
iOS, Your OS, Everybody’s OS:
Vetting and Analyzing Network Services of iOS Applications

Zhushou Tang1,6 Ke Tang1 Minhui Xue2 Yuan Tian3

Sen Chen4 Muhammad Ikram5 Tielei Wang6 Haojin Zhu1

1Shanghai Jiao Tong University 2The University of Adelaide 3University of Virginia
4Nanyang Technological University 5Macquarie University 6PWNZEN InfoTech Co., LTD

Abstract
Smartphone applications that listen for network connections
introduce significant security and privacy threats for users.
In this paper, we focus on vetting and analyzing the secu-
rity of iOS apps’ network services. To this end, we develop
an efficient and scalable iOS app collection tool to down-
load 168,951 iOS apps in the wild. We investigate a set of
1,300 apps to understand the characteristics of network ser-
vice vulnerabilities, confirming 11 vulnerabilities in popular
apps, such as Waze, Now, and QQBrowser. From these vul-
nerabilities, we create signatures for a large-scale analysis
of 168,951 iOS apps, which shows that the use of certain
third-party libraries listening for remote connections is a com-
mon source of vulnerable network services in 92 apps. These
vulnerabilities open up the iOS device to a host of possible
attacks, including data leakage, remote command execution,
and denial-of-service attacks. We have disclosed identified
vulnerabilities and received acknowledgments from vendors.

1 Introduction

A network service is built on an application programming in-
terface (API) or a library that provides networked data storage,
or other online functionality to applications. Many potential
threats have spawned with the widespread use of smartphones
with network service capabilities. Poor implementation prac-
tices expose users to denial-of-service (DoS) or remote code
execution (RCE) attacks, and unauthorized access can oc-
cur due to the weak protection of network resources. Such
threats have already been substantiated in the real world. One
such example is the DoS or RCE attack against WhatsApp
that can occur when a WhatsApp user accepts a call from a
malicious peer [5, 17]. Another is the “wormhole” vulnera-
bility, where open ports in Android apps allow an attacker to
remotely access data or manipulate apps without sufficient
authorization [51]. Recently, a proof-of-concept DoS attack
that prevents communication between iOS devices has been
demonstrated by utilizing the specific design flaw of the Apple
Wireless Direct Link (AWDL) protocol [74].

Recent research evaluating the security of open port us-
age in Android apps has demonstrated new attack avenues
that can exploit the vulnerability of network services and
access unauthorized sensitive data previously unthought
of [22, 32, 55, 80]. Some works have also proposed vetting
methodologies to handle dynamic code loading [69], complex
implicit control/data flows [31], or advanced code obfusca-
tion [46, 79], techniques created to overcome the inherent lim-
itations of Android app static analysis. Unfortunately, these
sophisticated and ad hoc vetting approaches only target An-
droid apps.

iOS’s network architecture is built on top of BSD sockets.
When acting as a resource provider, the app turns the iOS
device into a server to provide services to a client once a
connection is established. For example, the Handoff [23]
feature of iPhone serves as a server to receive commands
from a client in the same Wi-Fi network. Apple encourages
network connections between different components through
Bonjour protocol [28, 73], which broadcasts the network
service to clients. Although Apple reviews third-party apps
before releasing them on the iTunes App Store, The vetting
process predominantly focuses on detecting malicious apps
instead of network service vulnerabilities.

In this work, we propose the first vetting methodology of
iOS apps’ network services. There are three elements that
make vetting and analyzing iOS apps more technically chal-
lenging than Android apps. (i) Android apps are easy to col-
lect and analyze; however, a public repository of iOS apps
is not readily available due to the closed nature of Apple’s
app ecosystem. (ii) Practical program analysis tools for auto-
matically analyzing iOS apps (implemented in Objective-C
or SWIFT) are not as well developed or diverse as tools for
Android (written in Java) are [26, 45, 77]. (iii) The layout of
code in Android apps is highly structural, but the boundaries
of iOS code are obscure, causing previous methods for third-
party library identification in Android apps [27, 48, 76] to
function incorrectly on iOS apps.

To ensure the efficiency of our pipeline, we tailor our app
collection (cf. § 3), vetting process (cf. § 4), and library iden-
tification (cf. § 5) techniques to overcome the unique chal-
lenges presented by iOS apps. First, to collect and analyze
apps, we need to download, decrypt, and parse the executable,
a process that leverages iTunes’ unique download interface
with a special decryption method to expedite app collection.
Our collection methodology can download and decrypt over
5,000 apps per day using only two Apple accounts and two
jailbroken iOS devices, providing better scaling up of tasks
with lower latency than past works [62, 67]. After collection,
we parse the iOS apps, obtain the metadata of apps, and feed
it into a search engine for retrieval and subsequent analy-
sis. Second, to improve the accuracy and efficiency of our
vetting results, we write an “addon” which evaluates the net-
work interface on the fly. To expedite the automated analysis,
we leverage an on-demand inter-procedural [70] data-flow
analysis tool to restore the implicit call introduced by the
message dispatch property [24] of Objective-C or SWIFT
runtime. Third, to deal with the obscure documentation of
system and third-party network services, we propose a call
stack based collection method that overcomes the limitations
of the current class-clustering based third-party library identi-
fication [67]. In our method, we first identify system network
service APIs by traveling the call stack of each app; then third-
party network service libraries can be distinguished through
similarity analysis on the runtime call stack.

We begin our analysis with a set of 1,300 applications,
which we refer to as “seed apps”. Seed apps are used to under-
stand the characteristics of network service vulnerabilities and
extract signatures for large-scale analysis of network services.
To analyze the seed apps, we adopt the vetting methodology
of “dynamic first, static later, and manual confirmation last”.
The dynamic analysis can check for misconfigured network
interfaces on a large scale, which allows us to pinpoint a
small portion of candidate network service apps. The compa-
rably more time-consuming static analysis can then be used
to perform a fine-grained check for potential vulnerabilities.
Finally, manual confirmation is involved in verifying static
analysis results. In addition, the precise call stack of _bind
collected by dynamic analysis can be used for the identifica-
tion of APIs and libraries. Knowledge gained from seed apps
is then applied to the large-scale analysis, including measur-
ing the distribution of network services of iOS apps, finding
the association of network service libraries, and fine-grained
analysis on three typical libraries. Vetting results show that
vulnerabilities of the network service open up the iOS app to
data leakage, remote command execution, or denial-of-service
attacks (cf. § 7).
Responsible disclosure. We have reported these vulnerable
apps to relevant stakeholders through the Security Response
Center (SRC) of vendors. Three vulnerabilities have been
acknowledged, including Google issue ID: 109708840 and
Tencent issue IDs: 34162 and 23546 (see the list of major

Table 1: Major Vulnerabilities Found.

App Vendor Vulnerability Impact Severity (by vendor) Status

Waze Google CE/RCE/DoS N/A Patched
Scout GPS Link Telenav CE N/A Pending
QQBrowser Tencent CE High Patched
Taobao4iPhone Alibaba CE N/A Pending
Youku Alibaba CE N/A Pending
Handoff Apple RCE/DoS N/A Patched
Now Tencent Privacy Leaks High Patched
Amazon Prime Video Amazon Privacy Leaks N/A Pending
QQSports Tencent Privacy Leaks N/A Pending
KENWOOD WebLink RCE/DoS N/A Patched
JVC WebLink RCE/DoS N/A Patched
WebLink Host WebLink CE/RCE/DoS N/A Patched
Flipps TV Flipps Media CE/RCE/DoS N/A Pending
FITE TV Flipps Media CE/RCE/DoS N/A Pending
JDRead JD Privacy Leaks Medium Patched
QQMail Tencent Privacy Leaks N/A Pending

1 CE: Command Execution.
RCE: Remote Code Execution.
DoS: Denial-of-Service.

vulnerabilities found in Table 1). We also helped the vendors
patch these vulnerabilities and are currently discussing possi-
bilities of vendor deployment of our vetting system. To foster
further research, we release the dataset used in this paper and
the code developed for analysis, and encourage readers to
view short video demos of vulnerabilities we discovered at
https://sites.google.com/site/iosappnss/.

The key contributions of this paper are as follows:

• An efficient iOS app collection tool. To facilitate our anal-
ysis, we introduce an iOS app collection tool thanks to
the use of the headless-downloader and executable decryp-
tion. The headless-downloader enables us to download
.ipa files from iTunes App Store fluently. The executable
decryption we developed does not need to upload large
.ipa files to iOS devices, install apps, or download en-
tire decrypted .ipa files from iOS devices. The proposed
downloading enables large-scale dataset collection with
limited iOS devices, and can decrypt over 5,000 apps per
day with only two iOS devices, improving the scalability of
data collection by 17 times compared to the state-of-the-art
collection method in [62]. The collection of such a large
dataset of iOS apps is a significant resource and also serves
as a useful benchmark for future research.

• Systematic characterization of network services of iOS
apps. We apply dynamic analysis to collect a call stack
from each app. Based on the call stack information, we ex-
tract system APIs by backward traveling the stack, identify
the third-party network service libraries by comparing the
tokens originated from the stack. By taking signatures of
the network services, we systematically characterize net-
work services in iOS ecosystem, including the prevalent
usage of network services of iOS apps, the distribution of
network services across app categories, and the association
of these network services.

• New vulnerabilities of iOS apps identified. This is the
first work for vetting the security of iOS apps’ network
services. We use dynamic analysis to assess the interface
of the network service and then improve (and implement)

Header

Load commands

Data

LC_SEGMENT(__TEXT)

LC_SYMTAB

Section Header(__text)
Section Header(__cstring)

Section Header(__objc_classname)

Symbol Table
String Table

Class Name(__TEXT,__objc_classname)
Code(__TEXT,__text)

Figure 1: The simplified inner structure of a Mach-O file.

the state-of-the-art static data-flow analysis tool [49] to
further scrutinize the apps at scale. The vetting process is
performed on 1,300 seed apps, with 11 network service
vulnerabilities confirmed manually, including some top
popular apps, such as Waze, QQBrowser, and Now. By tak-
ing into account three typical third-party network service
libraries integrated by 2,116 apps and case-by-case anal-
ysis, an additional 92 vulnerable apps are discovered. We
cross check the vulnerabilities identified and find none of
these vulnerabilities exist in Android apps.

To the best of our knowledge, this is the first paper to sys-
tematically examine the security of network services within
iOS apps on a large scale. The entire vetting methodology
proposed in this paper can serve as a starting point for further
study of this important area.

2 Background and Threat Model

We begin by introducing the structure of iOS apps, defining
the network services of the iOS apps, and presenting the threat
model in this study.

