization Error 0.1%
Configuration Error 0.1% Origin Validation Error 0.1%
Environment Error 0.1%

Attack Vector

Via field, arguments or parameter 51.7% Via some crafted data 17.1%
By executing the script 14.0% HTTP protocol correlation 4.4%

Call API 3.3% Others 8.0%
Attacker Type

Remote attacker 72.8% Local attacker 11.1%
Authenticated user 8.1% Context-dependent 2.9%

Physically proximate attacker 0.3% Others 4.7%

describe vulnerability type, about 15.2% of CVEs describe root cause, about 3% of CVEs describe
both vulnerability type and root cause, 62% of CVEs describe attack vector, and 72% of CVEs describe
attacker type. Meanwhile, almost all (over 99%) CVEs list affected product, and about 94% of CVEs
present impact. We also uncover that about 31% of CVEs miss one aspect, 39% miss two, and 28%
miss three or more aspects. Table 3 demonstrates the class distributions of the main extracted
aspects, which is obviously imbalanced with a long-tailed distribution. In addition, classes with
the frequencies < 0.1 are grouped as Others. Note that, we exclude affected product and impact
because they do not suffer from serious information missing.

3 AUGMENTING MISSING KEY ASPECTS
Motivated by the missing of key aspects in CVE descriptions, we design a neural-network based
approach named PMA for predicting the missing aspects based on the known aspects in a CVE
description. We first give an overview of our approach (§ 3.1) and then describe the design of
neural-network classifier (§ 3.2~§ 3.4).

3.1 Approach Overview
We formulate the prediction task as a multi-class classification problem for each aspect. Considering
the severity of the information missing (see § 2.3), we predict four aspects: vulnerability type, root
cause, attacker type, and attack vector. Each aspect has a corresponding multi-class classifier, and
the class labels for each aspect-specific classifier are summarized in Table 3.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Detecting and Augmenting Missing Key Aspects in Vulnerability Descriptions 1:9

CVE specific
word embedding

Aspect
extraction

Known
aspect
descr

Labelt of
aspectt

Loss
function

Neural Network
Classifier

Historical
CVEs

Unseen
CVE

Aspect
extraction

Known
aspect

Trained
classifier
for missing

aspect

Label of
missing
aspect

Training
Phase

Prediction
Phase

CVE
description

corpus

Building
training
data for
aspect

Affected
Product

Vul-Type

Attacker
Type

Attack
Vector

Root
Cause

Impact

Training
CVEs for
aspectt

Word2Vec

Fig. 3. Overview of PMA

As shown in Fig. 3, PMA consists of a training phase and a prediction phrase. Training phase uses
the historical CVE descriptions to train aspect-specific neural network classifiers. It first uses the
aspect extraction method in § 2.2 to extract six CVE aspects from the historical CVE descriptions.
Then, we prepare the training data for each aspect 𝑡 to be predicted. For each CVE that contains the
aspect 𝑡 , a training instance is created with the class label of 𝑡 (denoted as 𝑙𝑎𝑏𝑒𝑙 (𝑡)) as the expected
output and the description of rest of aspects 𝑟 ∈ 𝑅 (1 ≤ |𝑅 | ≤ 5) (denoted as 𝑑𝑒𝑠𝑐 (𝑟)) as the input.
From such training data, the neural network classifier is trained to extract syntactic and semantic
features from the input aspect descriptions and capture the intrinsic correlations between these
input features and the output class label.
At the prediction phrase, given an unseen CVE description, we first extract the CVE aspects

present in the description. For each missing aspect, the trained aspect-specific classifier takes as
input the aspects present in the description and predicts as output the most likely class label of the
missing aspect.
The neural network classifier consists of three layers: an input layer that represents the input

text in a vector representation (e.g., word embedding) (§ 3.2); a neural-network feature extractor
that extracts syntactic and semantic features from the input text (§ 3.3); and an output classifier
that makes the prediction based on the extracted features (§ 3.4). Next, we describe the design of
these three layers in details.

3.2 Input Text and Representation
The raw input into classifier is the textual description of CVE aspects, such as those sentence
fragments highlighted in Fig. 1 and Fig. 2. In this work, we consider three formats of raw input text:
1) the sequence of separate aspect descriptions in the original appearance order (denoted as i-ao); 2)
the sequence of separate aspect descriptions in a random order (denoted as i-ar); 3) the original CVE
description containing all input aspects (denoted as i-fu). i-ar allows us to investigate the impact
of the appearance order of CVE aspects, and i-fu allows us to investigate the impact of additional
sentence parts in the original CVE description. Additional parts refer mostly to preposition, pronoun
and/or determiner that connect separate aspect descriptions into a more complete sentence.

For i-ao, we delete the prepositions and connectives between all aspects and the note information
in the vulnerability, and only aspects were retained and spliced into a continuousword sequence. The
i-ar is transformed from i-ao, in this input format, the description of vulnerability will be extracted,
the order of aspects will be randomly scrambled, and the new word sequence will be spliced. For

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Guo and Chen et al.

...
...

...

...

descr1 descr2 descrn...

CNN

Feature
vector

...

descr1 descr2 descrn...

Softmax

(a) Late fusion (b) Early fusion

Fully
connected
layer

Fig. 4. Two model architectures

i-fu, we use a complete description of vulnerability, and reserve prepositions, connectives, note
information, and other information. These word sequences are then converted into word vector
sequences.

We use word embeddings to further represent word into vector, which can capture rich syntactic
and semantic features of each word in a low-dimensional vector [28, 42, 60]. Both general word
embeddings (denoted as𝑤𝑒𝑔) and domain-specific word embeddings (denoted as𝑤𝑒𝑑) are applied in
this work. For general word embeddings, we adopt pre-trained word embeddings on the corpus of
Google News from the official Word2Vec [21]. For domain-specific word embeddings, two corpora
are taken for pre-training: one is from CVE descriptions and another is from the vulnerability
report in SecurityFocus [51]. We set the vocabulary size as 50,000 to learn domain-specific word
embeddings by using continuous skip-grammodel [36] (the Python implementation in Gensim [46]).
The output of word embedding is a word dictionary, each of which has a 𝑑-dimensional vector. We
set 𝑑 at 300 as in existing studies [20, 24, 56].

The input text is represented into a 𝑁 ×𝑑 matrix 𝑣 (𝑤1) ⊕𝑣 (𝑤2) ⊕ ...⊕𝑣 (𝑤𝑁), where 𝑁 denotes the
number of words𝑤𝑖 (1 ≤ 𝑖 ≤ 𝑁), ⊕ is vector concatenation and 𝑣 (𝑤𝑖) returns the word embedding
of the word𝑤𝑖 in the dictionary. We randomly initialize corresponding word vectors to deal with
these Out-of-Vocabulary (OOV) words [64]. In addition, we set an input aspect as an empty string
if the CVE does not contain this input aspect, in order to keep the model architecture consistent.

3.3 Neural Network Feature Extractors
3.3.1 Model Architecture. As our input consists of separate CVE aspects, we design two model
architectures to investigate the effective mechanism for incorporating CVE aspects and captur-
ing their intrinsic correlations: early fusion versus late fusion. As shown in Fig. 4, early fusion
architecture first concatenates the input matrix of each aspect into one input matrix, which is fed
into a single neural network to extract and fuse features from different aspects. In contrast, late
fusion architecture feeds the input matrix of each aspect into a neural network separately and
then fuse the output feature vector of the separate networks by a fully connected layer. All neural
networks share the same network configuration, but they will learn different weights in different
architectures. Both early fusion and late fusion are applicable to the input formats i-ao and i-ar. But
only early fusion is applicable to the input format i-fu, because i-fu merges the input CVE aspects
into a whole sentence.

3.3.2 Backbone Network. We consider two popular neural networks for text classification in the
literatures [23, 25, 27]: Convolutional Neural Network (CNN) and Bi-directional Long-Short Term
Memory (BiLSTM), which the former is superior when capturing important words and phrases,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Detecting and Augmenting Missing Key Aspects in Vulnerability Descriptions 1:11

h1 h2 h3 hn

1h

2h

3h

4h

nh

3h

2h

1h

Buffer overflow in the

w1 w2 w3 wn

...

...

...

+

Feature vector

nh

Output

Attention
Layer

LSTM
Layer

Input

Embedding
Layer

.

.

.

.

.

.

.

.

.

Input Convolution & ReLu
1-max

pooling
Output

Filter_size: 5-gram

Filter_size: 3-gram

Filter_size: 1-gram

Feature_maps

Feature_vector

Fig. 5. 1-layer CNN

h1 h2 h3 hn

1h

2h

3h

4h

nh

3h

2h

1h

Buffer overflow in the

w1 w2 w3 wn

...

...

...

+

Feature vector

nh

Output

Attention
Layer

LSTM
Layer

Input

Embedding
Layer

.

.

.

.

.

.

.

.

.

Input Convolution & ReLu
1-max

pooling
Output

Filter_size: 5-gram

Filter_size: 3-gram

Filter_size: 1-gram

Feature_maps

Feature_vector

Fig. 6. 1-layer Bi-LSTM with attention

and the later is better at capturing longer-range dependencies in text. Then, we implement six
neural network model variants of both of them as follows.
1-layer CNN. CNN is a mature neural network feature extractor. Compared with RNN, the window
sliding of CNN has no sequential relationship at all, and different convolution kernels have no
interaction before. Therefore, it has a very high degree of parallel freedom. Fig. 5 presents the
1-layer CNNmodel which mainly has convolution layers and 1-max pooling layers. The convolution
layer applies𝑀 filters to the input matrix of word embeddings. A filter is a ℎ × 𝑑 matrix where ℎ
is the window size and 𝑑 is the word embedding dimension 300. Further, in this neural network
nodel, we use three different window sizes ℎ=1, 3, 5, which refers to the number of consecutive
words (e.g., 𝑛-gram). That is, the filters extract features from 1-grams, 3-grams, and 5-grams,
respectively. For each word window, a filter calculates a real value, and then feeds it into the
non-linear activation function ReLU [19]: 𝑅𝑒𝐿𝑈 (𝑥)=𝑚𝑎𝑥 (0, 𝑥). This filter scans the input word
sequence with hyperparameter 𝑠𝑡𝑟𝑖𝑑𝑒=1 (zero-padding at both ends to allow the filter to extract
features from the beginning and the end of the input sentence), and generates a feature map of the
input sequence length. Next, a 1-max pooling is applied to to obtain the most significant feature
from this feature map. Note, we use𝑀=128 filters to learn complementary features from the same
word windows. That is, 1-layer CNN neural network model produces a 128-dimensional feature
vector for each window size. Finally, The feature vectors of all windows sizes are concatenated into
an output feature vector for later classifier.
2-layers CNN. This is a deeper variant of the 1-layer CNN. Both 2-layers CNN and 1-layer CNN
have the same first CNN layer. But in 2-layer CNN, the three feature vectors generated by the first
CNN layer are directly sent into one more CNN layer (convolution and 1-max-pooling). And this
successive CNN layer adopts𝑀 (𝑀 = 128) filters with the window size ℎ = 3, to reprocess the 128-
dimensional feature vector. So, after a series of convolution, ReLu activation and max-pooling, the
second CNN layer outputs three 128-dimensional feature vectors similarly and then concatenates
them into an output feature vector for the later classifier.
1-layer BiLSTM. Bi-directional Long Short Term Networks, commonly referred to simply as
BiLSTM, are a specific type of RNN designed to avoid long-term dependency problems. In this
work, we can learn long-term dependency information about vulnerability descriptions. Our
proposed 1-layer BiLSTM model includes a forward LSTM

−−−→
𝑙𝑠𝑡𝑚𝑓 network that reads the input

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Guo and Chen et al.

from𝑤1 to𝑤𝑁 , and a backward LSTM
←−−−
𝑙𝑠𝑡𝑚𝑏 that reads from𝑤𝑁 to𝑤1:

−→
ℎ 𝑖 =

−−−→
𝑙𝑠𝑡𝑚𝑓 (𝑤𝑖), 𝑖 ∈ [1, 𝑁],

←−
ℎ 𝑖 =

←−−−
𝑙𝑠𝑡𝑚𝑏 (𝑤𝑖), 𝑖 ∈ [𝑁, 1].

−→
ℎ 𝑖 and

←−
ℎ 𝑖 are forward and backward hidden vectors for word 𝑤𝑖 ,

respectively. Note that, both forward and backward LSTMhave 192 LSTM cells, and other parameters
of
−−−→
𝑙𝑠𝑡𝑚𝑓 and

←−−−
𝑙𝑠𝑡𝑚𝑓 will be learned during model training. We obtain the hidden vector ℎ𝑖 for𝑤𝑖 via

concatenating
−→
ℎ 𝑖 and

←−
ℎ 𝑖 , i.e., ℎ𝑖 =

−→
ℎ 𝑖 ⊕

←−
ℎ 𝑖 (ℎ𝑖 is 384-dimensional vector). Thus, we gain BiLSTM

output vector ℎ𝑖 of the input word 𝑤𝑖 , which encodes both preceding and succeeding sentence
context centered around 𝑤𝑖 . Finally, we concatenate the last hidden vectors ℎ1 and ℎ𝑁 into an
output feature vector for the classifier.
2-layers BiLSTM. It is a deeper variant of 1-layer BiLSTM. Its first layer is just similar to a 1-layer
BiLSTM, while the output vector of the first BiLSTM layer is considered as input into the second
BiLSTM layer which also uses 192 LSTM cells for encoding. The last hidden vectors ℎ1 and ℎ𝑁 by
the second BiLSTM layer are concatenated into an output feature vector for the later classifier.
Attention layer for BiLSTM. The attention [59] is a technique that enables models to focus on
important information and fully learn, has become a new research hotspot in recent years. For both 1-
layers BiLSTM and 2-layers BiLSTM, we can add an attention layer on top of the last BiLSTM layer to
weight the importance of words. Therefor, we construct the 1-layer BiLSTM+Attention and 2-layers
BiLSTM+Attention.We only give the 1-layer BiLSTM+Attention in Fig. 6 due to space limitation. The
new attention layer calculates the word attention weight 𝛼𝑖 = exp

(
(𝑢𝑖)T 𝑢𝑤

)
/∑𝑖 exp

(
(𝑢𝑖)T 𝑢𝑤

)
where 𝑢𝑖 = tanh (𝑊𝑤ℎ𝑖 + 𝑏𝑤). Its input is the output ℎ𝑖 of the BiLSTM layer. Specifically, ℎ𝑖 is first
fed into a one-layer feed-forward neural network to get 𝑢𝑖 as a hidden representation. And𝑊𝑤

and 𝑏𝑤 are learnable parameters of the attention layer. Then, the importance of word𝑤𝑖 , also the
normalized importance weight 𝛼𝑖 , is measured by calculate the similarity of 𝑢𝑖 with a word-level
context vector 𝑢𝑤 (randomly initialized and learned during training) through a softmax function.
After getting the weighted sum (output related to both Bi-LSTM layer and attention layer):

∑𝑛
𝑖=1 𝛼𝑖ℎ𝑖 ,

we can obtain the final output feature vector for later classifier.

3.4 Predicting Missing Aspects of CVEs
Since the output of our model is a mutually exclusive category and only one category can be
selected, the softmax function is used in this paper to calculate the original output value of the
network. Given the output feature vector 𝐹 by each neural-network feature extractor, a softmax
classifier predicts the probability distribution 𝑦 over the𝑚 class labels of a particular CVE aspect,
i.e., 𝑦 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝐹 + 𝑏), where 𝑦 is the vector of prediction probabilities over the 𝑚 class
labels, and𝑊 and 𝑏 are the learnable parameters of the classifier. Meanwhile, the all learnable
parameters in each neural-network feature extractor and the softmax classifier are trained to
minimize the cross-entropy loss between the predicted labels and the ground-truth labels: 𝐿 (𝑦,𝑦) =
−∑𝐾

𝑖=1
∑𝑚
𝑗=1 𝑦𝑖 𝑗 log

(
𝑦𝑖 𝑗

)
, where 𝐾 denotes the number of training samples. 𝑦𝑖 𝑗 is the ground-truth

label of the 𝑗th class (1 for ground-truth class, 0 otherwise) for the 𝑖th training example, and 𝑦𝑖 𝑗 is
the predicted probability of the 𝑗th class for the 𝑖th training example. In addition, the loss gradient
is back-propagated to update all learnable parameters of both neural networks and classifier.

4 EXPERIMENTS
In this section, we conduct a series of experiments to investigate and answer to the following five
research questions:

• RQ1: Design of neural network classifier. How do different input formats, word embeddings,
model architectures, and neural network designs affect the prediction performance?

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Detecting and Augmenting Missing Key Aspects in Vulnerability Descriptions 1:13

Table 4. Aspect-specific CVE datasets

To-be-predicted aspect Vul-Type Root cause Attack vector Attacker type
Size 36,103 20,813 35,289 43,330

% with vulnerability type 100% 61% 63% 66%
% with root cause 38% 100% 39% 37%

% with attack vector 75% 72% 100% 78%
% with attacker type 86% 86% 92% 100%

• RQ2: Ablation study. What is the most or least prominent aspect or aspect combination for
predicting a specific aspect?
• RQ3: Prediction on future CVEs. How well can our approach predict key aspects of CVEs
published after the training CVEs?
• RQ4: Prediction on updated CVEs in NVD. How well can our approach predict key aspects
of the updated CVEs collected from NVD compared with the manually augmented descriptions?
• RQ5: Prediction on severity level of vulnerabilities. How does our approach contribute to
other applications based on the descriptions of CVEs (e.g., vulnerability severity level prediction)?