2.1 The Structure of iOS Apps
The iOS app is an archive file (i.e., .ipa) which stores an
Application Bundle including Info.plist file, executable,
resource files, and other support files. For the sake of dig-
ital rights management (DRM), Apple uses a .supp file
containing the keys within the .ipa file to decrypt the ex-
ecutable [78]. The executable in the Application Bundle is
encoded in Mach-O format [68] consisting of three parts:
Header, Load commands, and Data. The Load commands re-
gion of a Mach-O file contains multiple segments and each
segment specifies a group of sections. Each section within
is parallel, such as the instructions in the __text section,
C string in the __cstring section, and Objective-C class

Vulnerability impactNetwork service Possible mistakes

(M4) Interface misconfiguration
(A4) Attack surface
exposure

(A2) Easily bypass /
unauthorized access

(A1) Privacy leakage /
command execution

Open port

Communication protocol (A3) DoS / RCE

Access control

Resources /
functionalities

(M3) Bugs in the implementation

(M2) Weak / no access control

(M1) Over resource / functionalities

Figure 2: Architecture of network service, use mistakes, and result-
ing vulnerabilities. Each row represents a possible mistake, which,
according to the network service layer, could lead to serious security
and privacy issues.

Third-party network
 service libraries

System network service APIs

Cocoa Async SocketGCDWebServer

IonicĜs Webview

POSIX Layer (BSD sockets)

CFSocketSetAddress res_9_query ...

CocoaHTTPServerPureFTPd

Tapjoy

System
code

Figure 3: Overview of system network service APIs and third-party
network service libraries. The top sub-figure shows the relation
among different third-party libraries leveraging BSD socket either
directly or via system network service APIs.

object name in the __objc_classname section. In particu-
lar, instructions in the __text section are encoded with the
ARM/THUMB instruction set. The simplified Mach-O format
file is depicted in Figure 1.

For security purposes, an iOS app’s interactions with the
file system are limited to the directories inside the app’s sand-
box directory [42, 43]. During the installation of a new app,
the installer creates a bundle container directory that holds
the Application Bundle, whereas the data container direc-
tory holds runtime generated data of the app. The bundle
container directory and the data container directory reside
in two randomly generated directories. For such design, if the
root folder of a vulnerable network service is set to a bundle
container directory, files within Application Bundle will be
exposed. The randomly generated directories alleviate the
path traversal threat due to the difficulty for the adversary to
predict the data container path.

2.2 Network Services of iOS Apps
A network service is built on an API or a library that pro-
vides networked data storage, or other online functionality to
applications. A bottom-up network service is defined as hav-
ing “open port,” “communication protocol,” “access control,”
and “resources/functionalities” layers (see Figure 2). In the
example of a GPS navigation app, termed Waze [15], the app
generally projects the app’s UI to the vehicle’s screen via USB
connection. In particular, the app integrates the WebLink [16]

Vetting & Call stack analysisCollecting iOS apps

168,951 apps & metadata

iTunes App Store

DRM protected IPA file
Crawling

DRM removed IPA file
DRM Removing

Parsing

Metadata

Storing Running

Large-scale analysis

Top 1,300 apps Query

Network service
app

Network service
library

Evaluate Candidate apps

Backward
Trasverse

Similarity
Analysis

System network
service API

Third-party
network service

library

Network service
signature

Static analysis
LLVM IR

Dataflow analysis

Dynamic analysis

3 typical libraries

Parameter
of _bind

Call stack
of _bind

Figure 4: Overview of our system pipeline: (1) the green box shows the iOS app collection methodology (cf. § 3); (2) the red box shows the
methodology for vetting the first 1,300 apps by using dynamic and static analysis (cf. § 4) and the call stack analysis for building signatures of
system and third-party network services (cf. § 5); (3) the blue box shows the large-scale analysis on network service APIs/libraries over 168,951
iOS apps (cf. § 6) and a fine-grained analysis of 3 typical libraries; (4) the bottom gray bar includes two datasets of iOS apps for analysis.

library to stream a user’s iPhone screen to the virtual app
screen of the in-vehicle infotainment (IVI) system. Mean-
while, the app receives touch events on the in-vehicle device
to respond to end-user’s actions. In doing so, the WebLink
library in the Waze app turns the app into a server to accept
the connection from the IVI system.

As for the architecture of the network service of iOS apps,
both system and third-party network service libraries are di-
rectly or indirectly built on top of BSD sockets (see Fig-
ure 3). As shown in the dashed, pink box of Figure 3, iOS
wrapped the BSD sockets for developers to facilitate the de-
velopment of network services. For example, the system API
_CFSocketSetAddress [25] in Core Foundation framework
bridges access to BSD sockets. Based on this API, develop-
ers can compose various applications on top of the TCP layer
of the network protocol stack to provide network services.
In addition, many third-party network service libraries are
available for developers to use, as shown in the blue box of
Figure 3. In general, network services provided by the third-
party libraries operate on the application layer of the network
protocol stack.

2.3 Threat Model

Previous works [55, 80] classified Android network service
adversaries to local, remote, and web adversaries. However,
we do not consider attacks by a hostile app installed locally on
the device (i.e., local adversary) or by enticing the victim to
browse a JavaScript-enabled web page (i.e., web adversary) in
our study. For example, the Libby’s web service demonstrated
in Figure 12(b) falls outside of our scope. This paper focuses
on more practical remote adversaries for vulnerability analysis
because these potential vulnerabilities are of high risk.

To find a potential victim, a remote adversary can scan
and examine the network (i.e., the Wi-Fi network or cellular
network) by designating specific port numbers [51]. Such an

adversary subsequently compares the banner1 returned from
the connected server (i.e., a network service of the iOS app).
If the banner is expected, the adversary then confirms the
real victim and can mount a remote 0-click attack, such as
stealing personal information for profit. A real-world attack
targets Android device to be exposed in a cellular network to
thwart end-user privacy for extortion [2].

To further break down the role of a remote adversary, Fig-
ure 2 shows that each layer allows for different remote attacks:
(i) The interface would be exposed if the network service is
activated and the “open port” is misconfigured. (ii) A poor
implementation of “communication protocol,” usually writ-
ten in a universal language C/C++, may lead to DoS or RCE
of apps [5, 17, 74]. (iii) Insufficient “access control” incurs
unauthorized access to network resources/functionalities.

3 Methodology of iOS App Collection

Collecting apps and meta-information on Apple iTunes is
not a trivial task. iTunes implements various restrictions for
app collection, such as capping the number of requests to
limit automated crawling methods and encrypting the exe-
cutable for DRM consideration. Because of these challenges,
previous collection methods are limited in scalability and
efficiency. Current iOS app downloading methods are UI ma-
nipulation [67] and in-device app crawler [62]. They decrypt
executable by using either Clutch [6], dumpdecrypted [10],
or the Frida [8] extension frida-ios-dump [20]. We realize
that recent research [62] expended three months to collect
28,625 iOS apps, lending evidence to the scalability issue
when extending to large-scale analysis.

1Banner is a specific message to uniquely identify a network service. For
instance, after connected to the network service of the Waze app, a client will
receive the message “WL” from the server.

3.1 iOS App Collection
In this section, we describe our method for collecting iOS apps
IDs, downloading the .ipa file from iTunes, removing DRM
protection to get decrypted executable, and parsing executable.
Our method consists of the following three modules (see green
box of Figure 4):
Collecting IDs and downloading apps from iTunes. Each
iOS app on iTunes has a unique identifier (i.e., ID). For ex-
ample, Instagram is identified by the unique ID: 389801252,
and can be accessed from iTunes by using this ID. Based on
the iTunes Search API [13], we collect the ID list recursively.
For example, the following request returns meta-information
of the top 20 apps in the “Productivity” category, such as ID
and the app name.

https://itunes.apple.com/search?term=productivity&country=u

s&media=software&limit=20.

Afterwards, we use a breadth-first-search approach that ob-
tains “similar apps” using iTunes Search API. Queries are
relayed by different proxies to bypass the crawler blocking of
iTunes.

To purchase and download a DRM protected .ipa file from
iTunes, we implement a headless-downloader. In essence,
we implement the requests for purchasing and downloading
of iTunes, sign method for the requests, and modify the re-
quests header to bypass device identification authentication.
Our headless-downloader leverages the Windows’ version of
iTunes’ .dll files and invokes the interface of the .dll files.
The headless-downloader accepts ID and Apple accounts as
arguments to download the .ipa file.
Decrypting the executable. To investigate the code, we need
to decrypt the executable of the downloaded apps. Since the
state-of-the-art techniques require physical iOS devices to
be involved in decrypting process [6, 10, 20], to avoid using
many devices, we use an agent app which is pre-installed on
a jailbroken iOS device. After the agent app is loaded into
memory, the iOS system is set to decrypt the executable. We
then suspend the decrypting process and inject the encrypted
executable into the agent app to utilize the inherent decrypt-
ing process of the iOS system. After the iOS system decrypts
the executable, we dump the executable on the jailbroken
device, retrieve it through the USB connection, and merge
the decrypted executable into the original .ipa file in a local
desktop computer. In such a way, we obtain the decrypted ex-
ecutable without installation and uninstallation and only need
to transfer the executable (not Application Bundle) between
the desktop computer and the iOS device.
Parsing the executable. In order to facilitate subsequent anal-
ysis and share our dataset for further research, we parsed the
executable by using JTOOL [14] and extracted relevant meta-
data such as the class name and string within an executable.
Data in Info.plist is also withdrawn, such as bundle ID
in “CFBundleIdentifier” field or the app name in “CFBundle-
Name” field. These metadata and meta-information of an

Figure 5: Performance of .ipa file decryption process. The time
consumption is almost constant regardless the size of the .ipa file
when only delivering the executable.

app, including category and popularity, are stored in a search
engine, namely ELASTICSEARCH [50] for later queries.
Selecting seed apps. Seed apps are used to understand the
characteristics of network service vulnerabilities and extract
signatures for large-scale analysis of network services. Seed
apps are the iTune’s apps downloaded from both the United
States and China app stores. To choose seed apps, we take the
top 20 free apps from each category on iTunes, composing
1,300 apps in total. Since the list of apps on iTunes App Store
leaderboards is constantly updated, we use a snapshot of the
lists collected on May 8, 2018. Among these 1,300 apps, we
have 24 categories (480 apps in total) from China region and
41 categories (820 apps in total) from the United States region.
Apple classifies the “Game” apps in the United States region
into more fine-grained categories, such as “Games-Card” and
“Games-Action”. These 1,300 apps provide a huge diversity
across all app categories. There is almost no overlap between
the top popular apps in China and the United States, and
the taxonomy of apps in both countries are almost the same.
We only found two apps (i.e., Rules of Survival [19] and
Dancing Line [18]) that were ranked in the top 20 in both
the United States and China.