4.1 Experiment Setup
We describe the CVE dataset used in our experiments, our model training setting, and the perfor-
mance evaluation metrics.

4.1.1 CVE Dataset. CVE list can be downloaded from the official CVE website [39]. In this paper,
we download the CVE list that contains 136,639 CVEs from January 1999 to August 2020. We use
the aspect extraction method in § 2.2 to extract CVE aspects from these CVEs. Our evaluation in
§ 2.3 confirms the high accuracy of the extracted CVE aspects.
To evaluate our prediction method, we collect 52,306 CVEs whose descriptions contain at least

four aspects. As almost all CVEs contain affected product and impact aspects (see § 2.3), which
means the CVEs in the dataset contain at least two of the other four aspects. The reason is that too
little information of the known aspects will have an impact on the prediction of unknown aspects,
which is also not conducive to the exploration of the correlation between various aspects of CVEs.
We regard one aspect as the “missing” aspect and the rest as “known” aspects for prediction. This
guarantees that we have sufficient data to study aspect fusion and ablation. For each to-be-predicted
aspect (vulnerability type, root cause, attacker type, or attack vector), we build an aspect-specific
dataset for classifier training and testing from these 52,306 CVEs according to the method in
§ 3.1. Table 4 summarizes the information of the four aspect-specific datasets. For a specific to-
be-predicted aspect (e.g., vulnerability type), the other three aspects (e.g., root cause, attacker type,
or attack vector) of the CVEs used as input may also missing, except affected product and impact,
which is a real situation of the CVE description.

4.1.2 Model Training. We implement the proposed neural network classifier in TensorFlow [1].
Each To-be-predicted aspect has its own classifier. As discussed in § 3, we have different choices
for input format, word embedding, model architecture and network design when implementing a
classifier. All the classifiers are trained in the same setting. Specifically, we train each model for 256
iterations with a batch size of 128, set learning rate at 0.001, and use Adam [32] as the optimizer.
All experiments run on a NVIDIA Tesla M40 GPU machine, and the video memory size is 24 GB.
The CPU is Intel(R) Xeon(R) Gold 5115 CPU and the total memory of the machine is 65 GB.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Guo and Chen et al.

4.1.3 Evaluation Metrics. The multi-class classification results can be represented in a 𝑚 ×𝑚
confusion matrix 𝑀 , where𝑚 is the number of class labels (see Table 3). We use Precision (Pre),
Recall (Re), and F1-score (F1) to evaluate the effectiveness of multi-class classification [53, 55, 57, 62].
Precision for a label 𝐿 𝑗 of an aspect 𝐴 represents the proportion of the CVEs whose missing aspect
𝐴 is correctly predicted as 𝐿 𝑗 among all CVEs whose missing aspect𝐴 is predicted as 𝐿 𝑗 . Recall for a
label 𝐿𝑖 of an aspect 𝐴 is the proportion of the CVEs whose missing aspect 𝐴 is correctly predicted
as 𝐿𝑖 compared with the number of ground-truth CVEs whose missing aspect 𝐴 is actually 𝐿𝑖 .
F-score is the harmonic average of the precision and recall. The overall performance of a classifier
is the weighted average of the evaluation metrics of each class label.

4.2 Design of Neural Network Classifier (RQ1)
4.2.1 Motivation. The design of our neural network classifier considers three input formats (i-ao:
separate CVE aspects in the original order appearing in CVE descriptions, i-ar: separate CVE aspects
in random order, or i-fu: original CVE descriptions), three word embeddings (Google News [21],
SecurityFocus [51], or CVE-specific [39]), two model architecture (early aspect fusion or late aspect
fusion), and six specific neural network design (CNN or BiLSTM, 1-layer, or 2-layer, BiLSTM
with/without attention layer). We want to investigate the impact of these design options on the
prediction performance and identify the most effective design of neural network classifier.

4.2.2 Approach. We conduct four experiments to evaluate the impact of input format, word
embedding, model architecture, and network design, respectively. For the experiments on one
dimension, we use the most effective options for the other three dimensions. Specifically, 1) for
input format experiments, we use CVE-specific word embeddings, early fusion architecture, and
1-layer CNN. 2) For word embedding experiments, we use separate CVE aspects in original order,
early fusion architecture, and 1-layer CNN. 3) For model architecture experiments, we use separate
CVE aspects in original order, CVE-specific word embeddings, and 1-layer CNN. 4) For network
design experiments, we use separate CVE aspects in original order, CVE-specific word embeddings,
and early fusion architecture. Han et al. [24] pointed out in their study of vulnerability severity level
prediction task that the window size of 1, 3, and 5 could best capture the information characteristics
of CVE vulnerabilities. Therefore, we also adopt the same experimental setting in this RQ. Domain-
specific word embeddings use vulnerability descriptions in CVE and SecurityFocus directly as word
vector training input, which contains a large number of vocabulary in the field of software security.
The vocabulary sizes of CVE and SecurityFocus are about 62,000 and 56,000, respectively. This
experiment setting helps to reduce the large number of experiments by the full Cartesian product
combination of the design options, and also facilitate the analysis of each design dimension while
fixing the other three dimensions. To ensure the reliability of our experiments, we perform 10-fold
cross validation in all the experiments. For each fold, we use 80%, 10%, and 10% of data for model
training, hyperparameter optimization, and testing, respectively. We conduct Wilcoxon signed-rank
test [54] on F1-score between different experiment settings. 𝑝-value < 0.05 is considered statistically
significant (marked by * in the results tables).

4.2.3 Results. Input Formats. As shown in Table 5, the three input formats do not obviously
affect the prediction of the four CVE aspects, with only 0.002~0.009 difference in F1 across the three
input formats. The only exception is the prediction of root cause by separate aspects in random
order (i-ar), but the difference in F1 is not very large either. This suggests that the phrase-level
information in the CVE aspects alone can support reliable prediction. The presence or absence of
the additional information (mostly prepositions, pronouns, determiner) that connect CVE aspects
in the original CVE descriptions does not significantly affect the prediction. Furthermore, the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Detecting and Augmenting Missing Key Aspects in Vulnerability Descriptions 1:15

Table 5. Impact of input formats

Vul-Type Root Casue Attack Vector Attacker Type

Pre
i-ao 0.945 0.779 0.708 0.884
i-ar 0.943 0.746 0.701 0.882
i-fu 0.946 0.783 0.703 0.888

Re
i-ao 0.945 0.793 0.716 0.897
i-ar 0.945 0.770 0.710 0.892
i-fu 0.946 0.796 0.717 0.899

F1
i-ao 0.943 0.780 0.704 0.885
i-ar 0.943 0.745 0.699 0.880
i-fu 0.946 0.788 0.706 0.889

Table 6. Impact of word embeddings

Vul-Type Root Cause Attack Vector Attacker Type

Pre
CVE 0.946 0.783 0.703 0.888

SecurityFocus 0.942 0.779 0.701 0.883
*Google news 0.932 0.759 0.687 0.869

Re
CVE 0.946 0.796 0.717 0.899

SecurityFocus 0.944 0.792 0.716 0.894
*Google news 0.935 0.784 0.688 0.885

F1
CVE 0.946 0.788 0.706 0.889

SecurityFocus 0.942 0.783 0.703 0.883
*Google news 0.933 0.761 0.687 0.871

prediction is not sensitive to the appearance order of different aspects in the CVE descriptions.
Therefore, we use separate aspects in the original appearance order (i-ao) as the default option.
General versus Domain-specific Word Embeddings. Table 6 shows that domain-specific word
embeddings (CVE and SecurityFocus) support more accurate prediction in all four aspects than
general word embeddings (Google News). The differences are statistically significant in F1. How-
ever, the two domain-specific word embeddings have marginal differences. This result can be
attributed to two reasons. First, CVE and SecurityFocus use text training word vectors in the field
of software security, in which the words contain a lot of professional terms, names of software
and its components, etc. Domain-specific word embeddings learn meaningful embeddings for
domain-specific terms (e.g., CRLF, XSS, and DoS), which may be regarded as out-of-vocabulary
words and not semantically represented by word vectors in general word embeddings. Second, the
size of domain-specific vocabularies is around 60,000, and although the general vocabularies are
large, they are rarely used in vulnerability descriptions. Domain-specific corpora allow the learning
of “purer” word embeddings highly relevant to a particular domain, while the word embeddings
learned from general text may embed some unnecessary “noise” irrelevant to the particular domain.
Early Fusion versus Late Fusion. Table 7 shows that early fusion architecture performs better
than late fusion architecture (statistically significant for all evaluation metrics). This suggests that
using a single network to extract and fuse features directly from all input CVE aspects is much more
effective than extracting features from each CVE aspect separately and only fusing the features of

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Guo and Chen et al.