3.2 Evaluation of iOS App Collection

Collecting iOS apps effectively is a challenging and criti-
cal problem. To evaluate the efficiency of our app collec-
tion scheme, we experiment with two procedures: app down-
load and app decryption. Our unique design of these two
procedures is the key to the performance improvement for
app collection. For the comparison of executable decryption
speed, we attempt to automate the state-of-the-practice tools
ideviceinstaller [12] and frida-ios-dump [20] adopted
by research [33, 41, 67]. The decryption speed of these tools

is largely concurrent with the download speed using our
headless-downloader, which expends approximately 29 hours
to decrypt the 1,300 seed apps with an iPhone 6s device,
averaging out roughly 80 seconds per app. By contrast, our
decrypting process, without manual handling .ipa files, takes
approximately 21 seconds on average per app, almost four
times faster than the tools. Nevertheless, we acknowledge that
the speed-up of the app decryption is positively correlated
to the existence of many “Game” apps in question (35.0%
of the whole dataset), where their resource files are unneces-
sary to be delivered between a desktop computer and an iOS
device (see Figure 5). Comparing the speed of downloads
is not as trivial as comparing the speed of decryption. We
acknowledge that a rigorous comparison of app download
between ours and other de facto research-standard tools is
difficult because of the unknown arguments of the UI ma-
nipulation adopted by CRiOS [67] (e.g., time interval for UI
manipulation), available network bandwidth (e.g., 50mbs or
500mbs), and the vague description of the implementation of
the in-device crawler proposed by Yeonjoon et al. [62].

Based on the speed we tested for downloading the 1,300
seed apps, downloading 168,951 iOS apps in the wild with a
single download task and an iOS jailbroken device is esti-
mated to complete in 160 (assuming 24/7 activity) days. To
achieve this efficiently in practice, we combine six download-
ing tasks with two jailbroken devices for app collection. To
evade iTunes’ detection of our automated downloader, two
Apple accounts are iteratively used to download the .ipa files.
This scheme enables us to collect 168,951 apps within just
30 days. Overall, our app collection can significantly improve
the collection rate by 17 times faster in comparison to the
methodology used by Yeonjoon et al. [62], which took three
months to collect only 28,625 iOS apps. We highlight that not
only the decrypting process can positively contribute to the
speed-up of the app collection, but our headless-downloader
can also fully utilize bandwidth for parallel apps download.
In summary, the scalable app collection tool, developed in
this paper, enables us to complete the collection of 168,951
iOS apps.
Ethical considerations: We emphasize that routinely collect-
ing and decrypting iOS apps using jailbroken iPhones is
for the purpose of improving their service quality and security.
The dataset and the research per se is to serve not only the
research community but also to benefit the stakeholders, such
as Apple.

4 Vetting Methodology

In this section, we introduce the vetting methodology (see
the red box of Figure 4), which consists of dynamic analysis
(cf. § 4.1) to select candidate apps, obtain a call stack from
each app, static analysis and manual confirmation (cf. § 4.2)
to scrutinize the network services of the candidate apps. The
rationale behind the vetting methodology of “dynamic first,

static later, and manual confirmation last” is that dynamic
analysis can rapidly check for misconfigured network inter-
faces on a large scale, allowing us to pinpoint a small portion
of candidate network service apps. The more time-consuming
static analysis can then be used to perform a fine-grained
analysis and check for potential vulnerabilities. Finally, we
verify the identified vulnerabilities manually in order to en-
sure vulnerabilities are not misidentified.

4.1 Dynamic Analysis
Dynamic analysis is used to check for remote accessible net-
work interfaces in the wild. Specifically, we use dynamic
analysis to check which app utilizes a network service and
analyze the interface of the network service while preserving
the call stack of the app.
Vetting if apps provide network services. We leverage our
dynamic analysis to detect whether apps provide network ser-
vices. To provide network services, the standard process [25]
in light of POSIX Layer (see Figure 3) is to (i) create a socket,
(ii) bind it to a port, and (iii) begin listening for incoming con-
nections on that port. During the second step of the process,
namely invoking _bind API, developers can pass rich param-
eters, indicating the property of the network service, to the
_bind API to limit the access scope of the network service
by designating the network interface as loopback for local
host access or LAN for remote access from Wi-Fi/cellular
networks.

To study the interface of a network service, we implement
an “addon” for jailbroken iOS devices by using Cydia
Substrate [72]. The “addon” redirects the _bind API calls
initiated by each analyzed app to the vetting code. As dis-
cussed in Section 2.3, we only consider remote adversaries
because they are more practical threats to the apps. There-
fore, by parsing parameters of _bind API, if the app uses the
loopback interface (e.g., 127.0.0.1), the vetting code consid-
ers the app as safe and terminates the analysis. For the apps
that use the LAN interface, for example, a developer passes
a parameter 192.168.1.3 to _bind API, the vetting code in
“addon” reports the app is accessible (i.e., a candidate app).
We later run static analysis on these apps to vet the security
of the network service.
Call stack extraction. We carry out call stack extraction for
generating unique signatures so we can identify system APIs
and third-party libraries relevant to network services. For any
active app, iOS maintains the runtime return address of a
routine in a data structure known as the call stack. The call
stack, filled with pointers, is depicted in the left-top box of
Figure 8, where pointers indicate the site to which the routine
should return when its execution is completed. Since the API
_bind is a prerequisite for setting up a network service, to
analyze the call trace reaching the _bind API, the call stack
is preserved by our “addon” when analyzing the interface of
the network service. The pointer in the call stack varies due

Figure 6: The performance of our static analyzer. After the 113
apps pass our dynamic analysis, the static analysis (including de-
compilation, optimization, and slicing) takes 54 minutes per app
on average. The overhead of decompiler should be in line with the
instructions within an executable; however, for the executable larger
than 120MB, memory compression and swapping time is involved
as per the exhausted memory (16G), leading to a sharp increase of
the time consumption of the decompiler and overall performance.
The dramatic drop at 140MB is an exception that the instructions of
the app are not in line with the executable size. The overall perfor-
mance benefits from the slicer (on-demand inter-procedural), with
comparison to the overhead of original inter-procedural analysis [49]
for program slicing, which takes in the order of days and is omitted
herein.

to the Address Space Layout Randomization (ASLR) security
mechanism of the iOS system. In order to map the runtime
floating pointers in the call stack to the concrete offset of
the static executable, the ASLR value for the executable is
preserved.
Limitations. Region lock checks (nine apps) from either
iTunes or the developer may occasionally impede the dy-
namic analysis. In addition, social security numbers required
(29 apps) for registration process or jailbreak detection (four
apps) by developers will also prevent the apps from running.
These apps account for 3.2% of our 1,300 seed apps. Subject
to the accuracy of UI automation [41], the dynamic analy-
sis would involve human interaction if necessary (e.g., app
registration).

4.2 Static Analysis and Manual Confirmation

We note that only network services behind the LAN interface
can reach the static code analysis. Dynamic analysis selects
candidate apps that provide network services and excludes
apps that use the loopback network interface. Next, by using
static analysis, candidate apps are further narrowed down
by using rules. Static analysis results are then manually
confirmed.

Figure 7: The static analysis result of the misuse of GCDWebServer
in the Now app. The green item indicates a harmless usage of this
library. The brown item reports another misuse of this library.

Static analysis. During the iOS app development, developers
use a mixture of Objective-C and C or SWIFT to compose an
app. To automatically analyze Objective-C and SWIFT binary,
we opt to further optimize the open-source framework [49],
which is a static slicer for inter-procedural data-flow analysis
on LLVM IR of 64-bit ARM binary. Specifically, three phases
are involved in analyzing an iOS app, i.e., decompiling ma-
chine code to LLVM IR by using DAGGER [9], optimizing
the IR, and slicing on the IR. To adapt this framework to our
analysis task, we attempted to enhance the framework from
the following aspects.

(i) We supplement semantics of more ARM instructions
to the decompiler. Additionally, since the IR of a moderate
app always consumes gigabytes of memory, some instructions
are simplified to shrink the memory usage, such as removing
floating point instruction. The simplification has little effect
on the analysis results.

(ii) We convert inter-procedural data-flow analysis to on-
demand inter-procedural [70]. The complexity of point-to
analysis in slicing is O(n3) [21], where n is over ten million
for a moderate app when performing inter-procedural analysis.
This makes original analysis take several days to analyze
an app. To speed up the performance, the on-demand inter-
procedural analysis starts analyzing the function enclosing the
reference to the expected class object name or method name
of a network service API. After slicing on the function and the

callees (functions) are solved, it takes in all identified callees
to start another slicing iteration. This strategy significantly
reduces the n of point-to analysis. The overall performance of
the static analyzer is depicted in Figure 6. We show that the
overhead of the decompiler and slicer is almost linear in terms
of the executable file size, and the slicing phase is bounded
within a constant-time overhead.

(iii) We formulate and specify rules for the misuse of
network services. For example, the static analysis result of the
misuse of the GCDWebServer library is depicted in Figure 7.
In comparison to dynamic analysis which investigates the
network interface of an app, static analysis can check if the
root folder of the web server is a data container directory,
or a bundle container directory by using rule. The code of
our static analyzer is publicly available at https://github.com
/pwnzen-mobile.
Manual confirmation. To date, as the automated analysis is
unable to verify iOS network service vulnerabilities end-to-
end, we resort to six expert researchers (three co-authors and
three external experts) to identify private (e.g., cookies) or
non-private (e.g., video clips) information, privileged func-
tionality (e.g., install apps) exposure, and to study how to
build a request to bypass the weak protection (e.g., hard-coded
passwords) with the help of static analysis. The six expert
researchers are separated into three groups and each group
reports if the apps are considered vulnerable. Specifically,
we focus on remote vulnerabilities for exploits. For example,
although Waze provides a network service on port 12345 for
the LAN interface and 55432 for the loopback interface simul-
taneously on startup, we only check the network service on
port 12345. If private information or privileged functionality
is exposed to cellular networks via a network service, we rank
the vulnerable network service as high risk. If it is exposed
to Wi-Fi networks, we rank the network service as medium
risk. For non-private or non-privileged functionality, we rank
the network service as low risk. For example, obtaining video
snippets from the Prime Video app without authorization
is ranked as low risk, since the video snippets are consid-
ered non-private. After generating all reports, the researchers
discuss and finalize ranking the vulnerabilities.
Limitations. The static analysis is efficient to identify secu-
rity risks. Two types of divergence may occur in the static
analysis: (i) Our on-demand inter-procedural analysis may re-
sult in loss of precision, subject to the failure of parsing 8.7%
apps, leading to a false positive rate of 20.5%; (ii) 29.4%
libraries implemented in C fail to be parsed through our static
analyzer.

4.3 Results of Vetting

In this subsection, we present the results of our dynamic and
static analysis and our six expert researchers’ verification.
This process is performed on seed apps. Even with manual

Table 2: The results of our dynamic analysis of the apps ob-
tained in the China and United States.