Table 7. Impact of model architectures

Vul-Type Root Cause Attack Vector Attacker Type

Pre
Early Fusion 0.946 0.783 0.703 0.888
*Late Fusion 0.921 0.751 0.671 0.844

Re
Early Fusion 0.946 0.796 0.717 0.899
*Late Fusion 0.927 0.770 0.680 0.872

F1
Early Fusion 0.946 0.788 0.706 0.889
*Late Fusion 0.923 0.755 0.669 0.850

Table 8. Impact of neural network designs

Vul-Type Root Cause Attack Vector Attacker Type

Pre

1-L CNN 0.946 0.783 0.703 0.888
2-L CNN 0.933 0.765 0.673 0.852

1-L BiLSTM 0.939 0.761 0.682 0.867
2-L BiLSTM 0.939 0.770 0.688 0.870

1-L BiLSTM+Attention 0.941 0.769 0.690 0.873
2-L BiLSTM+Attention 0.943 0.778 0.692 0.876

Re

1-L CNN 0.946 0.796 0.717 0.899
2-L CNN 0.935 0.775 0.701 0.878

1-L BiLSTM 0.938 0.778 0.706 0.882
2-L BiLSTM 0.941 0.780 0.703 0.883

1-L BiLSTM+Attention 0.943 0.778 0.713 0.887
2-L BiLSTM+Attention 0.945 0.792 0.714 0.889

F1

1-L CNN 0.946 0.788 0.706 0.889
2-L CNN 0.932 0.768 0.677 0.859

1-L BiLSTM 0.938 0.765 0.684 0.871
2-L BiLSTM 0.940 0.770 0.683 0.874

1-L BiLSTM+Attention 0.940 0.770 0.692 0.873
2-L BiLSTM+Attention 0.943 0.778 0.694 0.878

different aspects at the end. In addition, the training time of the early fusion model is shorter than
that of the late fusion model, in which the training time of the early fusion model is about 16 hours
and the training time of the late fusion model is around 33 hours in our experiments. Therefore, we
use early aspect fusion as the default option.
Neural Network Variants. Table 8 presents our experimental results on the six variants of neural
network feature extractor. We can see that 1-layer CNN outperforms the other five variants. So we
use 1-layer CNN as the baseline to analyze the performance of the other five variants. Comparedwith
1-layer CNN, 2-layer CNN has worse but statistically non-significant performance for predicting
vulnerability type and attacker vector, but has statistically significant worse performance for
predicting root cause and attacker type. In addition, the training time of the 1-layer BiLSTM model
is the shortest (about 15 hours), followed by the 1-layer CNN model, the training speed of 2-layers
CNN is the slowest among the six neural network designs (about 23 hours). This suggests that
deeper CNN is less appropriate than 1-layer CNN in our text classification task. The performance
of the four BiLSTM networks are very close. Neither deeper BiLSTM nor attention mechanism
statistically significantly improve the prediction performance. 1-layer CNN has better performance

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Detecting and Augmenting Missing Key Aspects in Vulnerability Descriptions 1:17

Table 9. Ablation results for predicting vulnerability type

Ablated aspect Root cause Affected product Impact Attacker type Attack vector

Pre 0.943 0.925 0.821 0.939 0.888
Re 0.943 0.927 0.822 0.941 0.896
F1 0.943 0.925 0.821 0.939 0.890

Table 10. Ablation results for predicting root cause

Ablated aspect Vul-Type Affected product Impact Attacker type Attack vector

Pre 0.740 0.734 0.739 0.781 0.780
Re 0.751 0.741 0.755 0.793 0.795
F1 0.745 0.730 0.736 0.785 0.784

Table 11. Ablation results for predicting attacker type

Ablated aspect Vul-Type Root cause Affected product Impact Attack vector

Pre 0.852 0.873 0.850 0.883 0.864
Re 0.876 0.892 0.874 0.895 0.871
F1 0.861 0.878 0.847 0.881 0.863

Table 12. Ablation results for predicting attack vector

Ablated aspect Vul-Type Root cause Affected product Impact Attacker type

Pre 0.659 0.696 0.568 0.680 0.670
Re 0.693 0.701 0.601 0.700 0.674
F1 0.665 0.695 0.572 0.683 0.669

than 2-layer BiLSTMwith attention (the overall best BiLSTM performer). Although the performance
differences are not large, the differences in F1 are statistically significant for predicting all four
CVE aspects. This result suggests that using CNN to extract important words/phrase features fits
better for our text classification task than using LSTM to learn long-range sentence features.

Answer to RQ1. According to our experiments on input formats, word embeddings, model
architectures, and network designs, the most effective design of the classifier takes as input
separate CVE aspects in original order, uses CVE-specific word embeddings to represent input
text, and adopts early-fusion architecture and 1-layer CNN as feature extractor.

4.3 Ablation Study (RQ2)
4.3.1 Motivation. As shown in Table 4, it is unrealistic to assume that all other five CVE aspects
are available for predicting a particular aspect. In this RQ, we want to investigate the impact of
certain CVE aspects unavailable as input on the accuracy of predicting a particular aspect. This
study has two important goals. First, it identifies stronger correlations (if any) among some CVE
aspects than others. Second, it identifies the minimum subset of known aspects required for making
reliable prediction of a particular aspect. This also help us to understand the practicality of PMA.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Guo and Chen et al.

4.3.2 Approach. For a particular aspect, we conduct five experiments in this section. In each
experiment, we ablate one of the other five aspects in the aspect-specific dataset, which produces
an ablation dataset without the ablated aspect. For example, for vulnerability type, we obtain five
datasets without root cause, affected product, impact, attacker type, or attack vector for the five
ablation experiments, respectively. Although the experiments in RQ1/RQ2/RQ3/RQ4 do not assume
the availability of all five aspects, the ablation of one aspect in this RQ means that we completely
ignore this ablated aspect as known aspect for model input, even the CVEs describe this ablated
aspect. We use the most effective classifier design identified in RQ1, and train and test the classifier
on each ablation dataset. We also perform 10-fold cross-validation in all these experiments.

4.3.3 Results. Table 9~Table 12 show the results of our ablation study. We compare the performance
metrics with those by 1-layer CNN in Table 8. As shown in Table 9, for predicting vulnerability
type, ablating impact results in the most significant drop (12.5%, 0.821 vs. 0.946) in F1, followed by
ablating attack vector (5.6% drop in F1, 0.890 vs. 0.946). In contrast, ablating attacker type and affected
product have a less significant impact, with 0.7% and 2.1% drop in F1, respectively. Ablating root
cause almost has no impact on predicting vulnerability type. As we discussed in § 2.3, over 94% of
CVEs describe impact aspect. Therefore, our approach will not actually suffer from the performance
degradation due to the unavailability of impact as input in practice. Although unavailable attack
vector as input aspect affects the prediction of vulnerability type, our approach can still achieve
high accuracy (0.89 in F1).
As shown in Table 12, for predicting attack vector, ablating affected product has the most

significant impact, resulting in 13.4% drop in F1 (0.572 vs. 0.706). However, as almost all CVEs
describe affected product, our approach will not actually suffer from the performance degradation
due to the unavailability of affected product as input. Ablating the other four aspects results in much
smaller drops (about 1.1%~4.1%) in F1. Among these four aspects, vulnerability type and attacker
type have stronger correlations with attack vector than impact and root cause.

As shown in Table 10 and Table 11, there are no prominent aspect for predicting root cause and
attacker type as impact for vulnerability type and affected product for attack vector. Specifically, for
predicting root cause, ablating vulnerability type, affected product, or impact has relatively larger
impact (about 5% drop in F1), compared with about 0.4% drop in F1 by ablating attacker type and
attack vector. For predicting attacker type, ablating affected product results in relative larger drop in
F1 (4.2%) than ablating the other four aspects.

Answer to RQ2. Our ablation study shows that omitting impact and affected product have a
larger impact on predicting vulnerability type and attack vector compared to omitting other
aspects (root cause and attacker type).

4.4 Prediction on Future CVEs (RQ3)
4.4.1 Motivation. Security vulnerabilities are constantly being discovered and reported. The future
vulnerabilities may differ from current vulnerabilities. The vulnerability discoverers may not know
some critical aspects of the vulnerability when submitting the report. And one of the goals of our
work is to help these people submit their newly discovered vulnerabilities and to help the CVE
authorities complete their newly submitted vulnerability descriptions. To test whether our work
can help submit vulnerability reports, we need to make predictions about future CVEs. In this RQ,
we want to investigate if our model trained with historical CVEs can effectively predict the missing
aspects of future CVEs.

4.4.2 Approach. We construct a “future” dataset of 8,623 CVEs (from October 2016 to August 2020).
61%, 91%, 47%, and 49% of these CVEs miss vulnerability type, root cause, attack vector, and attacker

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Detecting and Augmenting Missing Key Aspects in Vulnerability Descriptions 1:19

Table 13. Prediction performance on future CVEs

Vul-Type Root Cause Attack Vector Attacker Type

Pre

1-L CNN 0.891 0.717 0.621 0.820
2-L CNN 0.881 0.711 0.600 0.802

1-L BiLSTM 0.880 0.712 0.605 0.809
2-L BiLSTM 0.857 0.711 0.609 0.805

1-L BiLSTM+Attention 0.861 0.714 0.610 0.813
2-L BiLSTM+Attention 0.873 0.715 0.615 0.816

Re

1-L CNN 0.889 0.717 0.623 0.825
2-L CNN 0.880 0.710 0.603 0.803

1-L BiLSTM 0.861 0.710 0.610 0.809
2-L BiLSTM 0.863 0.700 0.611 0.809

1-L BiLSTM+Attention 0.867 0.715 0.619 0.817
2-L BiLSTM+Attention 0.870 0.713 0.619 0.818

F1

1-L CNN 0.880 0.714 0.611 0.814
2-L CNN 0.850 0.702 0.589 0.780

1-L BiLSTM 0.857 0.705 0.596 0.792
2-L BiLSTM 0.859 0.702 0.599 0.799

1-L BiLSTM+Attention 0.862 0.710 0.605 0.815
2-L BiLSTM+Attention 0.869 0.711 0.607 0.812

type, respectively. 25% of these CVEs miss one aspect, and 75% miss two or more aspects. We train
the model with our dataset of historical CVEs (§ 4.1.1), and use the trained model to predict the
missing aspects in the future dataset. The experiment setting is different from the training/testing
splitting of the historical dataset, because it enforces the time dimension of the CVE data. We use
the same network designs and model configurations as in the previous section (§ 4.4.2).

4.4.3 Results. As shown in Table 13, similar to the prediction performance on historical CVEs
(see Table 8), the performance of six model variants are close. Overall, 1-L CNN has slightly better
performance, which achieves 0.88, 0.71, 0.61, and 0.81 in F1 for predicting vulnerability type, root
cause, attack vector, and attacker type, respectively. Compared with the F1s of 1-L CNN on historical
CVEs, the F1s on the “future” CVE drops 6.6%, 7.4%, 9.5%, and 7.5% for vulnerability type, root cause,
attack vector, and attacker type, respectively. These performance drops are acceptable, considering
the strict historical-future evaluation setting. It is very likely that new vulnerability information
emerges over time, which has never been exposed in the historical CVEs. For relatively stable
vulnerability type and attacker type, the prediction is still highly accurate. However, for attack
vector which is usually product-specific, the model cannot generalize well based on the information
learned from historical CVEs.
Answer to RQ3. From the results, we find that the unseen vulnerability information in the future
CVEs moderately degrades the prediction performance for the model trained with historical
CVEs. However, the model can still relatively accurately predict the missing vulnerability type,
attacker type, and root cause of future CVEs.

4.5 Predict on Updated CVEs in NVD (RQ4)
4.5.1 Motivation. Many CVEs in NVD database are marked as “MODIFIED”, which indicates that
the corresponding CVE descriptions have been modified and updated by database maintainers.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Guo and Chen et al.

By comparing the differences between “MODIFIED” version and the corresponding “ANALYSE”
version4 through our key aspect detection method, we find that there are some missing key aspects
in CVEs that were augmented after being manually analyzed by NVD maintainers. We use the
augmented key aspects as ground-truth to evaluate the predicting performance of our approach.
In this section, we aim to explore whether our model can effectively predict these key aspects of
CVEs that were later augmented by NVD in practice.

4.5.2 Approach. We first apply our aspect detection method used in PMA to the descriptions of
CVEs that are marked as “MODIFIED” and “ANALYSE” in the NVD database. According to the
detection results, we obtain 1,320 CVE descriptions in total with 1,476 key aspects that are manually
augmented by the NVD maintainers in practice. In detail, there are 421, 279, 317, and 459 missing
key aspects for vulnerability type, root cause, attack vector, and attacker type, respectively that have
been augmented (Examples in Table 1) according to the aspect detecting results. Besides the updates
on key aspects, many other “MODIFIED” versions have different changes such as augmenting new
types of affected product for CVE such as CVE-2007-4324 and CVE-2015-8768.5 We do not take
them into the following experiments in this section.
Note that, these two labels (i.e., “MODIFIED” and “ANALYSE”) only maintain the latest two

versions of CVE descriptions instead of all historical modified description versions, therefore, we
cannot access to all historical records of description changes to key aspects, which means many
historical revisions of CVE descriptions cannot be inferred by comparing the publicly available
“MODIFIED” and “ANALYSIS” versions. Additionally, CVE descriptions will be updated over a long
period of time (e.g., over ten years for CVE-2008-02346). We obtain the updating period on average
by computing the time difference between “NVD Published Date” and “NVD Last Modified”. The
average is over one year, and most are between seven months to two years, which means that it
will last a long time period to continually update the CVE descriptions in practice.

Unlike the previously trained model used in RQ1, we retrain the model by using the historical
dataset but removing the augmented CVEs in the NVD database. After that, we take the previous
version of the CVE descriptions that have not been augmented by NVD maintainers as the inputs
and use the retained model to predict the missing key aspects for them. Finally, we compare
the prediction results with the collected augmented data. Note that, we use the following model
configurations: separate CVE aspects in the original order as input, CVE-specific word embeddings,
and early-fusion architecture. We also experiment six different network designs: 1-L CNN, 2-L
CNN, 1-L BiLSTM, 2-L BiLSTM, 1-L BiLSTM with attention, 2-L BiLSTM with attention.

4.5.3 Results. As shown in Table 14, the experimental results show that the best performance
model is still 1-layer CNN, which is consistent with the result in RQ1. Compared with the prediction
results of 1-L CNN F1 in RQ1, the results of the key aspects prediction in RQ3 drop by 7.6%, 6.2%,
4.9%, and 14.1%, respectively in the vulnerability type, root cause, attack vector, and attacker type.
For the prediction of vulnerability type and attacker type, the decline is relatively serious, while for
the root cause and attack vector, the decline is relatively moderate. We further explore the decline
reasons by analyzing the real cases. The augmented descriptions by NVD are usually updated with
multiple key aspects at once, many descriptions of aspects will be added or fixed in the update,
which means that the lack of information is more serious than other data in the historical CVE
dataset. Another reason is that the frequency of similar CVEs is relatively lower than that of the
other CVEs in the historical dataset, which means that the category distribution of these key
4The “MODIFIED” version refers to the latest version of vulnerability description that has been updated, and the corre-
sponding “ANALYSIS” version means the previous version of the current modified version.
5https://nvd.nist.gov/vuln/detail/CVE-2007-4324andhttps://nvd.nist.gov/vuln/detail/CVE-2015-8768
6https://nvd.nist.gov/vuln/detail/CVE-2008-0234#vulnCurrentDescriptionTitle

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://nvd.nist.gov/vuln/detail/CVE-2007-4324 and https://nvd.nist.gov/vuln/detail/CVE-2015-8768
https://nvd.nist.gov/vuln/detail/CVE-2008-0234#vulnCurrentDescriptionTitle

Detecting and Augmenting Missing Key Aspects in Vulnerability Descriptions 1:21

Table 14. Prediction performance on augmented CVEs in NVD

Vul-Type Root Cause Attack Vector Attacker Type

Pre

1-L CNN 0.872 0.735 0.637 0.835
2-L CNN 0.826 0.702 0.609 0.812

1-L BiLSTM 0.846 0.713 0.628 0.820
2-L BiLSTM 0.846 0.711 0.628 0.823

1-L BiLSTM+Attention 0.856 0.730 0.632 0.828
2-L BiLSTM+Attention 0.851 0.732 0.630 0.823

Re

1-L CNN 0.876 0.741 0.683 0.694
2-L CNN 0.845 0.703 0.671 0.673

1-L BiLSTM 0.840 0.721 0.671 0.682
2-L BiLSTM 0.843 0.722 0.671 0.687

1-L BiLSTM+Attention 0.846 0.738 0.675 0.687
2-L BiLSTM+Attention 0.859 0.738 0.683 0.690

F1

1-L CNN 0.870 0.726 0.657 0.748
2-L CNN 0.831 0.689 0.635 0.716

1-L BiLSTM 0.834 0.711 0.646 0.735
2-L BiLSTM 0.837 0.710 0.646 0.739

1-L BiLSTM+Attention 0.850 0.722 0.651 0.741
2-L BiLSTM+Attention 0.851 0.723 0.655 0.743

aspects are different from historical dataset. Taking all of these factors together, the performance is
acceptable. Our approach is still fairly effective in predicting the key aspects of NVD that will be
added manually.

Answer to RQ4. The performance of our approach is slightly affected by the multiple missing
aspects of CVEs in the ground-truth dataset, while the practicability of PMA in predicting these
four aspects (i.e., vulnerability type, root cause, attack vector, and attacker type) are satisfactory
in real scenario.