Dynamic
Port (0)

Loopback Interface
(e.g., 127.0.0.1)

LAN
Interface

China (480) 16 (3.33%) 14 (2.91%) 51 (11.04%)
United States

(820) 42 (5.12%) 43 (5.24%) 62 (7.01%)

Total (1,300) 58 (4.46%) 57 (4.38%) 113 (8.69%)

confirmation (done by six expert researchers), the entire vet-
ting process for the 1,300 apps can be completed within 15
days. Dynamic analysis takes 2 days with one jailbroken
iOS device (may need interaction) and static analysis, includ-
ing the manual confirmation, takes 13 days.
Results of dynamic analysis. For the dynamic analysis, we
install, launch, and uninstall each iOS app automatically by
using ideviceinstaller [12]. When the app reaches the
main view, we end the dynamic vetting process, and collect
the call stack of each analyzed app. Overall, 172 unique apps,
13.2% of our collected total, provide network services for
either local or remote clients. Table 2 shows the details of our
dynamic analysis. Our observations are as follows: (i) The dy-
namic port (the second column of Table 2) to which a socket
binds is usually used for in-app communication, and the net-
work service on a dynamic port is immune to attacks; (ii) the
apps that provide network services on multiple interfaces will
be represented in each column; therefore, a unique app can
be counted multiple times in this table. We found 65 unique
apps from China and 107 from the United States that provide
network services; and (iii) the analysis process was always
performed in a Wi-Fi network. As shown in the last column
of Table 2, a huge number (113) of iOS apps provide network
services to other hosts in the same Wi-Fi networks, accounting
for 8.69% of the 1,300 seed apps. Since developers can adjust
their network services for different networks (i.e., Wi-Fi net-
works and cellular networks), the network services exposed
to cellular networks are less than 8.69%. Compared to the
apps in the United States, the apps in China are more inclined
to provide network services on the LAN interface. That is,
11.04% vs. 7.01%.
Results of static analysis and manual confirmation. Based
on dynamic analysis, we select candidate apps to examine in
depth by static analysis and verify exploitable network ser-
vices by six exports’ confirmation. Ultimately, we confirmed
that 11 (9.7%) of the 113 candidate apps have vulnerabili-
ties, such as Waze, QQBrowser, Now, Scout GPS Link, and
Youku. These vulnerable apps are described in Section 7.

5 Building Signatures for Network Services

Two types of interfaces are available for developers to start up
network services: by invoking system network service APIs
or by using third-party libraries (see “app code” of Figure 3).
For large-scale analysis of apps across categories, we build

0 binddetours.dylib 0x0000000101aaf758
1 Covet 0x0000000100a1e1f8
2 Covet 0x0000000100a1e608
3 libdispatch.dylib 0x000000019b8b9770
...
8 libdispatch.dylib 0x000000019b8c471c
9 Covet 0x0000000100a3bd94
10 Covet 0x0000000100a720f4
11 Covet 0x0000000100a71f40
...
26 Covet 0x0000000100329600
27 libdyld.dylib 0x000000019b8ea8b8

… “Error in listen() function” …
“+[TJCacheProtocol cacheServer]
(TJCacheProtocol_meta *self, sel)”… Tapjoy
Cache ready” ….

__text: 000000010099E130 sub_10099E130 ; Data XREF: -[TJCDAsyncSocket acceptOnInterface:port:erro:]+B0 ↑0
…
__text: 000000010099E1F4 BL __bind
__text: 000000010099E1F8 CMN W0, #1
…
__text: 000000010099E220 ADRP X2, #cfstr_ErrorInListenF@Page; “Error in listen() function”
__text: 000000010099E224 ADD X2, X2, #cfstr_ErrorInListenF@PageOFF; “Error in listen() function”
…
__text: 000000010099E314 RET

Call Stack

Token Method

__text:00000001009F1FBC ; id __cdecl +[TJCacheProtocol cacheServer](TJCacheProtocol_meta *self, SEL)
__text:00000001009F1FC0 __TJCacheProtocol_cacheServer_ ; DATA XREF: __objc_const:0000000101566448 ↓ o
…
__text:00000001009F20F0 BL _objc_msgSend
__text:00000001009F20F4 MOV X24, X0
…
__text:00000001009F2118 ADRP X3, #cfstr_TapjoyCacheRea@PAGE ; "Tapjoy cache ready"
__text:00000001009F211C ADD X3, X3, #cfstr_TapjoyCacheRea@PAGEOFF ; "Tapjoy cache ready”
…
__text:00000001009F218C ; End of function +[TJCacheProtocol cacheServer]

Figure 8: Overview of call stack analysis of Covet Fashion app. The subfigures on the left show the call stack and the extracted token for
analyzing, the arrows indicate the returned address of a routine (right subfigure).

signatures for system network service APIs and third-party
libraries (see the red box of Figure 4).

5.1 Signatures of System APIs
System network service APIs and corresponding signatures
are built on the call stack information recorded by our “addon”
in our dynamic analysis phase. Specifically, we navigate the
call stack to locate the system APIs and build hybrid signa-
tures for the APIs.
Identifying system APIs. The challenge for identifying sys-
tem network services is that there is no clear documentation
that details the effects of API calls. For example, the API
registerListener: of class object GKLocalPlayer spawns a
port to provide the network service, but the official documen-
tation does not mention the network service behind the API.
Therefore, we identify the system network service APIs by
leveraging the call stack information of the dynamically ana-
lyzed apps. Specifically, we travel the pointer in the call stack
from top to bottom until we find the API the app code invoked.
As shown in the top-left box of Figure 8, we travel the call
stack from item 0 to 27, and stop traveling at item 1 as this
pointer points to app code. By checking the target API of
the app code invoked (top-right box of Figure 8), we get the
system API (i.e., _bind).
Building signatures for system APIs. The identified system
APIs, presented as signatures for network services, can be
used to determine whether the app is a potential network
service app. There are two strategies for representing these
APIs: (i) For network services provided by utilizing POSIX
and Core Foundation [25], the API (e.g., _bind in Table 3)
is directly called by app code. In this case, the code for invok-
ing APIs is directly assembled in the executable. By query-
ing for this code in metadata preserved in our database, we
know there is a network service in app or not. (ii) For the

Objective-C APIs provided by other system frameworks, de-
velopers have to pass a message to an object through message
dispatch interface (e.g., _objc_msgSend) to invoke the API.
In this circumstance, the first and the second arguments of
the message dispatch interface represent the instance of a
class (e.g., _OBJC_CLASS_$_GKLocalPlayer in Table 3) and
a method (e.g., registerListener: in Table 3), respectively.
This class and method combination designates the real API
being invoked. Hence, for the APIs of Objective-C, class ob-
ject name in “Symbol Table” and the method name in “String
Table” are used as signatures (see column 2 of Table 3).

5.2 Signatures of Third-Party Libraries
Developers often use off-the-shelf third-party libraries to
provide network services rather than building a server from
scratch [27, 54]. There are many third-party network ser-
vice libraries that reside on GITHUB or other repositories to
help developers perform quick network service integration
for their apps. For example, iOS app developers may opt for
CocoaHTTPServer [7] to provide web services. In order to fig-
ure out the real distributions of third-party libraries in iOS
apps and extend our findings of the vulnerable libraries to the
whole dataset, we firstly identify third-party network service
libraries and extract signatures for these libraries. Previous
work on Android third-party library identification [27, 76] is
based on structurally organized code, (e.g., package), which
does not scale well to iOS third-party library identification.
Because there is no structure information preserved in the
iOS executable, the developer’s code and the statically linked
third-party libraries are assembled into an executable binary
file with no clear boundary. To find third-party libraries of
iOS apps, the proposed class name cluster method [67] ex-
pends enormous effort in building every library. But among
these libraries, there are storage libraries for processing data,

Table 3: Signatures for system network service APIs and the network service distributions in iOS apps.

Library (a.k.a., Framework) Signatures Location China (480) United States (820) 1,300 apps 168,951 apps
libSystem _bind Symbol Table 353 (73.54%) 331 (40.37%) 684 (52.62%) 69,238 (40.98%)
libresolv _res_9_nquery Symbol Table 56 (11.67%) 1 (0%) 57 (4.38%) 1,481(0.88%)

CoreFoundation _CFSocketSetAddress Symbol Table 112 (23.33%) 57 (6.95%) 169 (13%) 11,965 (7.08%)

GameKit (1)
_OBJC_CLASS_$_GKLocalPlayer Symbol Table

0 (0%) 10 (1.22%) 10 (0.77%) 2,673 (1.58%)localPlayer String Table
registerListener: String Table

GameKit (2)
_OBJC_CLASS_$_GKMatchmaker Symbol Table

1 (0%) 12 (1.46%) 13 (1%) 5,580 (3.3%)sharedMatchmaker String Table
setInviteHandler: String Table

MultipeerConnectivity _OBJC_CLASS_$_MCSession Symbol Table 10 (2.08%) 3 (0.37%) 13 (1%) 604 (0.36%)

UI libraries for prettified views, etc. The third-party network
service library is a subset of the whole library repository.

To identify the third-party network service libraries, we
propose call stack similarity analysis, which is mainly used
for hunting similar bugs [39, 65], to identify these libraries.
Our call stack analysis is based on the runtime properties of a
program. After the third-party network service libraries are
identified, we use Information Gain [59] to select the most
prominent signatures for these libraries.
Identifying third-party libraries. The top-left box of Fig-
ure 8 shows that there are no rich information in the call
stack C. Consequently, we map the call stack to the executable
with the help of the ASLR value preserved in our dynamic
analysis phase. We collect the strings sii (e.g., “Error in listen()
function” in Figure 8) in each method (e.g., “sub_10099E130”
in Figure 8) that the pointers in the call stack point to in order
to build a token ti. All ti acquired are concatenated to generate
a longer token T (bottom-left box of Figure 8). Considering
that the app code the pointers point to is always a mixture
of developer’s code and third-party library’s code, so the to-
ken T collected is a mixture of ti from developer’s code and
third-party library’s code. For example, the pointers in the
call stack of the Covet Fashion app in Figure 8 point to
libraries Cocoa Async Socket (1, 2, 5), CocoaHTTPServer
(6, 9), Tapjoy (10, 11, 16, 17), and developer’s code (26) re-
spectively; the token ti in developer’s code (26) will affect
similarity analysis since developer’s code varies in different
apps. To reduce noise induced by developer’s code in similar-
ity analysis, we propose a weighted edit distance algorithm
to focus on the third-party library’s code.

Since the third-party library’s code is pointed by pointers at
the top of the call stack, the token ti related to the top of the call
stack is assigned a larger weight wi, and vice-versa. To factor
in the weight, we duplicate ti multiple times according to the
wi assigned to the token and then get a new longer token T 0.
After that, we measure the similarity ratio R of call stacks by
using different T 0. In practice, we adopt a Levenshtein edit
distance ratio [63] algorithm, that is

DistanceRatio(a,b) = 1� EditDistance(a,b)
|a|+ |b| (1)

where a and b denote two tokens T 0, respectively. The whole
process is described in Algorithm 1.

Algorithm 1 Weighted edit distance for identifying third-party network
service libraries
Input: Call stack: C1, C2; Token for call stack: T1, T2;
Output: Weighted edit distance of the two call stacks: R;
1: W Max(Len(C1), Len(C2))
2: T 01 GET_WEIGHTED_TOKEN(W,C1,T1)
3: T 02 GET_WEIGHTED_TOKEN(W,C2,T2)
4: R Levenshtein.ratio(T 01 ,T

0
2)

5: function GET_WEIGHTED_TOKEN(W,C,T)
6: for each i 2 [0,W �1] do
7: wi W � i
8: ti T [i]
9: t 0i Duplicate(ti,wi)

10: T 0 Concatenate(T 0, t 0i)
11: return T 0

The weighted edit distance can increase the edit distance
ratio R of the call stacks for the same third-party network
service library in different apps, but has slightly less influence
for different libraries (see Table 4). Empirically, we tune the
parameter and finally consider as a third-party network service
library if the ratio R� 0.6. Note that, the threshold is tuned
to optimize the library identification. The results obtained are
not overly-sensitive to the different thresholds chosen.

Building signatures for third-party libraries. In practice,
if the similarity of two stacks reaches the threshold, the code
pointed by the stack is considered as third-party libraries.
Then we inspect the corresponding apps and tag the identified
third-party network service libraries by searching GITHUB or
GOOGLE. The most straightforward way to find the in-app
network service is to identify the developer’s code that exactly
invokes the third-party network service API. However, this
approach could be very time-consuming to scale up because
it needs an extensive analysis of each app to build the API
invocation due to the Objective-C runtime property, message
dispatch [47, 67]. To address the challenge, we propose to
use the string sii relevant to the third-party library to generate
a signature instead.

By leveraging the TF/IDF algorithm in GENSIM [71], we
evaluate each sii (bottom-left box of Figure 8) and obtain the
prominent sii, which is used for identifying third-party net-
work service libraries. Finally, we obtain a < signature, tag >
tuple for each library. For example, the GCDWebServer library
is presented as <“%@ started on port %i and reachable at
%@”, “GCDWebServer”>.

Table 4: Edit distance/weighted edit distance ratio R of call stack for third-party network service libraries.

Edit distance/
Weighted edit distance

QQBrowser
(CocoaHTTPServer)

Taobao4iPhone
(wangxin.taobao)

Libby
(GCDWebServer)

QQSports
(TencentVideoHttpProxy)

bbtime (CocoaHTTPServer) 0.74/0.82 0.16/0.18 0.36/0.37 0.28/0.28
Tmall4iPhone (wangxin.taobao) 0.16/0.18 1.00/1.00 0.19/0.22 0.12/0.18

NOW (GCDWebServer) 0.37/0.37 0.17/0.19 0.89/0.91 0.30/0.29
KuaiBao (TencentVideoHttpProxy) 0.31/0.31 0.15/0.20 0.30/0.30 0.54/0.66

By using signatures of third-party network service libraries,
we can execute a large-scale analysis of iOS apps and push
forward the analysis boundary from the system APIs to third-
party network service libraries (e.g., Section 7.2). Further-
more, the extracted signatures enable us to apply association
analysis to figure out the relation between these third-party
network service libraries.

In summary, the proposed library identification approach
is specifically designed for a call trace which reaches the
_bind API. The third-party library to which the call stack
points is a network service library. This approach outperforms
the cluster-based method [67] by utilizing lower complexity
(unnecessary to build the third-party library corpus before
extracting network service libraries) and high precise (e.g.,
identifies the library Unreal Engine 4 which provides the
network service but is commonly known as a game library)
analysis.

5.3 Results of Building Network Service Sig-
natures

Using the proposed methodology, we identify six system APIs
and 34 third-party libraries by analyzing the call stacks of seed
apps. System network service APIs are collected by traveling
the call stack. The results are shown in the first two columns
of Table 3. Third-party network service libraries are collected
by analyzing the similarity of the call stack. The results are
shown in x-axis of Figure 10 and Table 7 in the Appendix.

Given that there is no ground truth for the identification of
network services, each app must be inspected to confirm the
existence of network service usage. Unfortunately, inspecting
more than one thousand apps is tedious and time consuming,
so we instead chose to randomly sample 130 apps (10%) from
the seed dataset. Each of the six expert researchers separately
inspected each app and identified the use of system APIs
and third-party libraries. Our analysis of the randomly sam-
pled dataset suggests 100% accuracy, with 0% disagreement
among the expert researchers, showing the effectiveness of
our proposed system. Although the perfect accuracy would
probably not be supported through verification of every app
that we collected, with more time and effort, manual verifica-
tion of a sample size greater than 400 apps (> 30%) would
give a more pronounced success rate. Furthermore, experi-
mental results show that among the 1,300 apps, none of the
apps is obfuscated, suggesting that obfuscation is not wildly

applied to iOS apps to affect the analysis result (the detail is
available on our website). We highlight that currently there
is no benchmark dataset publicly available for any accuracy
comparison of other iOS library identification approaches.

6 Large-Scale Analysis of Network Services

We begin by analyzing the prevalence of the network service
use in iOS apps. By taking signatures of APIs and libraries,
we query the metadata of the collected apps stored in our
database to find the percentage of apps that may use net-
work services. We further analyze the association or inter-
dependencies among these third-party network service li-
braries, in assistance with the extraction of apps for subse-
quent analysis. We highlight our main results in the remarks.
(i) System network service APIs. To reveal the portion of
iOS apps that make use of network services, we use the API
signatures collected from the seed apps to query our database
(see query result breakdowns in Table 6 in the Appendix).
Apps assembling these APIs are potentially ready to start net-
work services. As shown in Table 3 (columns 4 and 5), most
of the apps follow the guidance of [25]; specifically, using the
API _CFSocketSetAddress of Core Foundation socket
and the API _bind of BSD sockets can compose a network
service. _res_9_nquery is an undocumented API used by
iOS apps. Although Apple has documented the remaining
three APIs, it does not clarify whether these APIs provide the
network services.

Compared to the dynamic analysis results shown in Table 2,
our query found several-fold more apps capable of invoking
system APIs for network services. We believe the reasons
for the discrepancy are as follows: (i) The code snippet for
invoking a system API for network services may be dead
(i.e., unused or dummy) code; (ii) UI interaction may hinder
execution of the code snippet that invokes these APIs, so
dynamic analysis fails to pick it up.

The percentage of apps using network services decreases
from 52.62% when querying the 1,300 seed apps to 40.98%
when querying the 168,951 iOS apps (see the last two columns
of Table 3), since general apps are not as fully-featured as
many of the top rate apps. Results grouped by category reveal
that different categories of apps exhibit markedly different
trends in their use of network services. Most iOS apps in the
“Game” category are inclined to provide network services for
multi-peer connection. These apps account for over 60% of

Figure 9: Network services across app categories.

Figure 10: Third-party network service libraries detected in the seed
apps.

the designated categories. The categories “Reference” and
“Photo & Video” are comparably less likely to provide net-
work services. Other libraries are distributed uniformly in
different categories. The query results are depicted in Fig-
ure 9.
Remark 1. Network services are prevalent in iOS apps.
40.98% apps potentially invoke system APIs to provide net-
work services. The results show that almost every top popular
app in China (73.54%) contains code to start a network ser-
vice. Queries further reveal that China apps are almost twice
as likely to invoke network service APIs than their US coun-
terparts (over 73.54% vs. over 40.37%).
(ii) Third-party network service libraries. iOS apps com-
monly integrate third-party libraries to provide their network
services. In order to characterize the distribution of third-party
network service libraries in iOS apps, we query the third-party
libraries in top popular apps by using the collected signatures.
As shown in Figure 10, we note that (i) as a basic support for
establishing network services, CocoaAsyncSocket is a preva-
lent used third-party library in both the United States and
China. (ii) Apps from the United States are more willing to in-
tegrate the GCDWebServer, Google Cast, and UnityEngine.iOS
third-party libraries. (iii) Due to poor accessibility of network
resources in China, the Google Cast library is rarely used in
apps from China. Libraries in China are largely more scattered
in all categories than those in the United States. We further

Figure 11: Third-party network service libraries across app cat-
egories. The color encodes the logarithm of the number of apps
(log2(# apps)) using third-party libraries.

extend our analysis to the 168,951 iOS apps, and the results
are grouped by the category of iOS apps (see breakdowns
in Table 7 in the Appendix). As shown in the corresponding
heatmap of Figure 11, we have the following observation.

Remark 2. Apps in the “Game” category are most
likely to use third-party libraries. Besides the li-
braries of CocoaAsyncSocket and UnityEngine.iOS, the
“Game” category mainly uses CocoaHTTPServer and
Tapjoy-CocoaHTTPServer-Extension libraries. Among the
top five used network service libraries, there are third-party
libraries CocoaHTTPServer and GCDWebServer, providing
various interfaces for developers to customize (e.g., designate
the access interface, specify resources/functionalities) the
network services. This may potentially lead to the library
misuse.

(iii) The dependency relationship of network service li-
braries. The error-prone use of third-party libraries (e.g.,
GCDWebServer, CocoaHTTPServer) are widely used in iOS apps.
It is likely that these third-party network service libraries
are supporting infrastructure for other libraries. We use the
FP-GROWTH algorithm [52] to mine the association of third-
party libraries. The rules discovered by FP-GROWTH is listed
in Table 5. From Table 5, we find dependencies between
different third-party network service libraries. For exam-
ple, the dependency of Tapjoy-CocoaHTTPServer-Extension
can be depicted as Tapjoy-CocoaHTTPServer-Extension �!
CocoaHTTPServer �! CocoaAsynSocket �! _bind (lines 1,
5, and 11 in Table 5). This is verified by checking source
code of this library. Even for closed source libraries, we
know the dependency of the libraries from the table. For
example, analysis result reveals that the closed source library
TencentVideoHttpProxy is built on top of the open source
CocoaAsyncSocket library (line 14). In the real world, the rela-
tions of third-party network service libraries are shown in the
blue box of Figure 3. We also find the prevalent usage of Happy

Table 5: Association of third-party network service libraries and
system network service APIs.

Library/API Library/API
1 Tapjoy-CocoaHTTPServer-Extension CocoaHTTPServer
2 Tapjoy-CocoaHTTPServer-Extension CocoaAsyncSocket
3 PDRCoreHttpDaemon _CFSocketSetAddress
4 Ionics_Webview GCDWebServer
5 CocoaHTTPServer CocoaAsyncSocket
6 Happy_DNS _res_9_nquery
7 MAASDK CocoaAsyncSocket
8 Ionics_Webview _bind
9 wangxin.taobao _CFSocketSetAddress
10 MongooseDaemon _bind
11 CocoaAsyncSocket _bind
12 Tapjoy-CocoaHTTPServer-Extension _bind
13 CocoaHTTPServer _bind
14 TencentVideoHttpProxy CocoaAsyncSocket
15 Platinum_UPnP _bind
16 GCDWebServer _bind
17 upnpx _bind
18 DIAL_UPnP _bind
19 WebRTC _bind
20 SmartDeviceLink _bind
21 Connect_SDK_Core_(iOS) DIAL
22 FunTV CocoaAsyncSocket
23 Unreal_Engine_4 Game_Kit_(2)
24 TencentVideoHttpProxy CocoaHTTPServer
25 wangxin.taobao _bind
26 UnityEngine.iOS _bind

DNS library (demonstrated in Figure 10) in China leads to the
prevalent usage of undocumented API usage _res_9_nquery
in iOS apps (line 6). Based on the relation of network ser-
vice libraries, we find that the widely used Ionic’s Webview
is built on top of the GCDWebServer. As the most recent ver-
sion of Ionic’s Webview has been adjusted to use loopback
interface when integrating GCDWebServer, we can skip check-
ing the apps using both GCDWebServer and Ionic’s Webview
libraries.