4.6 Prediction on Severity Level of Vulnerabilities (RQ5)
4.6.1 Motivation. Currently, there are many researches analyzing security vulnerabilities based
on the descriptions [6, 11, 15, 24], such as predicting vulnerability severity level [24], constructing
security knowledge graphs [61]. These studies heavily rely on the information contained in the
vulnerability descriptions. To investigate how our approach contributes to such applications based
on the descriptions of CVEs, we choose one of applications to demonstrate the usefulness of PMA
in downstream applications.

CVSS is a specialized system for assessing the severity of vulnerabilities and assigning a score to it.
CVSS classifies vulnerabilities into four levels according to their scores: Low (0.1-3.9), Medium (4.0-
6.9), High (7.0-8.9), and Critical (9.0-10). Han et al. [24] have done the work of predicting the severity
level of vulnerabilities, and they have achieved relatively good results. But their work is poor at
predicting threshold scores (i.e., scores close to the severity level boundaries), as they mentioned in
their paper. For example, vulnerabilities with a severity score of 6.8 (Low) are often predicted to be
High (7.0-8.9). The CVSS vulnerability score relies on the basic information of the vulnerability,
and its base score metrics for vulnerabilities consist of the following parts: attack vector, attack
complexity, privileges required, user interaction, scope, confidentiality impact, integrity impact,
and availability impact. In this RQ, we aim to investigate the impact of missing key aspects of

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Guo and Chen et al.

Table 15. Prediction performance on vulnerability severity level

All data PMA with all data Threshold data PMA with threshold data

Pre 0.801 0.835 0.608 0.657
Re 0.800 0.837 0.534 0.574
F1 0.801 0.836 0.564 0.617

vulnerabilities on vulnerability severity level prediction. This study has two purposes. 1) First, we
want to determine the impact (if any) of our work on vulnerability severity level prediction. 2)
Secondly, we want to demonstrate the usefulness of vulnerability information augmentation by
our method from in a downstream application.

4.6.2 Approach. We use historical CVE descriptions as the training data set, and 1-layer CNN as
the neural network model. First, we use the original CVE description training model to predict
severity levels and calculate precision, recall, and F1 score. Next, we use PMA to predict the missing
aspects of the vulnerability in this data set and complete them into the corresponding descriptions.
We use these completed data to retrain the model, predict vulnerability severity levels and evaluate
performance. We set the threshold scores to 3.7∼4.2, 6.7∼7.2, and 8.7∼9.2. Then we select 5,000
vulnerability descriptions with threshold scores from the historical data set and extracted key
aspects of them as test dataset and reconstruct the training dataset. Among them, 21% of the data
with scores between 3.7 and 4.2, 54% of the data with scores between 6.7 and 7.2, and the rest of the
data with scores between 8.7 and 9.2. We repeat the previous operation with those datasets.

4.6.3 Results. Table 15 presents the experimental results. It can be seen from the table that after the
completion of vulnerability descriptions, the performance of vulnerability severity level prediction
has been improved. In predicting the severity levels of all historical CVEs, the use of PMA to
complete the missing key aspects of the vulnerability led to a 3.5% improvement in F1, and in the
experiment that predicted the threshold, it improved by 5.3%. Most of these parts relate to the
six key aspects of the vulnerability descriptions. Our work can help to complete and calculate the
information required by CVSS, so as to calculate the corresponding vulnerability severity score
more accurately and help us classify the vulnerability severity level more accurately, especially for
the threshold scores.
Answer to RQ5. Our method (PMA) can overall improve the performance of predicting vul-
nerability severity level, and has a relatively better improvement in the prediction of threshold
scores that demand sufficient vulnerability aspect information.

5 DISCUSSION AND THREATS TO VALIDITY
5.1 Discussion
Security vulnerability has been a research focus of many security researchers. This situation has
promoted the emergence of many vulnerability databases, such as CVE, NVD. As researchers deepen
their understanding of vulnerabilities, the vulnerability reports in these vulnerability databases
will also be continuously updated and revised. Since our method converts the augmentation work
of key aspects of vulnerabilities into classification work, it aims to predict the labels of key aspects
of vulnerabilities. In this case, our method is not a substitute for professional workers, it can locate
vulnerability aspects for human analysts and help them fill out new vulnerability reports and
update vulnerability reports.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Detecting and Augmenting Missing Key Aspects in Vulnerability Descriptions 1:23

We have proved that PMA has good performance in terms of description augmentation, but
there are still some limitations. 1) Each aspect of vulnerabilities has many categories. Among them,
there are some extremely uncommon attack methods and root causes that we cannot classify. We
summarize these categories as “others”, which can only tell people that certain key aspects belong
to these categories and cannot be accurately predicted. 2) PMA cannot match all aspects, because
the categories of neural network classifiers are limited. 3) Note that, our approach cannot be used
to replace experts, but to assist and expedite their analysis. Our goal is to recommend missing
information to experts. Ultimately, it is up to the experts to decide how to augment and maintain
the vulnerability descriptions.

When a security vulnerability is discovered, the impact is usually the first thing to be confirmed,
but some aspects (e.g., root cause and attack vector) are not easy to be discovered. Although security
vulnerabilities are constantly updated and missing aspects may be fixed during the update process,
their usability is low before sufficient information is provided. A lot of studies rely on a large
number of vulnerability descriptions for analysis, such as vulnerability severity level prediction,
software security knowledge graph completion based on relational reasoning, which largely rely on
the information contained in the vulnerability descriptions. Currently, the vulnerability description
often contains insufficient information and may not be sufficient to resolve the problem. Our work
on missing vulnerability information may be helpful to these studies that rely on vulnerability
descriptions. We have demonstrated that our method can effectively improve the performance of
vulnerability severity level prediction, and we believe that our method can help more research
based on vulnerability descriptions.
At present, it is a trend to leverage natural language processing (NLP) and deep learning algo-

rithms on the dataset of CVEs. However, there are some challenges to be addressed and some new
research directions worth further study. 1) CVE has a wealth of information resources, including
many related databases, such as the descriptions of CWE (Common Weakness Enumeration) [14],
and CAPEC (CommonAttack Pattern Enumeration and Classification) [9]. These extended databases
contain a wealth of resources, such as the skills an attacker needs and how to prevent an attack. If
the CVE can be combined with this information in a more fine-grained way, it may be of greater
value and is a new research direction in this field. 2) The databases that record vulnerability infor-
mation are not only CVE, but also SecurityFocus [51], and IBM X-Force Exchange [29]. There are
some inconsistencies in the relevant aspect information recorded in these vulnerability databases.
Therefore, it is also a problem that needs to be solved to find out the possible errors in CVE by
using the information inconsistencies in these different databases.
With the continuous development of programming languages and software architectures, vul-

nerabilities are constantly appearing and evolving, so the currently trained predictive model may
no longer meet the requirements in the future. Our model also needs to be continuously updated
with security vulnerabilities to ensure that it can work robustly under the premise of increasing
security vulnerabilities.

5.2 Threats to Validity
Internal validity. The performance of classification model depends largely on the size and quality
of training set. In order to make the model have good generalization ability, we extract all CVEs
with more than four aspects as data sets. At the same time, our dataset uses the latest CVE data
but eliminates the vulnerabilities with the “REJECT” label (e.g., CVE-2010-38857). In addition, the
practicability of the method also depends on the structure of the model. We discussed the design of
the model in detail in § 4.2.

7https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3885

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 Guo and Chen et al.

Our approach relies on the patterns of CVE descriptions, in terms of what aspects people describe
in the vulnerability reports and how they describe these aspects. This assumption holds in general
because there is a common knowledge about important aspects of vulnerabilities and much effort
has been made to standardize the description of these aspects [16, 38]. Therefore, patterns exist in
historical CVEs, which can be learned by an appropriate machine learning methods.

External validity. Our approach currently uses a rule-based method to extract CVE aspects from
CVE descriptions. We obtain aspect extraction rules by observing about 27,000 CVEs from 1999
to 2020, and confirm the extraction accuracy of these rules. However, the development of aspect
extraction rules may suffer from human biases and errors, and the developed rules may not cover
the emerging CVE description patterns.

6 RELATEDWORK
Vulnerability databases have been created to document and analyze publicly known security vulner-
abilities. For example, Common Vulnerabilities and Exposures (CVE) [39] and SecurityFocus [51]
are two well known vulnerability databases. Common Weakness Enumeration (CWE) abstract
common software weaknesses of individual vulnerabilities, which are often referred to as vulnera-
bility type of CVEs. New software vulnerabilities have been regularly discovered and added to the
vulnerability database. For example, in about six months from November 2019 to May 2020, 5,685
new CVEs have been added to the CVE database.

The fast-growing number of vulnerabilities demand automatic methods to assist the analysis of
newly discovered vulnerabilities. Bozorgi et al. [7] trained a classifier based on various features
in vulnerability reports, such as description and time stamp, to predict the exploitability of a
vulnerability. Han et al. [24] proposed a CNN-based classifier to predict the severity of CVEs
based on only CVE description. Gong et al. [20] developed a multi-task learning method to predict
seven vulnerability properties according to the Common Vulnerability Scoring System [18]. Xiao
et al. [56] constructed a knowledge graph of CVEs and CWEs, and proposed a graph embedding
method to infer the relationships of software vulnerabilities and weaknesses. Binyamini et al. [5]
proposed a novel end-to-end automation framework for modeling new attack techniques from
textual descriptions of security vulnerabilities. Bhandari et al. [4] used the knowledge representation
method to do descriptive logic reasoning and reasoning for the concept of network security state.
These works used complete descriptions to carry out information analysis and prediction, and did
not take into account different kinds of information in vulnerability descriptions, so it is difficult to
perform well in some fine-grained reasoning works. At the same time, these works did not take
into account the correlation between various information in the vulnerability descriptions, while
PMA leverages the correlation across different vulnerability aspects. Besides, Hemberg et al. [26]
connected attack tactics, techniques, and patterns with defense weaknesses, vulnerabilities and
affected platform configurations, and exploited multiple aspects of vulnerability information. The
advantage of this work is that it has a variety of data and supports bidirectional relational path
tracing. Anwar et al. [3] cleaned up the NVD data and constructed a more accurate data source.
Sultan et al. [2] proposed a knowledge model based on Semantic Web, which provided a formal
and semi-automatic method for unifying vulnerability information resources. Different from these
works, our work studies the information completeness of vulnerability reports and develops a
neural network classifier for predicting the missing key aspects in the vulnerability reports.
Neural networks have been widely adopted for text classification in natural language commu-

nity [17, 31, 45]. They have also been applied to software text other than vulnerability descriptions,
as well as source code. For example, Xu et al. [58] developed a CNN-based siamese network
to predict duplicate questions on Stack Overflow. Chen et al. [10] developed a similar Siamese

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Detecting and Augmenting Missing Key Aspects in Vulnerability Descriptions 1:25

network architecture but their goal is to support cross-lingual question retrieval. Li et al. [33]
developed QDLinker based on word embeddings and CNN for answering programming questions
with software documentation. Mou et al. [40] proposed a tree-based CNN to embed source code for
classifying programs and detecting code patterns.

Many researches have been done on predicting vulnerable or error-prone components [43, 48], or
assessing the security of a system to be attacked [52]. They use various features including software
metrics, code churn, developer activity metrics, code structure [12, 49], while our work devote
on analyzing vulnerability textual information and the correlations across different aspects of the
vulnerability descriptions.

7 CONCLUSION AND FUTUREWORK
This paper studies the information completeness in the vulnerability reports. We examine six key
aspects of CVE descriptions and find different severities of information missing for the root cause,
vulnerability type, attacker type, and attack vector. We propose a machine learning approach to
augment the missing information of these four aspects in the CVE descriptions. Our approach uses
a neural network model to extract important features from aspect descriptions and capture intrinsic
correlations among different aspects. Our large-scale experiments identify the most effective model
design for the prediction task. Our model can be trained effectively using historical CVEs, and the
trained model can accurately predict missing information of future CVEs. This could alleviate the
information missing issue of the vulnerability reports.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, et al. 2016. TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX
symposium on operating systems design and implementation (OSDI 16). 265–283.

[2] Sultan S Alqahtani and Juergen Rilling. 2019. Semantic Modeling Approach for Software Vulnerabilities Data Sources.
In 2019 17th International Conference on Privacy, Security and Trust (PST). IEEE, 1–7.

[3] Afsah Anwar, Ahmed Abusnaina, Songqing Chen, Frank Li, and David Mohaisen. 2020. Cleaning the NVD: Compre-
hensive Quality Assessment, Improvements, and Analyses. arXiv preprint arXiv:2006.15074 (2020).

[4] P. Bhandari and M. Singh. 2016. Formal Specification of the Framework for NSSA. Procedia Computer Science 92 (2016),
23–29.

[5] Hodaya Binyamini, Ron Bitton, Masaki Inokuchi, Tomohiko Yagyu, Yuval Elovici, and Asaf Shabtai. 2020. An automated,
end-to-end framework for modeling attacks from vulnerability descriptions. arXiv preprint arXiv:2008.04377 (2020).

[6] Mehran Bozorgi, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. 2010. Beyond Heuristics: Learning to
Classify Vulnerabilities and Predict Exploits. In Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’10). 105?114.

[7] Mehran Bozorgi, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. 2010. Beyond heuristics: learning to classify
vulnerabilities and predict exploits. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining. 105–114.

[8] Brompwnie. 2017. cve-2020-5260. https://github.com/brompwnie/cve-2020-5260/. [Online; accessed 21-January-2017].
[9] CAPEC. 2019. Common Attack Pattern Enumeration and Classification. http://cwe.mitre.org/. [Online; accessed

30-June-2019].
[10] G. Chen, C. Chen, Z. Xing, and B. Xu. 2016. Learning a dual-language vector space for domain-specific cross-lingual

question retrieval. In 2016 31st IEEE/ACM International Conference on Automated Software Engineering (ASE). 744–755.
[11] Yang Chen, Andrew E Santosa, Asankhaya Sharma, and David Lo. 2020. Automated Identification of Libraries from

Vulnerability Data. In Proceedings of the 42nd International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP ’20). IEEE Press.

[12] Istehad Chowdhury and Mohammad Zulkernine. 2010. Using complexity, coupling, and cohesion metrics as early
indicators of vulnerabilities. In Journal of Systems Architecture, Vol. 57. 294–313.

[13] The MITRE Corporation. 2019. CveForm: Submit a CVE request. https://cveform.mitre.org/. [Online; accessed
30-June-2019].

[14] CWE. 2019. Common weakness enumeration (CWE). http://capec.mitre.org/. [Online; accessed 30-June-2019].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://github.com/brompwnie/cve-2020-5260/
http://cwe.mitre.org/
https://cveform.mitre.org/
http://capec.mitre.org/

1:26 Guo and Chen et al.

[15] Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing, Yuqing Zhang, and Gang Wang. 2019. Towards the detection of
inconsistencies in public security vulnerability reports. In 28th {USENIX} Security Symposium ({USENIX} Security 19).
869–885.

[16] Jonathan Evans. 2020. MITRE key details phrasing. http://cveproject.github.io/docs/content/key-details-phrasing.pdf.
[Online; accessed February-2020].

[17] Ronen Feldman. 2013. Techniques and applications for sentiment analysis. In Communications of the ACM, Vol. 56.
ACM New York, NY, USA, 82–89.

[18] FIRST. 2019. Common vulnerability scoring system (cvss). https://www.first.org/cvss. [Online; accessed 30-June-2019].
[19] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier neural networks. In Proceedings of the

fourteenth international conference on artificial intelligence and statistics. 315–323.
[20] Xi Gong, Zhenchang Xing, Xiaohong Li, Zhiyong Feng, and Zhuobing Han. 2019. Joint Prediction of Multiple

Vulnerability Characteristics Through Multi-Task Learning. In 2019 24th International Conference on Engineering of
Complex Computer Systems (ICECCS). IEEE, 31–40.

[21] Google. 2019. Word2vec. https://code.google.com/archive/p/word2vec/. [Online; accessed 30-June-2019].
[22] Hao Guo, Zhenchang Xing, Sen Chen, Xiaohong Li, Yude Bai, and Hu Zhang. 2021. Key aspects augmentation of

vulnerability description based on multiple security databases. In 2021 IEEE 45th Annual Computers, Software, and
Applications Conference (COMPSAC). IEEE, 1020–1025.

[23] Harsha Gurulingappa, Abdul Mateen Rajput, Angus Roberts, Juliane Fluck, Martin Hofmann-Apitius, and Luca Toldo.
2012. Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from
medical case reports. In Journal of Biomedical Informatics, Vol. 45. 885—892.

[24] Z. Han, X. Li, Z. Xing, H. Liu, and Z. Feng. 2017. Learning to Predict Severity of Software Vulnerability Using Only
Vulnerability Description. In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME).
125–136.

[25] A. Hassan and A. Mahmood. 2018. Convolutional Recurrent Deep Learning Model for Sentence Classification. In IEEE
Access, Vol. 6. 13949–13957.

[26] Erik Hemberg, Jonathan Kelly, Michal Shlapentokh-Rothman, Bryn Reinstadler, Katherine Xu, Nick Rutar, and Una-May
O’Reilly. 2020. BRON–Linking Attack Tactics, Techniques, and Patterns with Defensive Weaknesses, Vulnerabilities
and Affected Platform Configurations. arXiv preprint arXiv:2010.00533 (2020).

[27] Jeremy Howard and Sebastian Ruder. 2018. Fine-tuned Language Models for Text Classification. In CoRR,
Vol. abs/1801.06146. arXiv:1801.06146

[28] Ignacio Iacobacci, Mohammad Taher Pilehvar, and Roberto Navigli. 2016. Embeddings for word sense disambiguation:
An evaluation study. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). 897–907.