7 Determining iOS App Vulnerabilities

In this section, we first closely examine the network service
vulnerabilities discovered after vetting the 1,300 seed apps.
We summarize four categories of vulnerabilities, and explain
the details of two real-world vulnerable apps acknowledged
by vendors, which are Waze, Now, and QQBrowser. Note that
the acknowledgment of some vulnerabilities is pending. We
finally scrutinize the vulnerabilities of 3 typical network ser-
vice libraries in 168,951 iOS apps and discuss the underlying
reason.

7.1 Vulnerabilities in Seed Apps
Previous 11 vulnerabilities identified among the 1,300 seed
apps fall into four categories: (i) Connected with an IoT device
with no/weak access control (Waze and SCOUT GPS LINK).

(ii) Served as a command server to execute command per the
client’s request (QQBrowser, Taobao4iPhone, and Youku).
(iii) Served as a file server to share files between a desk-
top computer and an iOS device (Now). (iv) Served as a con-
tent distribution networks (CDN) node to share videos with
other peer devices. We regard these vulnerable apps (Amazon
Prime Video, QQSports, etc.) of this category as low risks
since the video clips shared are usually non-private.
(i) Remote Command Execution and Denial-of-Service:
A case of an iOS app connected with an IoT device with
no/weak access control. To connect with an IoT device, vul-
nerable apps always turn the iOS device to be a server. Two
vulnerable apps, Waze and SCOUT GPS LINK, provide net-
work services in the LAN interface for the IVI system, but
these apps provide little to no access control. For example,
Waze is a popular community-based traffic and navigation
app in the United States. Dynamic analysis reveals that the
app starts network service on port 12345 through the LAN
interface. We also find that the network service on port 12345
accepts any connection attempts, and processes remote com-
mand messages in which a valid command message starts
with “WL”. The potential threats with the Waze network ser-
vice are as follows. (i) For any incoming message (see M4
listed in Figure 2) starting with “WL”, Waze will cache the
message until the memory resource is exhausted (see M3
listed in Figure 2). Attackers can then drain the network traf-
fic to crash the app remotely (A3). (ii) A message with format
“WL|msgID|msgSize|msg” can be accepted by Waze and a
malformed overlong message will lead to remote memory
corruption, including OOB (out-of-boundary) access or UAF
(use-after-free) (A3). (iii) The message “msgID” set to 48 can
be used to send touch events to manipulate the app. The mes-
sage can further reset the destination to maliciously navigate
an end-user to alternative places (A1). The network service is
pervasive, such that an attacker can even probe and attack iOS
device with Waze running in cellular networks (A4). We have
to mention that this vulnerability only exists in the iOS ver-
sion of Waze since the Android version does not provide these
network services. We reported the vulnerability to Waze com-
pany acquired by Google, Waze fixed this security issue three
days after we reported, and Google finally acknowledged the
vulnerability.
(ii) Data Leakage: A case of sharing files between a desk-
top computer and an iOS device. The current inconvenient
file sharing of the iTunes client provides a chance for de-
velopers to ease the sharing process for users. Some apps
turn an iOS device to be a web server for file sharing. The
privacy-preserving sharing should be considered for access
control but Now breaks the rule for file sharing. Now is a live
broadcast and a popular social networking app in China. Dy-
namic analysis discovers that the app provides the network
service on port 8080. Static analysis later reveals that the app
sets the root folder of the network service to data container
directory when using the third-party library GCDWebServer

(a) Now app exposes content in
its data container

(b) Libby app starts a web server
on the loopback interface

Figure 12: Safari web-browser used to access the network service
in the same host and Wi-Fi network.

(see Figure 7). With this service, the app allows an unau-
thorized attacker (M2) to access the credentials within the
data container directory of the app (M1). Data exposed by
the app is depicted in Figure 12(a). By downloading creden-
tials from the victim and uploading the acquired credentials
to the attacker’s device, the attacker can sign in the app us-
ing the victim’s identity to perform in-app purchases with
the pre-deposit money (A1). Similar to the Waze vulnerabil-
ity, the attacker can scan the cellular network to identify the
victims (A4). The vendor of this app, “Tencent Technology
(Shenzhen) Company Limited,” ranked this security issue as
a high risk. This vulnerability was patched by switching off
the relevant functionality remotely after we reported.
(iii) Remote Command Execution: A case of an iOS app
executing command per the client’s request. iOS apps may
provide network services for end-users to manage the apps.
However, the weak authorization may expose the services
to any host in the same network with the victim. For exam-
ple, an attacker can remotely compromise an iOS device by
exploiting the flaw, e.g., the “exit” command disables the net-
work service in Youku or “set” command controls UDID of
Taobao4iPhone. Besides these two apps, a high risk vulner-
ability is discovered in the QQBrowser app. QQBrowser is
a popular app, especially in China. Previous work showed
the QQBrowser network service vulnerability in the Android
app [32]. By exploiting the vulnerability discovered in the
Android app, an attacker can remotely perform unauthorized
sensitive data access (e.g., obtain the app list or app setup) on
the Android device. However, the same vulnerability has not
been patched for the iOS counterpart. The port 8786 is used
for connecting for Android, whereas the port 13145 is for iOS.
Android implements the network service on NanoHTTPD library,
whereas the iOS network service is established through an
open source repository CocoaHTTPServer.

On top of the HTTP server, the iOS app provides the net-
work service for two commands (i.e., “url” and “installurl”).
Apart from the “installurl” command that drives the app to
navigate to the items in iTunes, there are 9 additional sub
commands behind “url” that provide more functionality, such
as “tel” for dialing a specific number and “sms” for sending
sms message (M1). These sub commands are enclosed in the
body of a post request. In order to ensure the validity of each
post request for the network service, the app enforces a Triple
DES encryption to each post request and body data. However,
the key (kM7hYp8lE69UjidhlPbD98Pm) for decryption is hard-
coded in the app code (M2). This weak authorization can be
bypassed by building a valid request for an attacker (A2). We
demonstrate an example that the valid request would trigger
the app to dial “10086”: requests.post(http://+ip+:13145/
+encrypt_3des(data=send?uuid=a8f349666b833151a861e8beb6

11f21a&type=url, key = key), data = encrypt_3des(data
=‘tel:10086’, key = key), headers=headers). We have
reported this vulnerability to “Tencent Security Response
Center,” which has ranked this security issue as a high risk.
This vulnerability has already been patched in the most recent
version.

7.2 Extensible Vulnerabilities of Affected Net-
work Service Libraries

Through the lightweight large-scale analysis, we identify apps
that use system APIs or integrate third-party libraries for net-
work services. To have a better understanding of the network
service vulnerabilities in the wild, we carry out static anal-
ysis of 2,116 apps, filtered out from the whole dataset, by
using only the signatures of WebLink (3 apps), libupnp (16
apps), and GCDWebServer (2,097 apps). In the C library (e.g.,
WebLink and libupnp) vetting process, we manually verify
the vulnerability; for Objective-C library, GCDWebServer for
instance, we perform static analysis by using our static anal-
ysis tool. Dynamic analysis acts as an auxiliary for manual
confirmation. We further identify an additional 92 vulnera-
bilities, and summarize them into three categories: (i) using
vulnerable libraries, (ii) the abuse out-of-date vulnerable li-
braries, and (iii) the misuse of libraries.
(i) Using the vulnerable WebLink library. WebLink li-
brary, which renders the Waze app vulnerable, is used by
another 3 apps: WebLink for KENWOOD, WebLink for JVC,
and WebLink Host. In order to project a smart phone’s screen
to in-vehicle infotainment (IVI) systems, the WebLink library
creates a virtual app screen on the IVI systems. To receive
the commands from the virtual screen, it turns the iOS device
into a server. By using this library, the app can capture user
interactions on IVI systems. After studying this service, we
find developers of the WebLink library make two mistakes
in the design of the library. (i) Vendors mistakenly take the
virtual screen and the smartphone as two logically separate
devices as they use the LAN interface for connection (M4).

In fact, the virtual screen is a projector of the smartphone. (ii)
There is no authorization required for executing the restricted
functionality (M2), such that adversaries can remotely con-
nect the smartphone via these apps and send touch events to
manipulate (A1) or crash the app (A3).
(ii) Abusing the out-of-date vulnerable portable UPnP li-
brary. UPnP is a protocol that enables discovery, event noti-
fication, and control of devices over a network, independent
of the operating system, programming language, or physi-
cal network connection. Portable UPnP SDK as known as
libupnp [1] implements UPnP. Many projects, such as HD
Network DVD Media Player, aMule CVS tarballs, are
built on top of libupnp, which sets up a UDP network service
on port 1900. Per CVE [3], several exploitable vulnerabilities
exist in libupnp’s old versions. These vulnerabilities would
affect routers, media servers, etc. [64]. To patch these vulner-
abilities, Google requires that the apps submitted to Google
Play Store should adopt a new version (higher than version
1.6.18) of libupnp [4]; however, there is no warning for iOS
apps. To quantify the impact of the Portable UPnP library vul-
nerability (i.e., # apps affected), we search this library among
our collected dataset by using a signature. The result shows
that 16 apps integrate the libupnp library, among 13 apps
using out-of-date libupnp, 6 apps are seriously impacted by
this library, these vulnerable apps have been installed millions
of times. Interestingly, we find that the vendor “Flipps Media
Inc.” has upgraded the library in the product iMediaShare,
whereas other products, Flipps TV (version 6.3.8) and FITE
TV (version 2.1), are still using the vulnerable version of the
library (e.g., “1.6.13.”). The impacted apps are verified vul-
nerable by using module “multi/upnp/libupnp_ssdp_overflow”
of Metasploit [58], which can crash the app remotely (A3) .
(iii) Misuse of the GCDWebServer library. The misuse of
the GCDWebServer library exposes privacy or functionality to
adversaries. To locate the misuse of this library, we look into
the interface of the library and analyze how apps use this
library.2 We highlight that multiple factors lead to the mis-
use of this library. In the case of a vulnerable “file listing
service” when using this library, the following three factors
constitute a rule for locating the misuse issue. (i) Arguments
are passed to the library, indicating the use of the LAN inter-
face. (ii) The root folder is set to the data container direc-
tory. (iii) The built-in file listing functionality is used by this
app. The query result reveals that 2,097 apps integrate the
GCDWebServer library. By using the association rule shown
in Table 5, the app integrating GCDWebServer which is a sup-
port for other libraries, is excluded. Finally, 517 apps are
screened out, meaning they use this library exclusively. After
checking these 517 apps using both static data-flow analy-
sis, dynamic analysis and manual confirmation, 83 apps that
misuse the GCDWebServer library are verified vulnerable. Note

2The automated static analysis process and results are available at https:
//sites.google.com/site/iosappnss/home.

that, static analysis helps us to find more vulnerabilities be-
hind user interaction. For instance, with the vulnerability in
GCDWebServer library (CVE-2019-14924 [11]), the vulnera-
bility in the JDRead app arises when a user is turning on the
file sharing functionality of the app, and the QQMail exposes
attachment to the adversary in the same Wi-Fi network when
a user is reviewing the attachment in an email.