[29] IBM. 2019. IBM X-Force Exchange. https://exchange.xforce.ibmcloud.com/. [Online; accessed 30-June-2019].
[30] kasif dekel. 2017. whatsapp-rce-patched. https://github.com/kasif-dekel/whatsapp-rce-patched/. [Online; accessed

21-January-2017].
[31] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In CoRR, Vol. abs/1408.5882.

arXiv:1408.5882
[32] Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. In International Conference on

Learning Representations.
[33] Jing Li, Aixin Sun, and Zhenchang Xing. 2018. Learning to answer programming questions with software documentation

through social context embedding. In Information Sciences, Vol. 448-449. 36–52.
[34] Bill Yuchen Lin, Frank F Xu, Zhiyi Luo, and Kenny Zhu. 2017. Multi-channel bilstm-crf model for emerging named

entity recognition in social media. In Proceedings of the 3rd Workshop on Noisy User-generated Text. 160–165.
[35] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David McClosky. 2014. The

Stanford CoreNLP Natural Language Processing Toolkit. In Proceedings of 52Nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations.

[36] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words
and phrases and their compositionality. In Advances in neural information processing systems. 3111–3119.

[37] Corporation MITRE. 2017. National vulnerability database (NVD). https://nvd.nist.gov/. [Online; accessed 21-January-
2017].

[38] Corporation MITRE. 2019. Common Attack Pattern Enumeration and Classification Submission. https://cveform.mitre.
org. [Online; accessed 30-June-2019].

[39] Corporation MITRE. 2019. Common Vulnerabilities and Exposures (CVE). https://cve.mitre.org/. [Online; accessed
30-June-2019].

[40] Lili Mou, Ge Li, Zhi Jin, Lu Zhang, and Tao Wang. 2014. TBCNN: A Tree-Based Convolutional Neural Network for
Programming Language Processing. In CoRR, Vol. abs/1409.5718. arXiv:1409.5718

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

http://cveproject.github.io/docs/content/key-details-phrasing.pdf
https://www.first.org/cvss
https://code.google.com/archive/p/word2vec/
https://arxiv.org/abs/1801.06146
https://exchange.xforce.ibmcloud.com/
https://github.com/kasif-dekel/whatsapp-rce-patched/
https://arxiv.org/abs/1408.5882
https://nvd.nist.gov/
https://cveform.mitre.org
https://cveform.mitre.org
 https://cve.mitre.org/
https://arxiv.org/abs/1409.5718

Detecting and Augmenting Missing Key Aspects in Vulnerability Descriptions 1:27

[41] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing, Bing Mao, and Gang Wang. 2018. Understanding
the Reproducibility of Crowd-reported Security Vulnerabilities. In 27th USENIX Security Symposium (USENIX Security
18). USENIX Association, Baltimore, MD, 919–936.

[42] Eric Nalisnick, Bhaskar Mitra, Nick Craswell, and Rich Caruana. 2016. Improving document ranking with dual word
embeddings. In Proceedings of the 25th International Conference Companion on World Wide Web. 83–84.

[43] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller. 2007. Predicting Vulnerable Software
Components. In Proceedings of the 14th ACM Conference on Computer and Communications Security (CCS ’07). 529?540.

[44] NIST. 2017. National Institute of Standards and Technology (NIST). https://www.nist.gov/. [Online; accessed
21-January-2017].

[45] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer.
2018. Deep contextualized word representations. In CoRR, Vol. abs/1802.05365. arXiv:1802.05365

[46] Scott Reed and Nando De Freitas. 2015. Neural programmer-interpreters. arXiv preprint arXiv:1511.06279 (2015).
[47] Kashif Riaz. 2010. Rule-based named entity recognition in Urdu. In Proceedings of the 2010 named entities workshop.

Association for Computational Linguistics, 126–135.
[48] R Scandariato, J Walden, A Hovsepyan, and W Joosen. 2014. Predicting vulnerable software components via text

mining. In IEEE Transactions on Software Engineering, Vol. 40. 993–1006.
[49] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A Osborne. 2011. Evaluating Complexity, Code Churn,

and Developer Activity Metrics as Indicators of Software Vulnerabilities. In IEEE Transactions on Software Engineering,
Vol. 37. 772–787.

[50] Ravindra Singh and Naurang Singh Mangat. 2013. Elements of survey sampling. Vol. 15. Springer Science & Business
Media.

[51] Symantec. 2019. securityFocus. https://www.securityfocus.com/. [Online; accessed 30-June-2019].
[52] Lingyu Wang, Tania Islam, Long Tao, Anoop Singhal, and Sushil Jajodia. 2008. An Attack Graph Based Probabilistic

Security Metric. In Lecture Notes in Computer Science, Vol. 5094. 283–296.
[53] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic features for defect prediction. In 2016

IEEE/ACM 38th International Conference on Software Engineering (ICSE). IEEE, 297–308.
[54] RF Woolson. 2007. Wilcoxon signed-rank test. In Wiley encyclopedia of clinical trials. Wiley Online Library, 1–3.
[55] Xin Xia, David Lo, Sinno Jialin Pan, Nachiappan Nagappan, and Xinyu Wang. 2016. Hydra: Massively compositional

model for cross-project defect prediction. In IEEE Transactions on software Engineering, Vol. 42. IEEE, 977–998.
[56] Hongbo Xiao, Zhenchang Xing, Xiaohong Li, and Hao Guo. 2019. Embedding and Predicting Software Security Entity

Relationships: A Knowledge Graph Based Approach. In International Conference on Neural Information Processing.
Springer, 50–63.

[57] Bowen Xu, Deheng Ye, Zhenchang Xing, Xin Xia, Guibin Chen, and Shanping Li. 2016. Predicting semantically
linkable knowledge in developer online forums via convolutional neural network. In 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 51–62.

[58] B. Xu, D. Ye, Z. Xing, X. Xia, G. Chen, and S. Li. 2016. Predicting semantically linkable knowledge in developer online
forums via convolutional neural network. In 2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE). 51–62.

[59] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. 2016. Hierarchical attention networks
for document classification. In Proceedings of the 2016 conference of the North American chapter of the association for
computational linguistics: human language technologies. 1480–1489.

[60] Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. 2016. From word embeddings to document similarities for
improved information retrieval in software engineering. In Proceedings of the 38th international conference on software
engineering. 404–415.

[61] Liu Yuan, Yude Bai, Zhenchang Xing, Sen Chen, Xiaohong Li, and Zhidong Deng. 2021. Predicting entity relations
across different security databases by using graph attention network. In 2021 IEEE 45th Annual Computers, Software,
and Applications Conference (COMPSAC). IEEE, 834–843.

[62] Bai Yude, Xing Zhenchang, Li Xiaohong, Feng Zhiyong, and Ma Duoyuan. 2020. Unsuccessful Story about Few Shot
Malware Family Classification and Siamese Network to the Rescue. In 2020 IEEE/ACM 42st International Conference on
Software Engineering (ICSE ’20).

[63] Xian Zhan, Lingling Fan, Sen Chen, Feng Wu, Tianming Liu, Xiapu Luo, and Yang Liu. 2021. ATVHUNTER: Reliable
Version Detection of Third-Party Libraries for Vulnerability Identification in Android Applications. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). 1695–1707. https://doi.org/10.1109/ICSE43902.2021.00150

[64] Ye Zhang and Byron C. Wallace. 2015. A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural
Networks for Sentence Classification. In CoRR, Vol. abs/1510.03820. arXiv:1510.03820

[65] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019. Devign: Effective Vulnerability Identification
by Learning Comprehensive Program Semantics via Graph Neural Networks. In CoRR. arXiv:1909.03496

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.nist.gov/
https://arxiv.org/abs/1802.05365
https://www.securityfocus.com/
https://doi.org/10.1109/ICSE43902.2021.00150
https://arxiv.org/abs/1510.03820
https://arxiv.org/abs/1909.03496

	Abstract
	1 Introduction
	2 Detecting Missing Key Aspects
	2.1 Preliminaries of CVE Key Aspects
	2.2 Aspect Detection in CVE Descriptions
	2.3 Accuracy of CVE Aspect Extraction
	2.4 Missing and Distribution of CVE Aspects

	3 Augmenting Missing Key Aspects
	3.1 Approach Overview
	3.2 Input Text and Representation
	3.3 Neural Network Feature Extractors
	3.4 Predicting Missing Aspects of CVEs

	4 Experiments
	4.1 Experiment Setup
	4.2 Design of Neural Network Classifier (RQ1)
	4.3 Ablation Study (RQ2)
	4.4 Prediction on Future CVEs (RQ3)
	4.5 Predict on Updated CVEs in NVD (RQ4)
	4.6 blackPrediction on Severity Level of Vulnerabilities (RQ5)

	5 Discussion and Threats to Validity
	5.1 Discussion
	5.2 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	References