8 Related Work

Vetting the security of network services. There has been
a plethora of work dedicated to vetting the security of net-
work services [22, 32, 55, 80] as well as hunting security
bugs [35, 38] and malicious behaviors [34, 36, 37] of An-
droid apps. However, the analyzer for Android apps cannot
be squarely applied to iOS due to the different programming
language (e.g., Java and Objective-C). In addition, much work
focuses on other security aspects of iOS apps, such as the se-
cure usage of TLS/SSL certificates of iOS apps [67] and the
cryptographic misuse of iOS apps [49]. Kobold [44] exam-
ines access control flaws on iOS. However, security vetting
for network services of iOS apps has not been extensively
explored.
Third-party library identification. The current third-party
library identification methodology falls into four categories:
text-based [29], token-based [57], tree-based [30], as well as
semantics-based [60]. Android researchers have contributed
widely to the third-party library identification [27, 48, 76].
CRiOS [67] is the only work focusing on third-party library
identification in iOS. They clustered and studied the depen-
dencies of classes in iOS apps in order to identify third-party
libraries. CRiOS requires building all the third-party library
repositories, whereas ours only builds a small portion of third-
party network service libraries.
Software testing techniques on iOS. (i) Dynamic analysis
of iOS apps. Szydlowski et al. [75] proposed an approach to
tracking sensitive API calls by using debugger breakpoints
and tried to automate the process by simulating the interaction
with the identified UI views. ICRAWLER [56] explored the UI
states of iOS apps by hooking techniques to inspect the UI
elements. DIOS [61] utilized UI automation to retrieve the UI
hierarchy and interact with UI elements to cover more code
paths of iOS apps. IRIS [41] transported the instrumentation
framework, termed VALGRIND [66], to iOS to vet private
API abuse. (ii) Static analysis of iOS apps. PIOS [47] per-
formed data-flow analysis to build the CFG and static taint
analysis on top of the IDA [53] to track the privacy trans-
ferred. MoCFI [40] extracted the CFG of an app on top of the
PiOS [47] and checked whether the instructions that change
an execution flow are valid at runtime. Chen et al. [33] studied
libraries in iOS and Android apps by considering invariant
features between the two. We cross check the vulnerabili-
ties identified and find none of these vulnerabilities exist in
Android apps. Feichtner et al. [49] proposed static analysis

by using LLVM IR for iOS apps; however, the methodology
needs to be adopted at scale.

To the best of our knowledge, this is the first paper to sys-
tematically examine the security of iOS apps’ network ser-
vices on a large scale. We believe the vetting methodology
and the results in this paper can inform security researchers
as they closely inspect the iOS security in the future, and
in particular, inform app developers and network operators
on whether the policy of using the LAN network should be
rectified.

9 Concluding Remarks

Thanks to its open source framework, much work has already
tested the security of Android apps. Unfortunately, Apple’s
closed ecosystem makes vetting iOS systems much more diffi-
cult. This paper proposes the first methodology for conducting
a large-scale security analysis of iOS apps’ network services.
When applied to the top 1,300 iOS apps, our proposed ap-
proach found 11 apps with vulnerabilities, three of which
were acknowledged by their vendors. Extending our analysis
to 168,951 apps found an additional 92 vulnerabilities and
showed that the most popular provenance for an iOS device
remote attack involves turning the device into a server.

With hindsight that the inconsistent functionalities between
Apple and Google will potentially trigger vulnerabilities,3 for
mitigation, we therefore recommend app developers to use
the loopback interface as much as possible to avoid unneces-
sary use of the LAN interface, and to enforce the deliberately
designed access control when using the LAN interface. Fur-
thermore, to mitigate the attack via public Wi-Fi or cellular
networks, we recommend network operators to implement
stricter firewall strategies and block unknown connection at-
tempts originating from the same LAN network. System ven-
dors such as Apple should also apply a host-based firewall,
such as the one adopted by the OS X system, to the iOS sys-
tem. We hope that our findings can motivate iOS app devel-
opers to focus more on the security of their network services
and that our methodology for determining faulty libraries can
be used by stakeholders to vet the apps they choose to use or
make.

Acknowledgments

We thank William Enck and the anonymous reviewers for their
valuable feedback. We thank Cameron Ballard and Benjamin
Zhao for proofreading the early version of this paper. We
thank Xiaobo Chen, Tao Huang, and Jian Zhang, affiliated to
PWNZEN InfoTech Co., LTD, for their valuable assistance
of our manual analysis. This work was supported, in part,

3One example is that Android provides cast functionality to project smart-
phone’s screens to third-party screens while iOS developers must adopt an
error-prone TCP-relay to implement such functionality.

by the National Key Research and Development Program of
China (2018YFE0126000, 2017YFB0802901) as well as the
National Science Foundation of China (61972453, 61672350).
Haojin Zhu (zhu-hj@cs.sjtu.edu.cn) is the corresponding
author of this paper.

References
[1] Linux, sdk. for UPnP Devices (libupnp).
[2] Wormhole. http://xlab.baidu.com/wp-content/uploads/2016

/01/wormhole_external_final.pdf.
[3] libupnp vulnerability. https://cve.mitre.org/cgi-bin/cvekey

.cgi?keyword=libupnp.
[4] How to fix apps with the portable SDK for UPnP library vulnerabilities.

https://support.google.com/faqs/answer/6346109?hl=en-G
B.

[5] CVE-2018-6344. https://cve.mitre.org/cgi-bin/cvename.cg
i?name=CVE-2018-6344.

[6] Clutch. https://github.com/KJCracks/Clutch.
[7] Cocoahttpserver. https://github.com/robbiehanson/CocoaHTT

PServer.
[8] Frida. https://www.frida.re/.
[9] Dagger. http://dagger.repzret.org/.

[10] dumpdecrypted. https://github.com/stefanesser/dumpdecry
pted.

[11] CVE-2019-14924. https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2019-14924.

[12] libimobiledevice. https://github.com/libimobiledevice/idev
iceinstaller.

[13] iTunes search API. https://affiliate.itunes.apple.com/res
ources/documentation/itunes-store-web-service-search
-api/.

[14] jtool. http://www.newosxbook.com/tools/jtool.html.
[15] Waze. https://www.waze.com/.
[16] Weblink. https://www.abaltatech.com/press/weblink-from-

abalta-technologies-brings-popular-waze-smartphone-a
pp-into-the-connected-car.

[17] CVE-2019-3568. https://cve.mitre.org/cgi-bin/cvename.cg
i?name=CVE-2019-3568.

[18] Dancing line. https://apps.apple.com/us/app/dancing-line
-music-game/id1177953618.

[19] Rules of survival. https://apps.apple.com/us/app/rules-of-s
urvival/id130796175.

[20] frida-ios-dump. https://github.com/AloneMonkey/frida-ios
-dump.

[21] L. O. Andersen. Program analysis and specialization for the C pro-
gramming language. PhD thesis, University of Cophenhagen, 1994.

[22] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen. Nearby threats:
Reversing, analyzing, and attacking Google’s’ ‘nearby connections’ on
Android. In NDSS, 2019.

[23] Make and receive calls on your Mac, iPad, or iPod touch. https:
//support.apple.com/en-hk/HT209456.

[24] Objective-c runtime. https://developer.apple.com/documentat
ion/objectivec/objective-c_runtime?language=objc.

[25] Writing a TCP-based server. https://developer.apple.com/libr
ary/archive/documentation/NetworkingInternet/Conceptua
l/NetworkingTopics/Articles/UsingSocketsandSocketStrea
ms.html#//apple_ref/doc/uid/CH73-SW8.

[26] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps. In ACM Sigplan Notices, 2014.

[27] M. Backes, S. Bugiel, and E. Derr. Reliable third-party library detection
in android and its security applications. In ACM CCS, 2016.

[28] X. Bai, L. Xing, N. Zhang, X. Wang, X. Liao, T. Li, and S.-M. Hu.
Discovering and exploiting novel security vulnerabilities in Apple
zeroconf. In Black Hat USA, 2016.

[29] B. S. Baker. On finding duplication and near-duplication in large soft-
ware systems. In IEEE Working Conference on Reverse Engineering,
1995.

[30] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone
detection using abstract syntax trees. In IEEE ICSM, 1998.

[31] R. Bonett, K. Kafle, K. Moran, A. Nadkarni, and D. Poshyvanyk. Dis-
covering flaws in security-focused static analysis tools for Android
using systematic mutation. In USENIX Security Symposium, 2018.

[32] W. Bu, M. Xue, L. Xu, Y. Zhou, Z. Tang, and T. Xie. When program
analysis meets mobile security: An industrial study of misusing An-
droid Internet sockets. In ACM FSE, 2017.

[33] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma, A. Wang,
Y. Zhang, and W. Zou. Following devil’s footprints: Cross-platform
analysis of potentially harmful libraries on Android and iOS. In IEEE
S&P, 2016.

[34] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu. Stormdroid: A streamin-
glized machine learning-based system for detecting Android malware.
In ACM ASIACCS, 2016.

[35] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu. Are mobile
banking apps secure? What can be improved? In ACM ESEC/FSE,
2018.

[36] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li. Automated
poisoning attacks and defenses in malware detection systems: An
adversarial machine learning approach. In Elsevier Computers &
Security, 2018.

[37] S. Chen, L. Fan, C. Chen, M. Xue, Y. Liu, and L. Xu. GUI-Squatting
Attack: Automated generation of Android phishing apps. In IEEE
TDSC, 2019.

[38] S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu, and L. Xu.
An empirical assessment of security risks of global Android banking
apps. In ACM/IEEE ICSE, 2020.

[39] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel. ReBucket: A
method for clustering duplicate crash reports based on call stack simi-
larity. In IEEE ICSE, 2012.

[40] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund, S. Nürn-
berger, and A.-R. Sadeghi. MoCFI: A framework to mitigate control-
flow attacks on smartphones. In NDSS, 2012.

[41] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu. iris: Vetting private
API abuse in iOS applications. In ACM CCS, 2015.

[42] L. Deshotels, R. Deaconescu, M. Chiroiu, L. Davi, W. Enck, and A.-R.
Sadeghi. SandScout: Automatic detection of flaws in iOS sandbox
profiles. In ACM CCS, 2016.

[43] L. Deshotels, R. Deaconescu, C. Carabas, I. Manda, W. Enck, M. Chi-
roiu, N. Li, and A.-R. Sadeghi. iOracle: Automated evaluation of access
control policies in iOS. In ACM AsiaCCS, 2018.

[44] L. Deshotels, C. Carabas, , J. Beichler, R. Deaconescu, and W. Enck.
Kobold: Evaluating decentralized access control for remote NSXPC
methods on iOS. In IEEE S&P, 2020.

[45] Androguard. code.google.com/p/androguard.
[46] Y. Duan, M. Zhang, A. V. Bhaskar, H. Yin, X. Pan, T. Li, X. Wang, and

X. Wang. Things you may not know about Android (un) packers: A
systematic study based on whole-system emulation. In NDSS, 2018.

[47] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: Detecting privacy
leaks in iOS applications. In NDSS, 2011.

[48] J. Feichtner and C. Rabensteiner. Obfuscation-resilient code recogni-
tion in Android apps. In IEEE ARES, 2019.

[49] J. Feichtner, D. Missmann, and R. Spreitzer. Automated binary analysis
on iOS-a case study on cryptographic misuse in iOS applications. In
ACM Conference on Security and Privacy in Wireless and Mobile
Networks, 2018.

[50] C. Gormley and Z. Tong. Elasticsearch: The Definitive Guide: A
Distributed Real-Time Search and Analytics Engine. " O’Reilly Media,
Inc.", 2015.

[51] B. Guangdong and Q. Zhang. 3G/4G Intranet scanning and its applica-
tion on the wormhole vulnerability. 2017.

[52] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In ACM Sigmod, 2000.

[53] IDA Pro Disassembler and Debugger.
[54] M. Ikram and M. A. Kaafar. A first look at mobile ad-blocking apps.

In IEEE International Symposium on Network Computing and Applica-
tions, 2017.

[55] Y. J. Jia, Q. A. Chen, Y. Lin, C. Kong, and Z. M. Mao. Open doors
for Bob and Mallory: Open port usage in Android apps and security

implications. In IEEE EuroS&P, 2017.
[56] M. E. Joorabchi and A. Mesbah. Reverse engineering iOS mobile

applications. In IEEE Working Conference on Reverse Engineering,
2012.

[57] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic
token-based code clone detection system for large scale source code.
2002.

[58] D. Kennedy, J. O’gorman, D. Kearns, and M. Aharoni. Metasploit: The
penetration tester’s guide. No Starch Press, 2011.

[59] J. T. Kent. Information gain and a general measure of correlation. 1983.
[60] R. Komondoor and S. Horwitz. Using slicing to identify duplication

in source code. In International Static Analysis Symposium. Springer,
2001.

[61] A. Kurtz, A. Weinlein, C. Settgast, and F. Freiling. Dios: Dynamic
privacy analysis of iOS applications. 2014.

[62] Y. Lee, X. Wang, K. Lee, X. Liao, X. Wang, T. Li, and X. Mi. Un-
derstanding iOS-based crowdturfing through hidden UI analysis. In
USENIX Security Symposium, 2019.

[63] V. I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions, and reversals. In Soviet Physics Doklady, 1966.

[64] H. Moore. Security flaws in universal plug and play: Unplug. don’t
play. 2013.

[65] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and
D. Poshyvanyk. Automatically discovering, reporting and reproducing
Android application crashes. In IEEE ICST, 2016.

[66] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In ACM Sigplan Notices, 2007.

[67] D. Orikogbo, M. Büchler, and M. Egele. CRiOS: Toward large-scale
iOS application analysis. In ACM SPSM, 2016.

[68] X. OS. Mach-O file format reference. 2009.
[69] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna. Ex-

ecute this! Analyzing unsafe and malicious dynamic code loading in
Android applications. In NDSS, 2014.

[70] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz,
M. Kantarcioglu, and D. D. Yao. Cryptoguard: High precision de-
tection of cryptographic vulnerabilities in massive-sized Java projects.
In ACM CCS, 2019.

[71] R. Rehurek and P. Sojka. Gensim–Python framework for vector space
modelling. 2011.

[72] L. SaurikIT. Cydia substrate, the powerful code modification platform
behind Cydia. 2016.

[73] D. H. Steinberg and S. Cheshire. Zero Configuration Networking: The
Definitive Guide. " O’Reilly Media, Inc.", 2005.

[74] M. Stute, S. Narain, A. Mariotto, A. Heinrich, D. Kreitschmann,
G. Noubir, and M. Hollick. A billion open interfaces for Eve and
Mallory: MitM, DoS, and tracking attacks on iOS and macOS through
Apple wireless direct link. In USENIX Security Symposium, 2019.

[75] M. Szydlowski, M. Egele, C. Kruegel, and G. Vigna. Challenges for
dynamic analysis of iOS applications. In Open Problems in Network
Security. Springer, 2012.

[76] Z. Tang, M. Xue, G. Meng, C. Ying, Y. Liu, J. He, H. Zhu, and Y. Liu.
Securing Android applications via edge assistant third-party library
detection. 2018.

[77] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.
Soot: A Java bytecode optimization framework. In CASCON First
Decade High Impact Papers. IBM Corp., 2010.

[78] T. Wang, Y. Jang, Y. Chen, S. P. Chung, B. Lau, and W. Lee. On the
feasibility of large-scale infections of iOS devices. In USENIX Security
Symposium, 2014.

[79] M. Y. Wong and D. Lie. Tackling runtime-based obfuscation in Android
with TIRO. In USENIX Security Symposium, 2018.

[80] D. Wu, D. Gao, R. K. Chang, E. He, E. K. Cheng, and R. H. Deng. Un-
derstanding open ports in Android applications: Discovery, diagnosis,
and security assessment. In NDSS, 2019.

Appendix

Table 6: Official network service APIs across app categories (see Section 6).

Categories _bind Game Kit (2) Game Kit (1) _CFSocketSetAddress _res_9_nquery Multipeer Connectivity

Business 1425 4 0 671 56 11
Education 1659 13 23 256 56 7
Entainment 1525 23 21 498 40 23
Finance 1311 0 0 652 39 9
Food & Drink 2022 2 2 781 171 11
Games 40375 5349 3017 2166 60 279
Health & Fitness 909 2 5 342 65 11
Kids 2811 140 112 41 0 17
Lifestyle 1415 5 5 608 126 23
Magazines & Newspapers 1081 1 2 322 23 6
Medical 1329 5 9 409 84 6
Music 1168 7 13 567 37 20
Navigation 1129 1 5 329 35 8
News 1286 4 3 398 89 5
Photo & Video 818 5 3 331 42 28
Productivity 1073 1 2 549 27 30
Reference 745 1 1 254 21 11
Social Networking 1838 2 3 721 238 18
Sports 1290 7 8 390 69 17
Travel 708 3 1 291 26 9
Utilities 1405 4 4 673 33 39
Weather 1915 1 1 716 144 16
Total 69237 5580 3240 11965 1481 604

Table 7: Third-party network service libraries across app categories (see Section 6).

Categories Bu
sin

es
s

Ed
uc

at
io

n

En
te

rt
ai

nm
en

t

Fi
na

nc
e

Fo
od

G
am

es

H
ea

lth

K
id

s

Li
fe

st
yl

e

M
ag

az
in

es

M
ed

ic
al

M
us

ic

N
av

ig
at

io
n

N
ew

s

V
id

eo

Pr
od

uc
tiv

ity

R
ef

er
en

ce

So
ci

al
N

et
w

or
ki

ng

Sp
or

ts

Tr
av

el

U
til

iti
es

W
ea

th
er

To
ta

l

boost::asio::io_service (C) 30 21 33 11 12 284 11 5 21 1 14 20 12 14 11 28 4 33 12 6 20 9 612
CocoaHTTPServer (OC) 45 38 163 15 19 1315 35 16 57 128 15 112 18 73 83 95 53 68 49 6 139 11 2553
Tapjoy-CocoaHTTPServer-Extension (OC) 3 4 40 4 7 1220 6 13 24 3 4 15 7 4 17 21 5 43 13 0 27 4 1484
CocoaAsyncSocket (OC) 593 397 545 557 776 3203 290 48 674 391 384 330 272 425 343 412 220 956 358 247 631 709 12761
Google Cast (OC) 42 40 103 70 275 333 76 15 76 14 151 88 330 171 90 60 56 73 232 96 80 236 2707
PDRCoreHttpDaemon (OC) 12 3 1 17 84 0 1 0 3 1 14 3 22 12 2 6 4 6 28 2 8 83 312
GCDWebServer (OC) 30 33 64 13 99 999 38 37 28 73 56 58 59 69 45 46 48 39 80 18 72 93 2097
UnityEngine.iOS (OC) 5 41 38 3 36 5725 12 122 6 17 46 48 28 46 6 3 13 6 58 1 5 37 6302
WebRTC (C) 58 58 25 54 91 45 35 0 44 6 117 13 31 18 14 33 8 192 67 24 22 69 1024
gRPC (OC) 1 1 1 3 2 2 0 0 2 2 2 0 1 0 2 1 1 4 0 0 5 0 30
SmartView (OC) 10 21 9 44 12 11 15 1 28 2 7 11 9 17 16 12 2 25 11 53 18 10 344
Unreal Engine 4 (OC) 1 0 2 0 1 195 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 202
Happy DNS (OC) 34 41 30 23 74 10 37 0 69 12 39 29 12 38 32 12 11 142 39 15 24 54 777
MongooseDaemon (OC) 4 2 12 4 3 67 1 2 0 0 0 5 0 2 2 1 0 2 1 0 8 0 116
DIAL (C) 1 4 16 0 2 0 0 0 0 0 1 6 0 1 2 1 1 1 0 0 7 1 44
Platinum UPnP (C) 1 3 24 0 2 0 0 0 0 0 1 6 0 0 3 2 0 0 0 0 9 0 51
upnpx (C) 2 2 10 0 2 0 0 0 3 0 1 5 2 3 5 4 0 1 0 0 4 2 46
Ionic’s Webview (OC) 1 0 0 1 45 11 1 0 0 0 31 0 34 1 0 0 0 0 41 3 1 47 217
Connect SDK Core (iOS) (OC) 0 1 4 0 0 0 0 0 0 0 0 2 0 0 0 1 1 0 0 0 4 0 13
wangxin.taobao (OC) 8 5 4 4 20 2 8 0 26 0 6 2 3 6 2 12 1 17 6 8 7 24 171
LeTVCDE (OC) 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3
FunTV (OC) 0 0 9 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 1 0 15
Audiobus SDK (C) 1 6 19 0 0 15 6 3 3 2 8 158 0 3 10 6 1 11 2 0 10 0 264
pupnp (C) 0 1 10 0 0 0 0 0 1 0 0 7 0 0 2 0 0 0 0 0 2 0 23
inke SDK (OC) 0 0 2 0 0 1 0 0 0 0 5 4 0 0 0 0 0 1 0 0 0 2 15
MAASDK (OC) 2 3 3 4 1 0 0 0 10 3 0 0 3 7 1 1 0 2 1 5 2 3 51
TencentVideoHttpProxy (OC) 1 3 2 0 2 2 0 0 1 0 0 2 0 1 0 0 0 4 1 0 6 0 25
SmartDeviceLink (OC) 0 0 4 1 2 0 0 0 0 0 0 11 8 3 0 0 0 0 0 2 2 4 37
libupnp (C) 0 0 6 0 0 0 0 0 0 0 0 4 0 0 3 1 0 0 0 0 2 0 16
ProudNet (C) 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15
MobileIMSDK (OC) 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
GCDTelnetServer (OC) 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 4
yfcloud (OC) 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
MQTT (C) 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 3

